
Scaling to 920M users
Migrating One of the Largest Streaming User Management Platforms to TiDB

Empowering Scalability, Performance with Simplicity

Kabilesh PR
Founding Partner, Mydbops

Mydbops MyWebinar : 48

Your Trusted
Open Source Database
Management Partner

With 9+ Years of Expertise

Database Technologies

Mydbops by the Numbers

9+ years
Of Expertise

10 B + 6000 +
Servers

Monitored
DB Transactions
Handled per Day

800 +
Happy Clients

3000 +
Tickets Handled

per Day

Focus on MySQL, MariaDB, MongoDB, PostgreSQL & TiDB

 Consulting
Services

Consulting
Services
Managed
Services

24*7
DBA Team

Targeted
Engagement

Mydbops Services

About the Customer

● Business Domain: SaaS / Cloud software for subscription billing,

customer lifecycle management, monetization.

● Target Industries: Digital media, telecommunications, video

service providers, OTT, streaming, digital subscription platforms.

● User Base : Serving in 180 Countries with 920 Million end users

About the Client:

DB Architecture

● Writer: 48vCPU & 384GBRAM

● Reader 1 Instance: 48vCPU & 384GBRAM

● Reader 2 Instance: 96vCPU & 768GB RAM

● Using provisioned IOPS 16k

● Datasize 7TB

● Multi AZ deployment.

Running with MySQL 8.0.x

Scaling Requirement

For upcoming, greatest rivalry game event on their platform, They were

anticipating traffic at a scale 3 Million QPS importantly the DB p99

latency to be within 20ms.

Application TPS : 25k

Requirement

Initial Scaling

Phase 1

● All Instances was scaled to R6g.48xlarge

● 2 replica were added more to have read scalability

Result :

With the Maxed-out Instances, it was able to handle 10k TPS ie. 300k

QPS with expected latency range. Remaining tests were failed.

Phase 2

● Engineers worked on optimising MySQL compatible db

● Multiple config changes and patch was applied as well

● Redis Cache layer: Introduced to reduce read pressure

● Keyspaces(Cassandra): Two heavy write, log based tables pushed.

Result :

With supporting components, It reached 12k TPS, ie., 365k QPS

Database Performance Bottlenecks

The TiDB Introduction

● Evaluated as MySQL compatible, Distributed SQL database build for

Horizontal scalability.

● Vertical & Horizontal scaling with Automatic Sharding

● Multi-master distributed Architecture.

● HTAP capabilities.

● Zero code changes

● Open Source

Why TiDB?

Why TiDB?

The Migration Journey

We adopted Zero Downtime Migration Plan,

ie., TiDB would act as replica for MySQL.

Steps:

● Schema Migration: Recreated skeletal

structure with TiDB DDL Compatibility.

● Data loading done with DM cluster

followed by CDC using binlogs

Migration

Migration

● Total 7 TB of data from MySQL Compatible database

was Migrated in less than 28 Hours, with replication –

Thanks for Physical loading of DM (Lightning)

● Storage was reduced by 79% with default TiDB with

no perf Impact, 1.5 TB

● Primary Key changes done along with TiDB restore

Migration

BenchMarking TiDB

● Series of Load test runs 12K → 15K → 20K → 25K TPS

● Dynamic scaleout of TiDB and TiKV to manage High concurrency and low

latency.

Load Testing

It’s All
About
Performance
At Scale !!

Writes

Issues & workaround

● When Redis fails (or evicts hot keys), every cache miss turns into a

direct DB query, floods database.

● Cache Table as Saviour !!

Master/config tables(46) were cached in TiDB (SQL layer) ie., on the

wire caching, there by we not only addressed floods,but completely

replaced/removed redis use case

Floodgates : When Redis Fails

Write hotspot observed for , heavy write table causing high CPU with

some TiKV nodes.

Hash partitions:

● Identified Hot / Heavy write tables, Enabled Hash-based partition on

the PK to distribute evenly.

● With Hash partitions we were able to remove/replace keyspace.

Write Hotspot Issue

All TiDB nodes(sql) were placed under a Network Load Balancer (NLB)

for connection-balancing. Due to stickiness and skewness connections

were unevenly distributed at high concurrency.

Tiproxy replaced NLB:

● Even connection distribution

● Connection failover

● Auto node discovery

● Handled 60K connections, a significant increase from the previous

limit of 16k on the primary DB.

Connection Imbalance With NLB

Under certain scenarios optimiser tends to choose wrong query plan

resulting in higher latency.

SQL Bindings:

Pin a stable execution plan to a SQL pattern without changing application

code.

CREATE GLOBAL BINDING
FOR SELECT c FROM t WHERE a = ? AND b = ?
USING SELECT /*+ USE_INDEX(t idx_a) */ c FROM t WHERE a = ? AND b = ?;

SQL Binding - Zero application changes

Real Time reports on login counts, transactions were delayed.

TiFlash for Real Time Analytics:

● Batch reports were done in less than 7 mins before 1 hour

● Removed dependencies on external analytics

● No more replication lag

Slow Realtime Reporting

Outcomes

RollBack

Any Questions?

 Consulting
Services

Consulting
Services

info@mydbops.com +91-9686032223 www.mydbops.com

Connect with us

Thank You

