

PATHOLOGY FROM PIXELS TO PATIENTS

Redefining Thyroid Cytology with AlxTHY: Improved Accuracy and Efficiency in FNAC Interpretation

Swati Satturwar, MD

Associate Professor, Department of Pathology, The Ohio State University

<u>Swati.Satturwar@osumc.edu</u>; x handle@SatturwarSwati

Disclosure

Consultant to AlxMed Inc

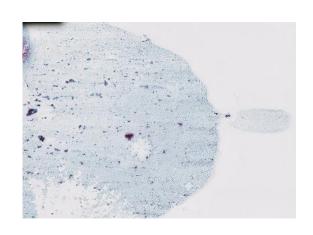
Outline

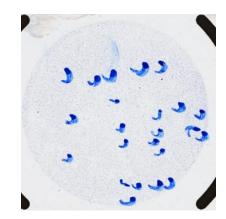
Thyroid cytology digital perspective

TBS= The Bethesda system for reporting thyroid cytology

Role of AI for thyroid cytology

Summary of our study


Thyroid Cytology: Digital Perspective


Preparation types: Smears and LBC (liquid-based cytology) or LBC only +/- cell-block

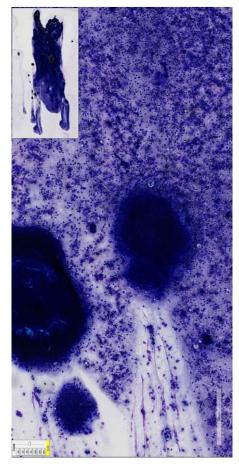
Smear: Diff Quik stain

Smear: Pap stain

LBC: Pap stain

Issues for digitization: 3-D clusters, variable thickness of smears, thick smears etc.

Digitization Issues: Cytology vs Surgical Path



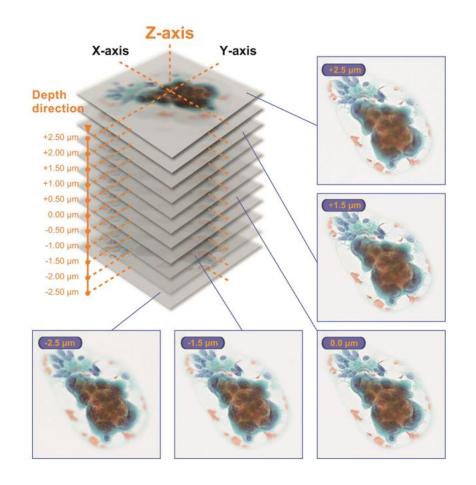
	Cytology	Surgical pathology
Specimen types	Exfoliative, abrasive, fine needle aspiration	Biopsy, resections
Preparation types	Smears, LBC, cytospin, touch preparation, cell-blocks	Formalin fixation and paraffin embedded tissue
Commonly used Stains	Diff-Quik, Pap, H&E, IHC	H&E, IHC
Differences in procured material	3-D clusters, uneven distribution of cells, material extending beyond cover slips, frequent scant cellularity,	Uniform thickness of tissue sections on a glass slide and simple topography
Case level differences	Single cases can have multiple preparation types such as smears and cell-block for FNA cases and cytospins and cell-blocks for effusion specimens etc.	NA
Workflow	All specimens are <mark>screened by cytologists</mark> and areas of interest are marked using colored markers	No screening
Automated barcode	Only subset of cases	Yes, all cases

Cytology Smear

3-D clusters

Thick smear

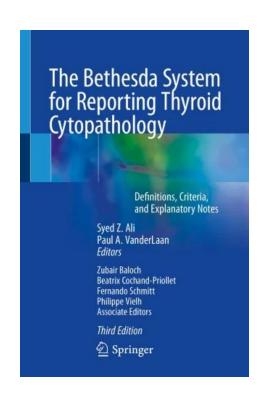
Surgical section



Simple topography

Scanning Cytology Slides: Z-layer

Cytology Slides: Z-layer Stacking



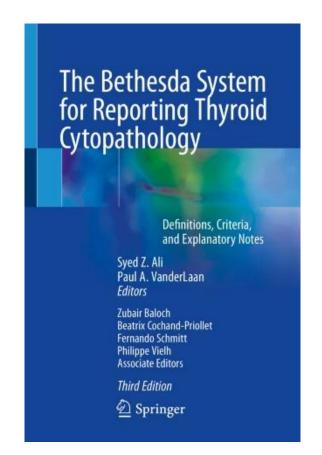
- Z-stacking = Focus fusion
- The exact number of z planes and the distance between z planes for digitizing cytology slides have not yet been standardized
- LBC preparations needs less z-layers as compared to smears
- Increase scanning time
- Increase file size
- Needs better bandwidth for data transmission
- More costly

The Bethesda System (TBS) for Reporting Thyroid Cytopathology PATHOLOGY VISIONS DE

TBS Categories and Terminology:

- I Non-diagnostic
- II Benign
- III Atypia of undetermined significance
- IV Follicular neoplasm
- V Suspicious for malignancy
- VI Malignant

Interobserver subjectivity remains an issue; specially for AUS, FN, SFM categories



The Bethesda System (TBS): ROM

- ROM for thyroid FNA (excluding NIFTP)
 - TBS II (Benign) = 2%
 - TBS III (Atypia of undetermined significance) = 16%
 - TBS IV (Follicular neoplasm) = 23%
 - TBS V (Suspicious for malignancy) = 65%
 - TBS VI (Malignant) = 94%

Diagnostic lobectomy is considered at TBS III and above

Yes! Al development and application possible

- Majority lesions are benign
- PTC is most common malignancy

TBS Categories, Terminology and AI perspective:

Adequacy: Quantitative (60 cells)

I Non-diagnostic: Detect cellularity, quantify, identify artifacts, QC etc.

II Benign: Feature extraction: Identification of colloid, follicular cell architecture

III Atypia of undetermined significance (nuclear vs other): Nuclear atypia, quantitation,

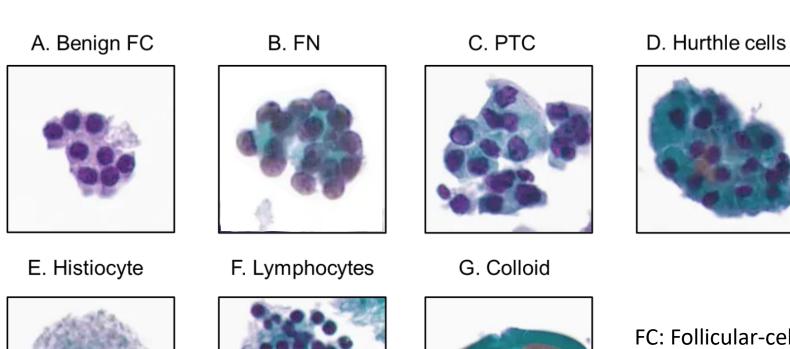
architecture

IV Follicular neoplasm: Feature extraction micro-follicles, quantitation

V Suspicious for malignancy: PTC vs other

VI Malignant: PTC vs other

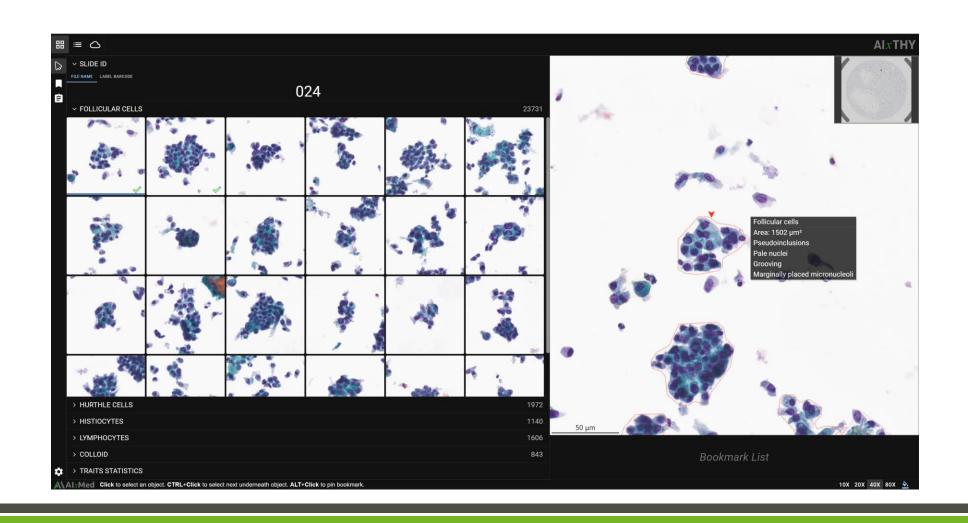
AIxTHY Platform



- Al platform applicable to WSIs of thyroid cytology LBC
- Assist (cytologists and cytopathologists) during thyroid cytology review, enhance efficiency and end-user experience
- Reduce turn-around-time

All candidate "hot-spot" cells detected by the algorithm are displayed as clickable thumbnails and are automatically grouped according to the Alpredicted TBS category.

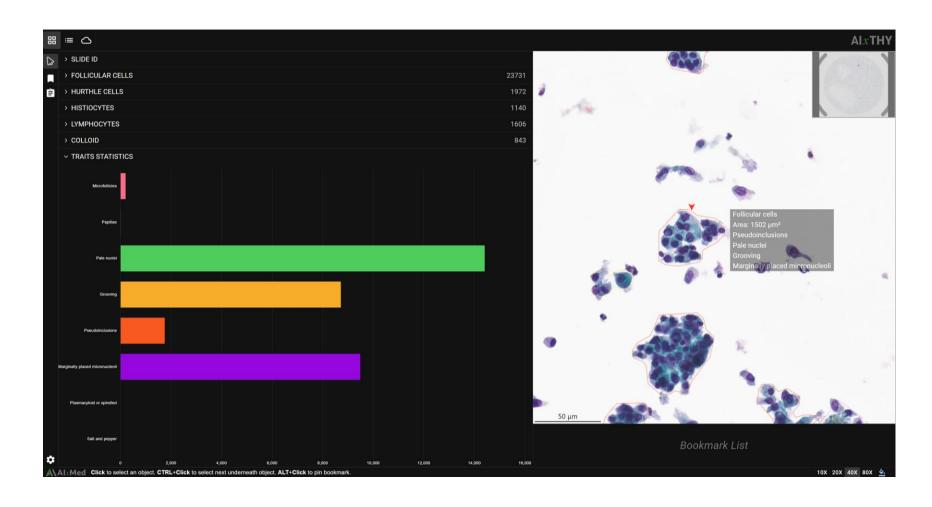
Representative Candidate-Cell Tiles Identified by AIxTHY



FC: Follicular-cell cluster FN: Follicular neoplasm

PTC: Papillary thyroid carcinoma

AlxTHY User Interface/Dashboard: Al-assisted Thyroid Cytology

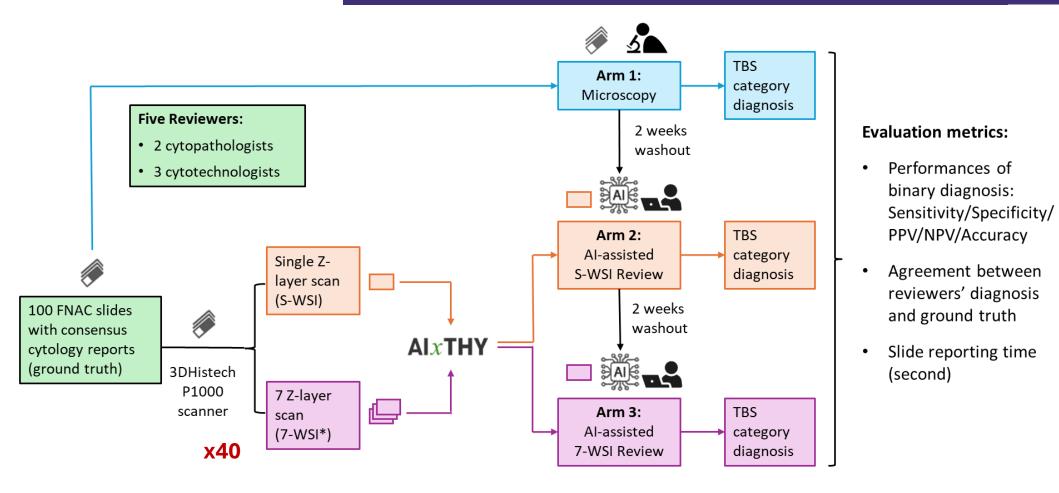


AlxTHY User Interface for Al-assisted Thyroid Cytology Review: Quantitative-Traits Panel

- Papillae
- Pale nuclei
- Grooving
- Intra-nuclear pseudoinclusions
- Marginally placed micronucleoli
- Micro-follicles, lack of colloid
- Plasmacytoid or spindled
- Salt and pepper chromatin

TRAITS STATISTICS

Study Objectives

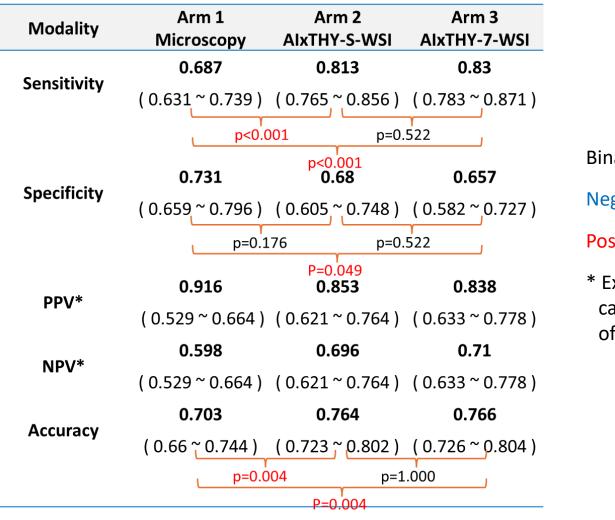

- Al platform applicable to WSIs of thyroid cytology to assist diagnosis
- Single-layer issues: 3-D clusters, visualization of nuclear features, uneven smears
- Multi-Z-layer scanning has the potential to improve visual clarity and diagnostic performance.

Objectives:

- 1. To evaluate performance with AI-assisted review versus manual review
- 2. To evaluate AlxTHY's performance: Single-layer versus 7-Z-layer WSIs of thyroid FNA (Conventional microscopy as the benchmark)

Study Design

FNAC: Fine needle aspiration cytology; TBS: The Bethesda System for Reporting Thyroid Cytopathology; *7-layer-stacking whole-slide image


100 Cases Dataset: Thyroid FNA ThinPrep Cytology Slides with Consensus Cytology Reports (Ground Truth)

		TBS Category	Number
	Excluded	I- Non-Diagnostic	5
Binary Diagnosis	Negative	II- Benign	35
		III- Atypia of Undetermined Significance	15
	Positive	IV- Follicular Neoplasm	15
		VI- Malignant	30
		Total Number	100

Binary Diagnosis Results: Microscopy vs AlxTHY-Assisted Review

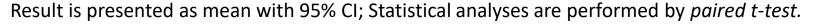
Binary diagnosis:

Negative: TBS-II

Positive: TBS-III~VI

* Exclude diagnosis of TBS I category from calculation of PPV and NPV results.

Reviewer–Ground Truth Agreement by TBS Category


TBS Category	Arm 1	Arm 2	Arm 3
	Microscopy	AlxTHY-S-WSI	AlxTHY-7-WSI
I- NonDx	18/25	14/25	12/25
	72.0%	56.0%	48.0%
II- Benign	128/175	119/175	115/175
	73.1%	68.0%	65.7%
III- AUC	19/75	40/75	33/75
	25.3%	53.3% 	44.0% 1
IV- FN	31/75	29/75	31/75
	41.3%	38.7%	41.3%
VI- Malignant	71/150 I- Malignant 47.3%		75/150 50.0%
Total 267/500		258/500	266/500
53.4%		51.6%	53.2%

Review Time Reductions: Microscopy vs AlxTHY-Assisted

	Binary Category		Arm 1 Microscopy	Arm 2 AlxTHY-S-WSI
Two cytopathologists' reads N = 190	Total	Review Time (sec)	163.6	109.9
		Standard deviation	56.1	40.4 32.8%
			p<0.001	
	Positive	Review Time (sec)	200.1	125.8
		Standard deviation	62.1	45.8 37.1 %
			p<0	0.001
	Negative	Review Time (sec)	144.6	97.4
		Standard deviation	35.1 p<0	21.0 32.6%

Conclusion

AIxTHY vs manual review of thyroid cytology:

- Increased sensitivity
- Improved agreement in indeterminate (TBS-III, AUC) cases, only a modest trade-off in specificity
- Improved diagnostic accuracy

Al-assisted 7-layer vs 1-layer WSI review:

Sensitivity (slight gain) and reduction in nondiagnostic calls

Reduced review time (30-37%)

 Al-assisted digital thyroid cytopathology shows strong potential to streamline thyroid FNAC workflows and improve diagnostic efficiency.

Thank You!!

