

Click to prove
you're human

Vascular occlusions can occur following dermal filler injection, leading to severe consequences for patients. Hyaluronidase, an enzyme introduced in general medicine in 1949, has gained widespread use in aesthetic medicine to dissolve hyaluronic acid (HA)-based fillers. This paper provides guidance on the indications and risks associated with using hyaluronidase for filler dissolution. Necessary steps are required to dissolve cross-linked hyaluronic acid (HA) in case of a vascular occlusion (VO). A VO resulting from an accidental intravascular injection is time-sensitive but not life-critical, unless visual or neurological disturbances occur. Failure to dissolve HA can lead to tissue necrosis, scarring, blindness, and/or cerebrovascular accident. Refer to the Complications in Medical Aesthetics Collaborative (CMAC) guideline for more information. The Tyndall effect is a phenomenon observed when particulate fillers are injected superficially, creating a blue hue due to the scattering of shorter wavelengths by filler particles. Historically attributed to light passing through particles with smaller wavelength than itself, this theory seems unlikely given HA molecules' larger size compared to light wavelength. Recent findings suggest that HA alters tissue physiology, allowing deeper absorption of red light, resulting in a blue appearance. Delayed-onset nodules can appear weeks or months after filler injection and are caused by various soft-tissue fillers, including cross-linked HA. Understanding the underlying pathophysiology is challenging due to limited access to investigations and patient reluctance for tissue sampling. Delayed hypersensitivity reactions, granulomas, and biofilms may contribute to delayed-onset nodules. Poor aesthetic outcome can result from incorrect filler placement, excess filler, or migration/redistribution. Good product knowledge, appreciation of three-dimensional anatomy, and correct technique are crucial for an optimal aesthetic outcome. As cross-linked hyaluronic acid breaks down in tissue, its physicochemical properties alter, affecting rheological parameters. Changes in these properties can affect the aesthetic outcome and contribute to dermal fillers migrating into areas of high muscle activity. In the UK, hyaluronidase is a prescription-only medicine licensed for enhancing permeation and uptake of subcutaneous or intramuscular injections, local anesthetics, and subcutaneous infusions. Its off-license use in aesthetic medicine to dissolve cross-linked hyaluronic acid must be disclosed as part of the consent process. Manufacturer's guidelines state the product should be stored at temperatures below 25°C to maintain formula stability. It comes with an expiration date and can still be used until the last day of the month it expires if properly stored in temperatures under 25°C. If stored above 25°C, the expiration date will be affected. Once opened, the ampoule must be used right away and any leftover content discarded. If the clinician is outside the UK and has access to other hyaluronidase brands, they should follow the manufacturer's guidelines for storage instructions. Hyaluronidase can typically be reconstituted with common infusion fluids but is most commonly mixed with bacteriostatic sodium chloride (NaCl) 0.9% in medical aesthetics due to reduced pain upon injection. Both bacteriostatic and non-preserved NaCl have similar pH levels, which is crucial because enzyme activity is sensitive to pH changes. Bovine/ovine extracted hyaluronidase has a bimodal activity pattern with maximum activity at pH 4.5 and 7.5. However, in cases of vascular occlusions where pain might be due to ischemia, it's suggested that the patient should have hyaluronidase reconstituted with a local anesthetic without adrenaline to make the experience more comfortable. Hyaluronidase is physically compatible with lidocaine and often used alongside local anesthetics in eye or spinal anesthesia as part of blocks for administering anesthesia. It's recommended to always check manufacturer guidelines when verifying compatibilities with diluents, as formulations can differ by country. Concerns have been raised regarding the risk of a Type I hypersensitivity reaction when injecting hyaluronidase, prompting some clinicians to perform skin tests. However, according to the British Society of Allergy and Clinical Immunology (BSACI), these tests should be interpreted within clinical context, not used for screening drug allergies, especially in cases without symptoms pointing to an IgE-mediated allergy. Despite this, skin testing is commonly used in aesthetic medicine even when there's no reason to suspect allergy, which goes against BSACI recommendations. There have been rare reports of allergic reactions requiring adrenaline since 1949, with the incidence being extremely low unless large doses are administered intravenously. While some countries use compounded hyaluronidases with more impurities than ovine- or bovine-derived products, others like the US use recombinant hyaluronidase (Hylenex) which is considered to be the purest formulation. Some researchers believe that the problematic protein in hyaluronidase formulations is the enzyme itself. However, the presence of protein impurities within the formulation can also contribute to allergic responses. Thimerosal, a preservative used in some products, has been known to cause allergic reactions. Hyaluronidase produced by Wockhardt in the UK doesn't contain any preservatives, but may still have impurities due to the manufacturing process. There haven't been any studies that isolated and tested protein impurities within all hyaluronidase products or established links between allergy and these impurities. Interestingly, there have been no documented cases of allergy with Hylenex, which is a human recombinant product. Hyaluronidase allergy cases have consistently shown enzyme as the direct cause of the allergic reaction, with some studies suggesting that route of administration and dosage may play a role in determining the severity of symptoms. In general, reactions are localized to the injection site, but higher doses or intravenous administration can lead to more generalized symptoms. Ocular administration is particularly common, likely due to longer residence times in ocular tissue, which may result in greater exposure to the drug. However, the accuracy of this proposed half-life has not been verified. Side effects from hyaluronidase, especially at concentrations above 1:10, can be irritant and include erythema and swelling, typically resolving within 24 hours. While these are predictable Type A adverse reactions, some patients with a history of allergy to other drugs or conditions may experience more severe responses. Allergic reactions to wasp/bees stings require careful consideration prior to administering hyaluronidase. A possible or confirmed allergy to bee and/or wasp stings poses a significant risk of cross-reactivity. Assessing the type of reactions and known information about allergy status is crucial. Small local reactions around the sting site are normal, whereas large localized reactions and anaphylactic reactions carry higher risks. Anaphylaxis risk increases if a patient has had a large localized reaction (LLR) or anaphylactic reaction to bees or wasps. Hyaluronidase contains multiple allergens, including hyaluronidase itself; without specialist testing, the clinician must assume this as the culprit. Administering hyaluronidase carries risks of up to 5% and 60% for LLR and anaphylaxis, respectively. For patients with a history of LLR or anaphylaxis, intradermal tests should be performed. An validated concentration exists for assessing hyaluronidase allergy in the UK; case reports suggest 15-150 units/mL to verify allergy. The volume injected for an intradermal test is around 0.02-0.05mL, aiming for a 5-mm bleb. et al26 reported a need to concentrate hyaluronidase (Restylane) from 1.5u/mL to 150u/mL for a positive IDT reaction, with lower concentrations resulting in negative outcomes. A study by Vartanian et al40 investigated local reactions using 10, 20, and 30 units of hyaluronidase to dissolve HA after injection into the arm. The authors found that higher doses led to more severe reactions. However, it is well known that hyaluronidase can cause local irritation when injected, as a predictable type A reaction. It remains unclear whether the reactions reported in Vartanian et al40 were allergic Type IV reactions or predictable irritation from injecting the drug. In patients with a history of anaphylaxis to bee and wasp stings, performing intradermal testing without validated test concentration can be hazardous. Reliable testing requires valid and sensitive results. Current skin test practice is neither valid nor reliable due to the lack of standardized test concentrations. Clinicians must consider this when interpreting IDT results. Performing an IDT includes careful steps outlined in Tables 2 and 3, with recommended dosages varying depending on the formulation. If performing an IDT, follow these steps: clean the area, stabilize the skin, inject a small amount of the drug, and use a control solution as a reference. The reaction can be positive if it results in a raised bleb surrounded by swelling and redness. In some cases, erythema may develop at the injection site. Given article text here The optimal dose and concentration of hyaluronidase for treating cross-linked HA filler injections can vary depending on several factors, including the density of filler particles and tissue volume. While some studies have investigated the degradation rates of various fillers in response to hyaluronidase, more research is needed to determine the most effective treatment protocols. Literature suggests that using a higher dose of hyaluronidase may be more reliable than specific dosages, with clinicians treating "to effect" rather than adhering to established guidelines. However, previous studies have reported doses that are often conservative, and CMAC recommends using at least 1,500 units in 5mL for optimal treatment. Following elective treatment with hyaluronidase, patients can be reassessed after 48 hours, with additional treatment repeated if needed. However, it is essential to wait until swelling has subsided, typically taking two weeks or longer, to ensure a predictable aesthetic outcome. In the event of vascular occlusion, CMAC recommends following specific steps for management, including video recording, skin disinfection, and reconstituting hyaluronidase with bacteriostatic NaCl. Treatment should focus on achieving full coverage and treating "to effect," with reassessment of capillary refill time after each application. Additionally, CMAC proposes revising the frequency of administration of hyaluronidase based on pharmacokinetic modeling, which suggests that its systemic half-life is less relevant in aesthetic medicine. Following rodent studies, it has been documented that after subcutaneous and intramuscular administration of a particular substance, its half-life is approximately 5.1 minutes and 7.5 minutes, respectively.43 Hyaluronidase acts as a dispersal agent, effectively moving the injected diluent away from the injection site.6 Given the pharmacology of hyaluronidase and its brief half-life in both subcutaneous and muscular tissues, CMAC advises administering the initial dose with firm massage before reassessing vascular flow. If necessary, hyaluronidase should be re-administered at this point if blood flow has not been established. Re-dosing is estimated to occur around 15 to 20 minutes after the initial dose following reassessment. CMAC also recommends co-administering hyaluronidase with lidocaine without adrenaline (or an equivalent local anesthetic agent) if available, as it results in a more tolerable experience for the patient and reduces patient fatigue. Additionally, lidocaine causes vasodilation in dermal tissues, which is advantageous in cases of ischemic injury. CMAC introduced the concept of stages of vascular occlusion in their guideline for managing hyaluronic acid filler-induced vascular occlusion. While this concept does not allow for assessing depth of ischemic insult, it provides some guidance on whether necrosis is present. CMAC agrees that supportive treatment and ancillary medicines are not required if ischemia is managed early; however, a patient presenting late with established necrosis will require wound care. Supportive care should be given to ensure the limb remains comfortable. However, the treatment of cellulitis is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase in aesthetic treatment requires careful consideration of depth and site of injection to achieve optimal results. When administering the enzyme, it's essential to focus on the area of concern, as the use of a hyperbaric chamber alone is not optimal for managing established necrosis.46 Table 5 outlines the proposed changes. The use of hyaluronidase