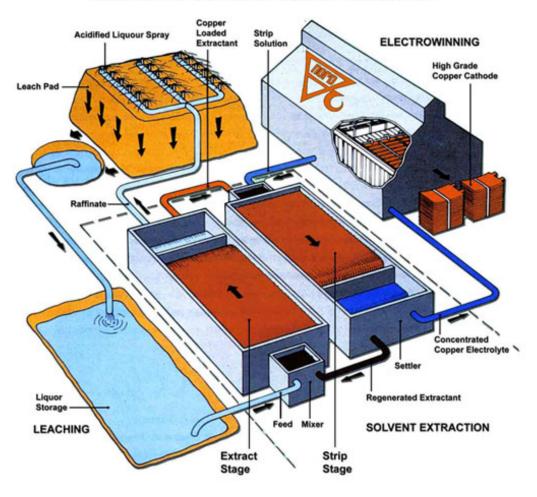
ADDING VALUE TO LIX / SX / EW OPERATIONS BY RECOVERING COPPER FROM BLEED, RAFFINATE AND OTHER PLANT STREAMS

Richard E. Dixon, Ph.D.

HATCH Associates


Rudi Fester, Carlos García, Carlos Contreras, Fernando Romero Cia. Minera D.I. de Collahuasi

Ian D. Ewart

Electrometals Technologies, Ltd.

Copper Leaching / SX / EW

RECOVERY OF COPPER BY SOLVENT EXTRACTION

Contaminant Buildup in Copper EW Electrolyte

Contaminant	Typical range	Potential Problems at Higher Concentrations
CI	10 – 50 ppm	Cathode Stripping Problems
Fe	1-3 g/L	Current Efficiency loss (2% to 3% per g/L of Fe)
Mn	10 – 500 ppm	Faster degradation of Lead Anodes

Quantity of EW Bleed needed to stabilize contaminants

Bleed Amount (as % of total annual		
Cu production)	Number of Plants	% of Total
0 to 0.2%	6	20
0.2 to 0.4%	6	20
0.4 to 1%	6	20
1 to 2%	4	13.3
2 to 3%	3	10
3 to 4%	3	10
Over 4%	2	6.7
Total	30	100

Reasons for Bleeding EW Electrolyte

Contaminant	Number of Plants	% of Total
Fe	7	35
Fe + Cl	1	5
Fe + Mn	4	20
Cl	4	20
CI + Mn	3	15
Mn	1	5
Total	20	100

Bleed is recycled into Lix SX EW circuit to avoid loss of copper in the bleed

Destination of Bleed

	Number of	
Destination	Plants	% of Total
E1	9	41
PLS	2	9
SX Wash	4	18
Raffinate	7	32
Total	22	100

Disadvantages of Recycling Bleed

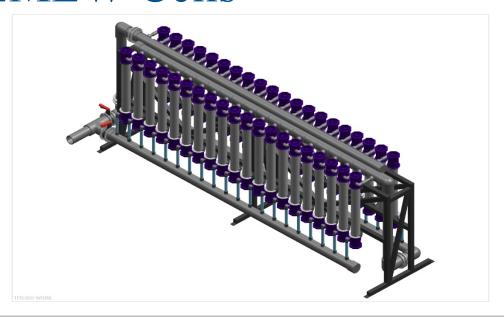
Raffinate pond: Increased copper concentration in raffinate decreases leaching power of raffinate, resulting in lower copper recovery from the heap.

Extraction stage: Copper and acid concentrations are increased. Recovery in the SX stage is reduced. Compensated by increasing extractant concentration, resulting in increased carryover and loss of organic.

SX wash stage: Acid concentration increased and copper loss occurs similar to stripping stage.

PLS pond: Copper concentration to SX stage is increased, higher extractant needed, causing increased organic carryover and loss.

Alternative to Recycling Bleed


- Electrowin most of the Copper from the Bleed
- Send Resulting Low Copper, High Acid solution to Leach (Raffinate)

Electrowinning Copper from Bleed

• Copper concentration usually reduced from 42 grams/liter to around 25 grams per liter in traditional EW tankhouse

• How much more can copper concentration be reduced and still produce high quality copper?

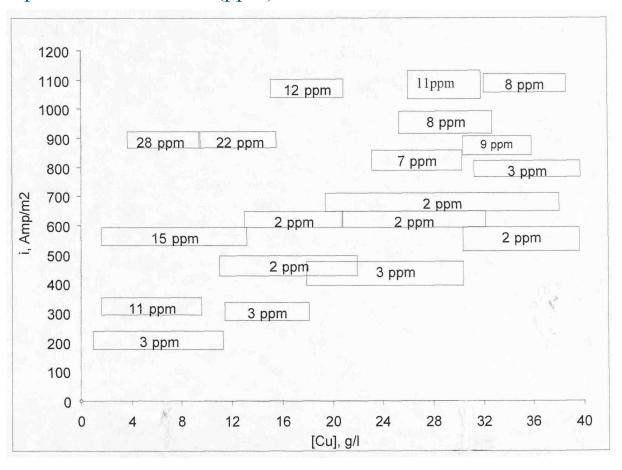
Electrowinning of Bleed using EMEW Cells

	Tankhouse Plating	BM EW	
Open to Atmosphere	Yes	No	
Howrate	0.2 - 0.4 m3/Hr/m2	12 - 18 m3/Hr/m2	
Concentration Range	45 - 25 g/L	45 - 2 g/L	

Electrowinning of Bleed using EMEW Cells

Codelco Radomiro Tomic

ENAMI Salado


Collahuasi Oxides

Codelco Radomiro Tomic

Run	Cu ini	Cu end	Volts	Dens	Effic	g/T
	g/l	g/l		A/m2	%	S
1	39	29	2.4	559	91	2
	29	18.8	2.4	417	91	3
	18.8	11.4	2.2	282	86	3
	11.4	0.8	2	188	81	3
2	38.9	30.6	3.7	891	88	9
3	40.4	32	3.3	825	87	3
	32	24	2.8	614	88	2
	24	13.5	2.8	605	89	2
	13.5	1.9	2.7	528	98	15
4	37.2	19.6	2.7	664	84	2
5	31.4	28.6	4.7	1130	89	7
	28.4	22.5	3.9	850	93	7
	22.6	10.2	2.7	460	93	2
	9.7	1.9	2.4	303	89	11
6	38.4	32.3	3.8	1100	80	8

Codelco Radomiro Tomic

Sulphur Concentration (ppm) in Cathodes from EMEW Cells

Enami Salado

Run	Current	Concentration		Voltage	Current	S
	Density	Cu gpl	Cu gpl	Volts	Efficiency	
	(amp/m2)	Initial	Final		%	g/T
1	450	33	18.2	2.4	94	8
	350	18.2	7	2.2	94	4
2	580	35.3	14.8	2.6	92	5
	300	14.8	3	2.2	93	5
3	700	34.2	22	2.8	97	1
4	600	39.1	22.3	2.6	94	2
	350	22.3	3.71	2.25	91	2
5	800	42.78	28.13	2.9	95	2

Collahuasi Oxides

Run	1	2
Current Density, Amp/m ²	400	300
Initial Copper, gpl	33.1	13.1
Final Copper, gpl	13.1	3.6
Voltage ,V	2.6	2.4
Initial Acid, gpl	199	241
Final Acid, gpl	241	255
Current Efficiency, %	96	93
Sulphur in Cathodes, ppm	4	5

Conclusions

- Copper concentration in Bleed stream can be reduced to at least 3 g/L, while maintaining high Copper purity
- Acid consumption reduced
- Expansion of SX/EW capacity without modifying SX
- Possible drop of up to 300 ppm in Raffinate Cu concentration will be evaluated at Enami Salado
- Increased stability of plant Impurities effectively out

Raffinate Electrowinning - Collahuasi

Parameter	Concentration
Cu	1.46 gpl
H2SO4	20 gpl
Fe+ 2	16 gpl
Fe+ 3	2 gpl
Total Fe	18 gpl

Run Number	1	2	3	4	5
C. Density, Amp/m2	600	600	600	600	600
Initial Copper, gpl	1.46	0.5	0.34	0.23	0.17
Final Copper, gpl	0.5	0.34	0.23	0.17	0.13
Voltage, V	3.7	3.9	3.9	3.8	3.8
Run time, Hr.	8	5	15	16	28

• Initial Current Efficiency ca. 25%

Product from Raffinate Electrowinning

Effluent Electrowinning - Collahuasi (EW cell cleaning, electrolyte spills, and other streams from the SX plant)

Parameter	Concentration
Cu	21.7 gpl
H2SO4	110 gpl

Run	1	2
Current Density, Ampere /m2	400	300
Initial Cu Concentration, gpl	21.7	13.6
Final Cu Concentration, gpl	13.6	4
Sulphur content, ppm	5	7
Voltage, V	2.7	2.4
Current Efficiency, %	94	90
Energy Use, KWh/Kg Cu	2.4	2.3

effluent

Effluent Electrowinning - Collahuasi (EW cell cleaning, electrolyte spills, and other streams from the SX plant)

Acknowledgements:

- Collahuasi Oxides: Rudi Fester, Carlos García, Carlos Contreras, Fernando Romero
- Codelco Radomiro Tomic: Verónica Escobar
- ENAMI Salado: David Olguín, Rodrigo Valdés
- Electrometals: Ian Ewart