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AN ON-GOING PROCESS OF ASSESSING 
THE IMPACT OF NEW TECHNOLOGIES ON 
THE FINANCIAL AND INSURANCE SECTORS

FAIR IS AN ILB FLAGSHIP

Three years ago, Institut Louis Bachelier saw an increase of requests coming from the industry  
to finance collaborations with academia on different forms of machine learning and blockchain topics. 
This appetite to explore the potential added value of these new technologies on financial markets and 
for the insurance sector was not well organised; it seems closer to curiosity than the will of conducting 
strong research collaborations. It nevertheless fostered the interest of the scientific board of the 
Institute on these domains, raised the question of helping the industry to focus collaborative efforts on 
impacting projects. It has been the starting point of the “Finance and Insurance Reloaded” transverse 
research program.

We are currently in the first phase of this project, structured around more transparency and 
information sharing. We first investigated what could be the main fields of applications in a workshop at  
the Collège de France. The emerging themes have been: usages oriented towards clients of these 
sectors, internal usages of new technologies to improve risk intermediation, and usages improving 
the connection between the “real economy” and the financial and insurance sectors, essentially via 
“alternative data”. We also had to define with more accuracy the scope of these “new technologies”. 
Hopefully Institut Louis Bachelier is in contact with international experts, and discussions started 
with overseas academics, some of them joining our International Scientific Board later on.  
Moreover, we could leverage on reports issued by other organisations; I have in mind the report by 
Finance Innovation on “Intelligence artificielle, blockchain et technologies quantiques au service de 
la finance de demain”, i.e. “Artificial intelligence, blockchain and quantum computing for finance”.  
We decided to focus on A.I. and blockchain, because we had the sentiment that they would have more 
short term transformative impacts than quantum computing.

A big progress in our understanding of A.I. for finance stems from the observation of what  
the Turing Institute or the Center for Data Science of NYU put in place. This was in line with theoretical 
contributions of economists like Philippe Aghion, supporting the idea that A.I. is a “generic technology”. 
These technologies, like electricity or steam engines, need investments to generate “secondary 
innovations”. Without these supplementary efforts, one can only observe progress provided by A.I. for 
other usages or in other sectors, and fail to transfer them at minimal costs to her or his own domain. 
This reasoning supported the creation of “Instituts interdisciplinaires d’intelligence artificielle (3IA)” 
in France: one of the best way to foster the emergence of secondary innovations from A.I. is to put 
together experts of data sciences with invited experts of a specific domain with an identified topic to 
work together on, during a specified time to build an operative proof of concept. This proof of concept 
is then taken by the invited experts back in their department; not only this instance will spread, but 
these experts will now be able to have more ideas about potential innovations from A.I. around them.
On the blockchain side, our views have been shaped in several steps: first it is obvious for any 
professional that the blockchain itself has direct applications in the “post trade” space, it can prevent 
operational errors since it allows to operate simultaneously all the steps involved in a transaction.  
It will have an impact on the operation of middle and back offices of financial and insurance companies. 
Thinking about such a future raises questions about how many “blockchains” should sustain this 
new ecosystem; the answer clearly lays in the realm of the Network Economy. A third component of 
the impact of blockchain is to create new networks of trust, that can be for instance very useful for 
insurance companies or to assess some ESG scores. And the last consequence of the emergence 

The core of the Louis Bachelier Group (ILB, Fondation du Risque, Institut Europlace de Finance)  
and its surrounding network is research, that aims to promote sustainable development in Economics 
and Finance.

We currently host more than 60 sponsored research programs divided in four societal transitions: 
environmental, digital, demographic, and financial.

More than ever, there is a need for cooperation between academia, business, and the public authorities. 
The Louis Bachelier network exists to promote the public-private-academic collaborations, enhance 
exchange of knowledge, and develop scientific contributions to societal challenges. As of today, more 
than 25 academic institutions, 100 corporate as well as public authorities has joined the network. 
Together, we seek answers for a world in transition!

The interdisciplinary program FaIR is one of our fine examples of this and more than ever an absolute 
priority at ILB.

We take a transitional challenge, combine it with our strengths and mix French and foreign experts. 
The result of that recipe can be found in this report on FaIR Advances. In it you will find contributions 
from ILB chair researchers as well as from the International Scientific Council and external partners 
such as the Turing Institute in London, with whom FaIR has had its ties since its creation in 2019. 

With the emergence of new technologies in the banking and insurance sectors in particular, finance  
is undergoing a major change – hence the name of this interdisciplinary program. We need investments 
in interdisciplinary programs that focus on machine learning and artificial intelligence (AI) to learn, 
understand and advance in a sustainable way and at ILB we are more than happy to make our 
contribution.

The ILB Finance and Insurance Reloaded (FaIR) program supports and encourages innovations 
resulting from new technologies (ranging from Artificial Intelligence to blockchain) in the finance  
and insurance sectors. FaIR also functions as meeting place for all ILB initiatives that unite industrial  
as well as research partners around the impact of these new technologies. The FaIR program has 
brought a lot of people and ideas together during its first years of existence and created the FaIR 
advances of this publication. We look forward to the next phase and more experts to join.

I especially wish to thank Charles-Albert Lehalle who is scientifically responsible for FaIR and 
who has put in a lot of hours, ideas and network to build what FaIR is today. I also wish to thank  
Louis Bertucci who has joined more recently and is the editor in chief of this publication.  
And finally, I warmly thank all other contributors to the FaIR Advances whether they are round table 
participants, text contributors or part of the ILB team that helped this impressing collection of insights 
come to life.

JEAN-MICHEL BEACCO 
CEO ILB



4 5

IL
B 

Fa
IR

 A
D

VA
N

CE
S 

R
EP

O
R

T 
20

21
ILB FaIR

 AD
VAN

CES R
EPO

R
T 2021

A FOREWORD FROM THE EDITOR-IN-CHIEF 

This edition of FaIR’s Advances is the first annual report of the Finance and Insurance Reloaded 
(FaIR) interdisciplinary program hosted at the Institut Louis Bachelier.

This report is a collection of contributions of world renowned experts that I have had the chance  
to organise into this 3-part report. They present their point of view on how the finance and insurance 
landscape is, and will be, impacted by new technologies. From robo-advisors to machine learning 
and blockchains, this report explores some deep revolutions currently reshaping the distribution 
of financial products, the intermediation of risk and how the financial sector gets insights from the 
real economy.

First and foremost, I would like to thank all the contributors of this report. The members of the 
International Scientific Committee - ISC - (Darrell Duffie, Alexander Lipton, Peter Kolm and  
Cris Doloc) have taken the time to share their valuable insights on FaIR’s topics of interest.  
Other contributors include researchers with close relationship to FaIR (Lukasz Szpruch, Blanka 
Horvath, Michel Crouhy and Aimé Lachapelle) as well as researchers with direct relationship to 
Institut Louis Bachelier (Christine Balagué and Christian Robert).

Second, I would like to thank Charles-Albert Lehalle, scientific director of the FaIR’s program,  
for giving me the opportunity to take part in the editing process of this report. Lastly, I also take 
the opportunity to thank the entire editing team at Institut Louis Bachelier for their dedicated work.

This report, like the FaIR program, is organized around 3 chapters. The first chapter focuses on how 
new technologies will impact the distribution of financial products to end-users. It is oriented toward 
the outside of the financial system. The second chapter is concerned with the inside of the financial, 
namely how financial actors will intermediate the risk within an increasingly digital world. The third 
chapter explores how financial institutions can leverage recent technologies to better understand 
the underlying economy, to better connect to the real economy.

Overall, each chapter is composed of all the relevant contributions from FaIR’s ISC, other researcher’s 
contributions, and excerpts from FaIR’s round tables. Indeed, during its first year of existence,  
six round tables have been organized by FaIR. This report presents some excerpts from the transcript 
of those round tables, put in the context of each of the three chapters.

The editing team hopes this report will shed light on important transformations that the finance 
and insurance industries are currently facing. FaIR’s research community is dedicated to delivering 
a comprehensive understanding of those transformations, and is committed to supporting all the 
parties involved, financial actors as well as national and supra-national agencies.

CHARLES-ALBERT LEHALLE  
SENIOR RESEARCH ADVISOR, CAPITAL FUND MANAGEMENT, 
SCIENTIFIC DIRECTOR OF FaIR AND VISITING RESEARCHER, 

IMPERIAL COLLEGE LONDON

of the technology of blockchains is the need of a stable coin: to leverage at one hundred percent  
the efficiency of a blockchain, it is needed to be able to operate money in it. It is under optimal to host 
this money outside of the blockchain, since it will introduce a potential source of failure of a transaction, 
hence one needs to find a way to host “coins” with a value very close to a basket of external currencies 
inside the blockchain.
 
Last but not least, Institut Louis Bachelier wanted to keep a focus on risk management and regulation. 

During the last two years; our main tools to improve the “advanced knowledge” on A.I. and blockchains 
for finance and insurance have been seminars and roundtables. A standalone workshop hosting 
academic talks and roundtables is co-hosted by FaIR and the French regulator ACPR; it gave birth 
to a series of transcriptions of “FaIR roundtables” that are widely used in this report to shed light 
on different topics of interest. Other roundtables have been generally hosted by conferences co-
organised by Institut Louis Bachelier or by institutions close to it (like Euronext or the AFGAP).  
Frequent exchanges with the finance department of the Turing Institute, under the auspices of a 
partnership linking FaIR to this great Institute, has been very fruitful in the process of delivering insight 
about A.I..

This report gives an overview of the different topics that have been addressed during the last 18 
months. The covid pandemic added some inertia to the work of putting together extracts of content 
produced by FaIR. Nevertheless, thanks to the effort of the ILB staff, readers will be able to make 
their own views on the implications of these technologies for the finance and insurance sectors.  
These contributions come from academics and professionals involved in designing innovations using 
these technologies. The choice of topics and speakers has been positively influenced during discussions 
with the International Scientific Committee of FaIR, whose members gently provided contributions  
to this report. 

LOUIS BERTUCCI 
RESEARCHER AT INSTITUT LOUIS BACHELIER  

EDITOR-IN-CHIEF OF THIS REPORT
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THE FAIR INTERNATIONAL SCIENTIFIC 
COMMITTEE (ISC)

The Finance and Insurance Reloaded Transverse Program leverages on the academic network  
of Institut Louis Bachelier. Since it is of paramount importance to have advices from experts outside 
academic working under the umbrella of the Institute, the FaIR program is fortunate to be in touch with 
experts from the best universities in the US (Stanford, New York University, University of Chicago and 
the Massachusetts Institute of Technology) in the domains of post-trade, Blockchain, robo-advising 
and the use of new technologies on financial markets.

Petter KOLM
Petter Kolm, Director of the Mathematics in Finance Master’s Program and 
Clinical Professor, Courant Institute of Mathematical Sciences, New York 
University.

Petter Kolm is the Director of the Mathematics in Finance Master’s 
Program and Clinical Professor at the Courant Institute of Mathematical 
Sciences, New York University. Previously, Petter worked at Goldman Sachs 
Asset Management where his responsibilities included researching and 
developing new quantitative investment strategies.  Petter has coauthored 
many articles and books on quantitative finance and financial data science 
and financial data science, serves on several editorial boards for academic 
journals, professional associations, and company advisory boards. He holds 
a Ph.D. in Mathematics from Yale, an M.Phil. in Applied Mathematics from 
the Royal Institute of Technology, and an M.S. in Mathematics from ETH 
Zurich.  

Darrell DUFFIE
Darrell Duffie is the Adams Distinguished Professor of Management and 
Professor of Finance at Stanford University’s Graduate School of Business 
and Professor by courtesy in the Department of Economics. 
Duffie is a Research Fellow of the National Bureau of Economic Research and 
a Fellow of the American Academy of Arts and Sciences. He was the 2009 
president of the American Finance Association. Duffie is an independent 
director on the board of U.S. Dimensional Funds. He chaired the Financial 
Stability Board’s Market Participants Group on Reference Rate Reform. 
Duffie is a Project Advisor of The G30 Working Group on Digital Currencies 
and a member of the Systemic Risk Council.
Duffie’s research focus is the design and regulation of financial markets.  
His most recent books include How Big Banks Fail (Princeton University 
Press, 2010), Measuring Corporate Default Risk (Oxford University Press, 
2011), Dark Markets (Princeton University Press, 2012), and Fragmenting 
Markets: Post-Crisis Bank Regulations and Financial Market Liquidity 
(forthcoming, 2020).

Alexander LIPTON
Alexander Lipton is Co-Founder and Chief Information Officer at Sila, Partner 
at Numeraire Financial, Visiting Professor and Dean’s Fellow at the Hebrew 
University of Jerusalem, and Connection Science Fellow at MIT. 
He is an Advisory Board Member at numerous Fintech companies worldwide.
In 2016 he left Bank of America Merrill Lynch, where he served for ten 
years in various senior managerial roles including Quantitative Solutions 
Executive and Co-Head of the Global Quantitative Group. Before switching 
to finance, Alex was a Full Professor of Mathematics at the University  
of Illinois and a Consultant at Los Alamos National Laboratory.
His current professional interests include FinTech, particularly, applications 
of distributed ledger technology to payments and banking, digital currencies, 
including stablecoins and asset-backed cryptocurrencies, robust asset 
allocation, automated investing, balance sheet optimization and industrial-
strength risk management systems for large systemically important financial 
institutions. 
In 2000 Alex was awarded the first ever Quant of the Year Award by 
Risk Magazine. Alex published eight books and more than a hundred 
scientific papers. He is currently finishing his next book (with Adrien 
Treccani) “Blockchain and Distributed Ledgers: Mathematics, Technology,  
and Economics” which will be published in the beginning of 2021.

Cris DOLOC
Cris Doloc is an accomplished Quantitative & Computational technologist 
with more than 25 years of experience in Enterprise Software Architecture, 
Machine Learning and High Performance Computing. He holds a PhD  
in Computational Physics and he has spent the last two decades in the field 
of Quantitative and Computational Finance working for several top-tier 
financial firms. As such He has been the Chief Technology Officer  
of Terra-Nova Financial, the Head of Valuation Infrastructure at Chicago  
Trading Company and the Founder & Principal of Quantras Research 
Ltd. He is currently developing FintelligeX which is an Ed-Tech platform  
and Quantitative and Computational Learning Academy. He is also teaching  
at the University of Chicago in the Program of Financial Mathematics.

Moreover, the FaIR Transverse Program has access to experts from the Alan Turing Institute in the UK 
thanks to a partnership with this institute.
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FAIR NETWORK CONTRIBUTOR
CHRISTINE BALAGUÉ
FAIR NETWORK CONTRIBUTION
GOOD IN TECH’S VISION ON «CUSTOMIZATION OF FINANCIAL PRODUCTS AND  CUSTOMER EXPERIENCE IMPROVEMENT».

ROUND TABLE SPEAKERS
PIERRE ALAIN DE MALLERAY
AIMÉ LACHAPELLE
PHILIPPE TRAINAR
DAVID DUROUCHOUX
MARK SINSHEIMER
PHILIPPE MAUPAS
MATTEO RAVA
JEAN-PHILIPPE BARJON
SANDRINE LEMERY

NEW INFRASTRUCTURES TO BETTER SERVE CLIENTS
ROUND TABLE: EXCERPT 1 NEW CHALLENGES IN INSURANCE
ROUND TABLE: EXCERPT 2 RESOLUTION OF POST-TRADES VIA A DISTRIBUTED LEDGER
NEW CHALLENGES FOR RISK MANAGEMENT AND REGULATORS
ROUND TABLE: EXCERPT 3 ROBO-ADVISORS
ROUND TABLE: EXCERPT 4 NEW CHALLENGES IN INSURANCE

One of the most important challenges of the financial system is to leverage new technologies 
in order to provide a tailored experience to end-users. Like many other industries, the 
financial system is subject to heavy competition from small new businesses (startups - 
fintech) as well as from new forms of infrastructures. 

The increase in competition is partly due to the advent of new technologies and it has led 
to a tremendous amount of innovation. To be more specific, new technologies refer to the 
advent of artificial intelligence and process automation but also, maybe more importantly, 
to the wide availability of communication networks through internet-connected devices 
(smartphones and high speed internet, but also secure communications, online banking, 
etc.). This has opened the way for more direct innovation toward the outside of the financial 
system, toward end-users.

Financial companies, including those from the insurance sector, have expertise in 
transforming and transferring risks, however small and new companies are coming after 
the user experience. Large companies have to adapt and find a way to innovate not to be 
hit too much by newcomers.

On the one hand, the client experience is put at the center of the decision and  
the development process. Along with other sectors, clients of the financial sector are 
being more and more accustomed to a personalised experience when they interact with  
the financial system. One of the most important instances of such a personalized experience 
are robo-advisors. Here “advisor” has to be understood in the general sense. The goal is 
not only to advise clients on the investments they should make, but the experience can 
be much more personalized. From tax loss harvesting to investment based on life events 
and life goals, all aspects of the investment process can be tailored to fit the needs of 
each client.

On the other hand, the whole process may be automated with limited human intervention, 
which induces important cost savings. AI, coupled with automation, allows new companies 
to provide a better user experience with less costs. Nonetheless, financial actors are not 
currently replacing every human with algorithms but rather use algorithms to leverage 
the capabilities of humans. This allows portfolios to grow in size beyond what a single 
individual can manage by himself, and allows internal trading decisions to be assisted by 
technology.

The impact on the insurance sector has also been very important. Despite the insurance 
business being somewhat different, clients usually interact a lot with their insurance 
provider. Therefore, a straightforward way to improve user experience is with claim 
processes. Because of their very nature, insurance companies are also using new 
technologies like AI to refine their segmentation models. Segmentation is a real challenge 
because the regulatory framework mostly does not allow it to be performed at a very 
granular scale, even though insurance providers (or even other companies, like GAFA) 
may have enough data to do this.

NEW TECHNOLOGIES PROVIDE A BETTER INSIGHT 
ON CLIENTS’ NEEDS
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On the infrastructure side, blockchains represent a big competitor to the financial sector. 
Tokenization allows the creation of new asset classes that have the ability to reach  
an even larger set of investors and issuers. Financial institutions need to adapt to this new 
infrastructure that may become a new paradigm.

This poses important challenges to regulatory agencies. Indeed, fintech are currently 
attacking several functions of the traditional financial system at the same time.  
They are able to use the technology in such a way that it induces an unbundling  
of the core functions of banking. The heavy regulation imposed on banks could be one 
reason for which fintech are able to gain some market share in the competitive sector.

This chapter features a set of two short papers including one from a member of the 
International Scientific Committee (ISC) and one from a member of one of FaIR’s research 
programs, as well as a condensate of relevant excerpts from FaIR’s round tables. First, 
Petter Kolm (ISC) from NYU shares his view of the current and future state of robo-advisors. 
Second, Christine Balagué from Institut Mines-Telecom business school presents her view 
on personalisation and improvement of the user experience. 

ISC CONTRIBUTION

INVESTMENT ADVICE IS ONLY AN APP AWAY : ROBS-ADVISORS TODAY AND TOMORROW

Petter KOLM, 
Director of the Mathematics in Finance Master’s Program and Clinical Professor, Courant Institute  
of Mathematical Sciences, New York University.

1. WHAT ARE ROBO-ADVISORS? 
Advances in fintech have led to the development of easy-to-use online platforms referred  
to as robo-advisors or digital-advisors, offering automated investment and portfolio management 
services to retail investors.1 By leveraging algorithms embodying well-established investment 
principles and the availability of liquid ETFs for many asset classes, robo-advisors automatically 
manage client portfolios that deliver similar or better investment performance at a lower cost as 
compared to traditional financial retail services. 
As of 2020, assets under management (AUM) by robo-advisors world-wide is about $990B 
and is expected to grow at an annual rate of about 26% to a total of $2.5T by 2024 (Statista, 
2020). U.S. is by far the leading robo-market with about $680B in AUM and 8.8M users, where 
the largest firms include Vanguard Per sonal Advisor Services with $140B in AUM, Schwab 
Intelligent Portfolios ($40B), Wealthfront ($20B), and Betterment ($18B) (Statista, 2020; 
Backend Benchmark ing, 2020c).2 
First entering the investing scene after the financial crisis in 2008, robo-advisors represent 
perhaps the greatest innovation in retail investing since the introduction of index funds and 
discount brokerages in the seventies and ETFs in the early nineties (Kador, 2002; Lynch and 
Rothchild, 1996; Wiandt and McClatchy, 2001). While their initial success is often attributed to 
the interest they received amongst millennials, who are open to new online technologies and 
mobile apps, today’s average robo-advisor client in the U.S. is in their 40s and has an account 
balance around $20K, suggesting a broadening of the client base (Kaya, 2017; Hayes, 2019). 

2. HOW DO ROBO-ADVISORS WORK? 
By and large, investors are responsible for the choices they make when selecting investments. 
However, because of time constraints and complexity of investment decisions, many retail 
investors rely on professional advice and services, whether from more traditional registered 
financial advisors and broker-dealers, or from the more recent robo-advisors. The majority of 
robo-advisors in the U.S. limit their advice to portfolio management, including that of allocating 
investments amongst asset classes, and may otherwise provide only limited advice about 
other aspects of financial planning, such as estate and retirement planning, and cash-flow 
management. 

2.1. Core Principles of Retail Investing. Broadly speaking, whether a novice or seasoned retail 
investor, there are several core investing principles that apply to them, including: 
• Establish an investment plan and objectives, 
• Seek broad diversification, 
• Weight investment cost and value,
• Account for taxes. 
Establishing an investment plan involves much more than picking a few stocks, mutual funds or 
ETFs to invest in. For instance, it is important to consider one’s current financial situation and 
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goals, investment timeline and risk appetite. 
First coined by Miguel de Cervantes, the author of Don Quixote, in the early 1600s, “don’t put 
all your eggs in one basket” is perhaps the most well-know metaphor expressing the investment 
advice of the benefits of diversification. Many decades of academic research and centuries 
of practical experience have shown the importance of diversifying across asset classes and 
investment themes. Seeking broad diversification should be one of the main goals of any retail 
investment strategy. In the absence of views about asset returns, the most diversified portfolio 
is the market portfolio. 
Any investment process needs to weigh the cost of exposure to the assets with their added 
value. While this is common sense, it is “easier said than done” as costs come in many different 
forms, such as transaction and trading costs, management and advisor fees, and taxes to name 
a few. 
For retail investors tax considerations and tax optimization are critical as a significant part of 
their investments are held in taxable accounts. We will come back to this topic below. 

2.2. From Investing Principles to Algorithms. It is not surprising that robo advisors have 
incorporated the core principles from Section 2.1 in their services and product offerings. From a 
broad perspective, most robo-advisors have integrated them as a three step process: 
(1) Client assessment and onboarding, 
(2) Implementation of the investment strategy, and 
(3) Ongoing management of the investment strategy, where each step is fully, or at least to a 
large extent, automated. 

2.2.1. Client Assessment and Onboarding. Most commonly, a robo-advisor provides a new 
client with an automated online survey to collect general and investment specific information, 
including their age, net worth, investment goals, risk capacity and risk tolerance (Andrus, 2017). 
Goals may include generating income, saving for retirement, planning for large future 
expenditures (such as the purchase of a house or car) and/or establishing a financial safety 
net for emergencies. This automated evaluation represents a big change as compared 
to traditional wealth management services that rely on an initial in-person consultation.  
While less personal, the online assessments are less time-consuming and offer great cost-
savings over the traditional approach. It is no wonder that many clients prefer the simplicity 
and ease of those robo-advisors who have onboarding processes that take no more than fifteen 
minutes to complete (Lo, Campfield, and Brodeur, 2018). 

2.2.2. Implementation of the Investment Strategy. Robo-advisors use algorithms embodying 
well-established investment principles to automatically construct and periodically rebalance  
a diversified portfolio of the largest and most liquid ETFs. The most commonly used approach 
by robo-advisors to build and manage portfolios is based on modern portfolio theory (MPT), 
also referred to as as mean-variance optimization (MVO), introduced by Markowitz (1952).  
In its simplest form, MPT provides a framework for constructing a portfolio by choosing the amount 
to invest in each asset such that the expected return of the resulting portfolio is maximized  
at a prespecified level of risk as measured by portfolio volatility. Some robo-advisors use various 
extensions of MPT to incorporate additional features in their mod els such as transaction costs, 
tax lots, other risk specifications and the ability to incorporate subjective views in the portfolio 
construction process. 
Robo-advisors in the U.S. predominately use passive ETFs in their offerings. Passive ETFs can 
be traded at low cost throughout the day and be used efficiently for tax-loss harvesting (TLH). 
The purpose of TLH is to realize current losses that can later be offset against future gains, as 
described below. 
Moreover, the robo-advisors’ usage of automation and passive investment strategies reduce 
risks of internal agency conflicts and conflicts of interest that traditionally could arise between 

financial advisors and their clients (Inderst and Ottaviani, 2009). Needless to say, conflicts of 
interest cannot be completely eliminated as they naturally arise in situations of asymmetric 
information, including that of robo advisory. 

2.2.3. Ongoing Management of the Investment Strategy. An important aspect of robo-advisory 
services is the ongoing monitoring and rebalancing of client portfolios. The algorithms perform 
rebalancing in three main situations: (a) when due to market movements, portfolio holdings drift 
too far away from their desired target allocation; (b) when tax-loss harvesting opportunities are 
identified; and (c) when clients update their preferences. However, as robo-advisors design their 
portfolio strategies for the long-term, annual turnover is low. 
Robo-advisors permit clients to override their algorithms in several ways, including changing 
portfolio allocations and modifying their risk profile and preferences. Unnecessary client 
overrides can trigger significant trading and tax consequences that are far from optimal.  
Many robo-advisors use realtime automatic messages on their platforms and mobile apps to 
warn their clients against this behavior. 

3. AUTOMATED TAX MANAGEMENT FOR RETAIL INVESTORS 
One of the core principles of retail investing is that any portfolio strategy should be tax optimal. 
There are many ways in which to address taxes, some simpler and others more complex.  
Besides diversification and automatic rebalancing, one of the most valuable services robo-
advisors provide is automated tax management.

Constantinides (1984) showed that it is optimal to realize capital losses in stocks immediately 
and to defer capital gains for as long as possible. A common approach is to take the strategic 
asset allocation as given and overlay “tax algorithms” either at the account level or the trading 
level to generate so-called tax alpha through tax-loss harvesting and asset location. 

3.1. Tax-loss harvesting. Tax-loss harvesting (TLH) is a strategy where assets held in the portfolio 
at a loss are sold opportunistically (Jeffrey and Arnott, 1993; Stein and Narasimhan, 1999). 
When losses are realized, they can be used to off set future capital gains and income from 
dividends. While TLH traditionally has been performed on a quarterly or annual frequency, 
computer algorithms can con tinuously monitor and act on opportunities as they arise.  
Hence, robo-advisors can significantly increase the number of TLH opportunities relative  
to traditional investment managers. 
The so-called wash-sale rule can make TLH a complex endeavor. A wash sale occurs when you 
sell an asset at a loss and then buy that same asset or “substantially identical” assets within  
a window of thirty days before or after the sale date. The wash-sale rule was designed  
to discourage investors from selling an asset at a loss to claim a tax benefit, again and again. 
One can navigate the wash-sale rule in a few different ways. A basic approach is to sell a ticker 
at a loss and buy a “dual” ticker to replicate the exposure of the original ticker. For instance, 
one might sell the holdings in an ETF tracking the Russell 1000 index and later buy back an ETF 
tracking the S&P 500. 
Using ETFs for TLH works well for several reasons. First, ETFs require autho rized participants 
to create and redeem shares in kind, thereby enabling the ETF to avoid selling securities 
and realizing capital gains taxes to meet redemptions. Second, the ETF manager can reduce  
the ETF’s tax liability by providing the au thorized participant with the tax lots that have  
the lowest cost basis. With the dramatic increase of highly liquid ETFs in different sub-asset 
classes, identifying dual tickers is easy. 
On the flip-side of TLH is the need to realize long-term capital gains to reset the cost basis, 
thereby preparing for higher short-term capital losses in the future. Naturally, there is a tax 
cost to recognizing the capital gain, but doing so restarts the holding period and provides  



16 17

IL
B 

Fa
IR

 A
D

VA
N

CE
S 

R
EP

O
R

T 
20

21
ILB FaIR

 AD
VAN

CES R
EPO

R
T 2021

the investor with the option to recognize future capital losses (Stein, Vadlamudi, and Bouchey, 2008;  
Yang and Meziani, 2012). 

3.2. Asset Location. While maybe not as broadly known as it should be and often misunderstood, 
asset location is another important tax overlay strategy. Asset location should not be confused 
with asset allocation. 

The idea of asset location is that assets have different after-tax profiles independent of whether 
they are held in taxable or tax-advantaged accounts. In other words, the after-tax return  
of an asset can be very different if held in a tax-deferred, tax-exempt or taxable account.  
For example, the coupon payment on a bond held in a taxable account is taxed as ordinary income.  
In this instance, if possible, an investor should instead hold the bond in a tax-exempt account. 
Consequently, as retail investors may have a number of taxable, tax-deferred and tax-exempt 
accounts, some robo-advisors can assist clients by optimally allocate assets preferentially  
to the different accounts so as to maximize the after-tax return while the overall strategic allocation  
is maintained (Khentov, 2016; Huang and Kolm, 2019). 

4. TRENDS AND DEVELOPMENTS 
The fintech landscape continues to evolve rapidly. Main trends in the robo advisory space include 
greater personalization and customization, improved inte gration of services and platforms,  
and increased automation. In the modern world, autonomous finance has become the new norm, 
where algorithms assist us in mak ing financial decisions, invest in a more disciplined fashion 
in line with our prefer ences, ensure we save long-term for retirement and smartly manage  
our outstanding debts. A recent study suggests that close to 60% of the U.S. population will be 
using robo-advisors by 2025 (Schwab, 2018). 

4.1. Expanding Service Offerings. In this new world where robo-advisors, and technology 
companies more broadly, may become the gatekeepers of the access to banking services,  
an expansion of services is crucial in order to compete with traditional banks. Many robo-advisors 
have moved in this direction and are of fering services including cash and checking accounts, 
debit cards, lending and retirement services (McCann, 2020). Recognizing that automation 
cannot replace human touch everywhere, some robo-advisors are offering customers financial 
advice from certified financial planners on staff who can assist in making decisions such  
as how to start investing; address significant life events (changing job, having a child, purchasing 
a home, etc.); plan for college, marriage and retirement, to name a few. 

4.2. Is Smart Beta Investing Ripe for Robo-Advisors? A well-trodden path in investment 
management is that innovative products are first introduced in institutional contexts, and only 
with a significant delay are they later, gradually, made available in the retail space. Such has 
been the case with smart beta offerings. However, today, liquid smart beta ETFs are more 
broadly available. Surprisingly though, there are few smart beta products available amongst 
robo-advisors. 
In the institutional smart beta space, smart beta ETFs have seen increased interest due  
to improved technology, reduced costs and an evergrowing body of empirical evidence of what 
drives underlying risk premia. Because of this evolution, the retail advice market today has  
a strong foundation to build upon when implementing smart beta solutions. Huang and Kolm 
(2019) argue that smart beta is ripe for the retail audience and discuss some of the challenges 
in implementing smart beta in robo-advisory offerings. 
Based on a recent survey, Agather and Gunthorp (2018) suggest that smart beta products  
are increasingly popular amongst financial advisors across Canada, U.K. and the U.S.  
for the purpose of diversifying client portfolios and to express strategic views. We believe that 

the continued increase in liquid smart beta ETFs will provide robo-advisors an opportunity  
to increase portfolio customization to better fit investment objectives and financial goals of retail 
investors. 

4.3. Goals-Based Investing. As discussed earlier, maintaining a broadly diversified investment 
portfolio is a core investment principle for retail investors. As each individual has different 
financial goals and risk profiles, there is no “one size fits all.”
Financial theory prescribes that an individual’s total assets and liabilities should be considered 
when constructing their investment portfolio. Also the more illiquid assets, such as that  
of an individual’s home, should be included in the robo-advisor’s asset allocation decision.  
This will result in a portfolio of assets with lower corre lation to the housing market. 
It is well-known that individuals do not treat all of their investments the same, but rather practice 
what is referred to as mental accounting (Thaler, 1985; Thaler, 1999). In particular, it has been 
demonstrated that individuals will attach different “chunks” of money to different risk-return 
preferences, depending on how they see that money being used in the future. An individual may 
view their homeownership differently from that of their stock portfolio. For example, they may 
tolerate a larger loss in their stock portfolio, but not willing to risk losing their home. 
Goals-based wealth management is an investment and portfolio management approach 
that focuses directly on investors’ financial goals. Shefrin and Statman (2000) suggest,  
in behavioral portfolio theory (BPT), that investors behave as if they have multiple mental accounts.  
Each mental account has varying levels of as piration, depending on its goals. BPT proposes 
a portfolio management framework where investors are goal-seeking (aspirational) while 
remaining concerned about downside risk. Specifically, rather than to trade off return versus 
risk as in MVO, investors should trade off goals versus safety. Not surprisingly, BPT leads 
to nor matively different statements about the optimal portfolio than those based MPT  
(see, for example, Das, Ostrov, Radhakrishnan, and Srivastav (2018)). 
Based on its intuitive appeal and ability to model individual investor’s financial goals in a flexible 
and highly customizable way, we believe that goals-based wealth management will continue  
to evolve and may emerge as the predominant approach in retail investment management. 

4.4. Responsible Investing. When considering investment choices, individuals have in recent 
years gradually become more concerned about socially responsible investing (SRI) and pay 
greater attention to the environmental, social and gover nance (ESG) practices underlying  
an investment. 
There are several challenges for robo-advisors here. First is to find liquid ETFs that can be used 
for constructing SRI/ESG-aware portfolios. Second, as investor’s SRI/ESG preferences vary,  
it is difficult for robo-advisors to provide the customiza tion needed with the currently limited 
number of SRI/ESG ETFs. Some people argue that SRI/ESG preferences may be best customized 
at the stock level rather than through ETFs. 

4.5. Financial Literacy and Investor Education. Rich with technical terminology and jargon,  
for many of us financial services and products can be intimidatingly complex. In a modern 
society investor education is needed in order to improve individuals’ financial literacy. At the core  
of financial advice and planning is communication (Lusardi, 2015). 
Needless to say, there are costs to society for a financially uniformed population as we may 
end up paying for our mistakes. Unmistakably, there are clear benefits in having citizens that 
have healthy financial habits and plan for their future. Who should provide such education? 
First, perhaps middle and high-schools could adopt course content on basic personal finance. 
Second, financial advisors and other fiduciaries could educate their clients about investment 
management and planning for retirement. Third, employers could play a role in providing 
employees with information and continued education about personal finance. 
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5. HOW DO ROBO-ADVISORS AND THEIR CLIENTS REACT IN BEAR MARKETS? 
The introduction of the first robo-advisors in 2008 and their subsequent expansion has coincided 
with the longest bull market in history. Consequently, over the years there has been concerns 
about how robo-advisors and their clients will react when markets goes bearish. We have had  
to wait for more than ten years for a market shock such as that caused by the COVID-19 pandemic 
during the spring of 2020 where the S&P 500 index fell more than 25%. Specifically, Backend 
Benchmarking (2020a) reports that from January through mid-March in 2020, robo-advisors  
declined on average 17.6%, as their equity and fixed income holdings fell about 29.2% and 2.3% 
on average, respectively. Not surprisingly, the robo-advisors with broader diversification towards 
treasuries and investment-grade fixed income fared better than their peers. 
The significant market drop provided tax-loss harvesting opportunities for robo advisors.  
For example, Betterment and Schwab traded over 60% of their accounts to realize losses on 
behalf of clients (Backend Benchmarking, 2020). 
During this period, some robo-advisors notably increased their direct client en gagements  
in several ways, including the usage of blog posts and online videos, to educate them about market 
volatility and the importance of investing with a long-term perspective, thereby discouraging 
clients from moving assets or overrid ing the algorithms. Those robo-advisors that followed this 
path appear to have been successful in helping their client stick to their investment objectives. 
Some robo-advisors reported that an increased number of clients reached out for advice from 
financial advisors on their staff. For instance, client engagement with Betterment advisors 
 was 50% higher in March as compared to January in the same year (Carlson, 2020). 

6. CONCLUSIONS 
More than ten years in the making, robo-advisors have continued to grow both in size and product 
offerings. The main reasons contributing to the continued success of the robo-advisors include: 
• Low cost. Fully automatic algorithm-driven management of client port folios that significantly 
lowers the cost of financial advice and wealth management. 
• Personalization and customization. By providing a general investment management framework 
and a suite of financial services, robo-advisors can in a highly scalable fashion customize 
investment strategies and provide a digital banking experience that suits the specific needs  
of each individual investor. 
• Anywhere, anytime convenience. People have gotten used to accessing their digital lives  
and beyond through mobile apps on their phones and laptops. Robo-advisors provide their 
clients with this convenience for their investment portfolios and other aspects of their financial 
life; anywhere, anytime. 
• Wealth management services for the masses. Robo-advisors are making many sophisticated 
investment and financial advisory services, that in the past were only accessible to high net 
worth individuals, available to all retail investors at low cost. 
In closing, during the spring of 2020 robo-advisors demonstrated they can stay on course and 
support the needs of their clients during a period of significant market turmoil. This recent 
experience demonstrates that the robo-advisory industry is maturing and able to offer a broad 
suite of investment management and financial advisory services to their clients, whether in up 
or down markets. 
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FaIR NETWORK CONTRIBUTION

GOOD IN TECH’S VISION ON «CUSTOMIZATION OF FINANCIAL PRODUCTS AND  CUSTOMER 
EXPERIENCE IMPROVEMENT».

Christine BALAGUÉ, 
Professor and chairholder of the Good in Tech Chair (www.goodintech.org) at Institut Mines-Télécom Business 
School on responsible digital innovation.

Interactions between customers and companies in the financial sector are increasingly covered  
by new technologies. Artificial intelligence and data analysis tools are playing an growingly 
important role, aiming to improve customer experience and develop financial product 
customization. However, these technologies raise ethical concerns. For instance, there are 
currently many automatic tools for granting bank credit using machine learning. These tools 
create a score for each credit applicant using increasingly customized and targeted data. 
A growing academic literature in social sciences shows that these tools can be biased and 
discriminate against certain minorities. In addition, credit allocation decisions made by  
a Machine Learning algorithm can be opaque, rendering it difficult to provide an explanation 
to the credit applicant following an attribution decision. Lastly, the increasingly personalized 
targeting of these automatic tools requires the acquisition of more and more data on bank 
customers, which raises privacy and confidentiality concerns. Regarding this issue, one of  
the winning projects of the Good in tech February open call develops an «ethics by design» 
Machine Learning algorithm interface for the attribution of bank credits. It will consist in creating 
an interface enabling arbitration between these different ethical issues (fairness, interpretability 
and privacy) in order to create efficient credit attribution algorithms. In addition, it will create 
a workshop-type approach to open a debate on these algorithms by associating technical  
and non-technical bank staff in the configuration of these tools.

Another subject concerns the customization of financial services through intelligent voice 
assistants such as Google Home or Alexa. These systems, which dominate their market,  
are increasingly being adopted (75% of American households will be equipped with them 
by 2024) because of their user-friendliness. This variable has been known as a major factor 
in the field of technology acceptance models (TAM models) for more than thirty years now.  
However, voice assistants are nowadays black boxes. This raises ethical issues of explicability, 
transparency, and non-discrimination measures through their response selection algorithms.  
Similarly, many ethical concerns are also raised by recommendation systems based on machine 
learning or deep learning, which create barriers and present endogenous biases.  

Finally, technologies such as blockchain deserve to be studied in terms of ethical and responsible 
implications. Indeed, this technology based on distributed systems could be considered as more 
ethical and responsible. However, the opacity of these systems, and the algorithms making up 
the blockchain, also raise ethical concerns that need to be addressed.

Several works in progress of the Good in Tech Chair deal with these different topics.  
The contribution of the Good in Tech Chair to the FaIR program would help deepen these 
research themes, participate in interdisciplinary work, and develop collaborations with other 
existing Chairs within the Institut Louis Bachelier.

Contacts : 
- Web site : goodintech.org 
- Christine Balagué, Professor at Institut Mines-Télécom Business School, Good in Tech Co-Chair, 
christine.balague@imt-bs.eu 
- Marie-Laure Salles-Djelic, Professor, Dean of Sciences Po School of Management and Innovation
Good in Tech Co-Chair, marielaure.djelic@sciencespo.fr

http://www.goodintech.org
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National des Arts et Métiers (National Conservatory of Arts and Crafts) and 
Director of the SCOR Foundation for Science.
He is a member of the Boards of Directors of the SCOR Foundation  
for Science, the Toulouse School of Economics and Humensis  
and of the Scientific Committee of the French Prudential Control and 
Regulatory Authority and of the Scientific Council of the Maurice Allais 
Foundation.
He is President of the Risk Commission of APREF and member of the editorial 
boards of the Revue Française d’Economie, the magazines «Commentaire, 
Risques et Sociétal», and the «Revue d’Economie Financière».

Mark SINSHEIMER
Mark is an independent consultant and trainer to asset management 
firms, institutional investors and financial regulators on international 
best practices. He is also Associate Professor of Finance at Skema  
and EDHEC Business Schools. Previously, Mark had board level 
responsibilities with global asset management companies from 1996 to 2002  
as Head of Marketing and Sales for Credit Lyonnais Asset Management  
and Head of Business Development for CDC Asset Management. Before,  
he was Product specialist for Paribas Asset Management and Trader  
for Crédit Lyonnais.
Mark has a BA in History, MA in International Relations and a Graduate 
Degree in Law from Paris V University. He is a CFA charterholder and passed 
CAIA level 1 & 2.
Mark founded CFA France and was its Advocacy Chair until 2011.  
He is a an active volunteer for the CFA Institute where he served on the Annual 
Conference Committee, Global Advisory Committee, European Advocacy 
Committee, Candidate Curriculum Committee, Standards and Practice 
Council and Advisory Council of INSEAD’s “Global Investors Workshop”.    
He was a member of the Governing Council of the European Asset 
Management Association where he chaired EAMA’ working group on index 
construction best practices. He is regularly interviewed by the financial 
press or invited to speak in forums and conferences.

David DUROUCHOUX
Deputy CEO Société Générale FORGE - Client relationship, business 
development, CBDC & central banks coverage.

Philippe MAUPAS 
Co-founder of Alpha & K and Blogger 
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Sandrine LEMERY
Sandrine Lemery is a CNAM professor holding the Chair of Actuarial Science 
and Vice-President of the Institute of Actuaries. She is also the non-executive 
President of the Supervisory Board of the Pension Reserve Fund.

Matteo RAVA
Matteo contributes to ESMA’s work on the business conduct aspects 
relating to the provision of investment services and activities by investment 
firms and credit institutions in the retail financial services markets,  
and on investor protection more generally.

Jean-Philippe BARJON
Head of Coordination for Sales Management Supervision,ACPR, Autorité  
de Contrôle Prudentiel et de Résolution

Throughout it’s one year of existence, the FaIR program has had the opportunity to gather a unique  
set of round tables, featuring some of the world’s best researchers. Here is a list of the round tables 
 that are relevant to this chapter :
- Insurance, 05/09/2019, Conservatoire National des Arts et Métiers, Paris, organized 
by Toulouse School of Economics
- Robo-advisor, 16/01/2020, ACPR, PARIS, Organized by Fair
- Resolution of post-trades via a distributed ledger, 20/05/2019, ACPR, PARIS, organized by Fair 
New technologies and infrastructure are putting a lot of pressure on traditional actors from the financial 
system. However, different sectors react differently to such competition. While the insurance sector 
follows mostly a slow-paced process of innovation, banks have had to find ways to stimulate innovation. 
Here follows a discussion on both of these topics. The first one is from the Insurance round table 
where Pierre-Alain de Malleray and Aimé Lachapelle discuss about how new technology has impacted  
the insurance business. The second one is from the tokenisation round table in which David Durouchoux 
explains how Societé General has been trying to stimulate internal innovation.

05/09/2019, 
CONSERVATOIRE NATIONAL DES ARTS ET MÉTIERS, PARIS, 
ORGANIZED BY TOULOUSE SCHOOL OF ECONOMICS

Pierre-Alain DE MALLERAY

“Hello everyone, my name is Pierre Alain de Malleray. I am the current CEO of a brokerage 
company. I  speak here on behalf of the distribution point of view. Prior to that, I worked in the 
public sector, similarly to Sandrine, and then I actually worked a few years in reinsurance with 
Philippe. So, perhaps let’s start with a short  answer to the very vast and  important question:  
has insurance been disrupted? I think that this is a no-brainer. I believe the answer is definitely 
no. Yet, when we look a little bit more closely at what disruption could be like in our sector, 
we can zoom in on different aspects of the value chain, distribution and tariffs segmentation.  
There is a craze on a very hype subject as to other big data, as well as statistical learning, 
deep learning, and data in general that people leave on the internet with their smartphones etc.  
The question is : will insurances be able to approach the risk more closely than today?

Distribution, tariff, segmentation and user experience is another means to disrupt an economic 
sector. There are a lot of sectors around that are disrupted by user experience and more vastly 
by the product itself. Can the product be really different than what it is today, apart from the 
pricing? My answer to all these sub-questions is the following: when we look at the distribution 
issue, we have to answer differently according to the country, e.g. France or the United Kingdom.  
The US is a bit different. But let’s take these two examples which have taken really different 
paths. When you look at what is the weight of the distribution over the internet, and here  

NEW INFRASTRUCTURES TO BETTER SERVE CLIENTS

ROUND TABLE: EXCERPT 1 
NEW CHALLENGES IN INSURANCE
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I am talking about insurance for individuals, I am not talking about insurance for companies.  
But the first policy was sold in the UK in the year 2000 over the internet, and when I say over the 
internet, it is a mix generally between either 100% internet or internet+telephone. I globalised those 
two means of distribution channels under the same umbrella. The first policy was sold in the year 
2000 and by the end of the 2010 decade, 70% of motor insurance policies were sold over the internet.  
So there was really a huge massive disruption of the market regarding distribution.
The UK market is very much brokerage driven. Insurance policies are generally fixed term 
ones, so individuals must comparatively yearly review on the internet to make quotes, etc. 
Furthermore, aggregators have played a crucial role in this evolution because they were literally 
nonexistent during the 2000s decade. They have progressively invested a lot in branding, press 
commercials, movie commercials, on television, etc. In the middle of the decade, around 2005, 
the investment of aggregators in commercials were higher than the investments of incumbent 
insurance companies. They waged a war and they won that war regarding direct access  
to consumers. So this market has literally shifted. When we look back at our country, i.e. 
France, there has been very slow disruption, so I don’t think the word disruption is the right one.  
It is more like a slow evolution, regarding the market share of each distribution channel. 
It’s around 70% in the UK. What is the figure in France? Well it is more or less 10-12%.  
So 70% corresponds to 10-12% in France. When you look at other industrialized countries  
it is more or less around 15%. This is not really a surprise, because when you look at the other 
economic sectors, such as retail, other goods’ distribution, or the market share of direct internet 
channels, it’s  more or less around 15%. For your information, when I say internet, it is either 
on a smartphone or the desktop, or a mix between these channels. So, market shares of these 
means of distribution, like new direct internet, is around the same as other economic sectors. 
Yet, because the insurance product is highly dematerialized, e.g. you don’t need to go to a 
store to buy it, we could assume that the internet distribution growth is going to grow at quite a 
high pace.  The actual growth rate of these channels in France is more or less 10-15% a year, 
so the number of people who go on the internet to buy insurance products has a growth rate 
of roughly 10-15%. That is what I wanted to say regarding distribution. Let me briefly explain 
what we do here at Santiane. Santiane is a broker on the French health insurance market.  
We exclusively sell Santiane over the internet with a mix of internet and telephone.  We are now 
the number one e-broker. I think one interesting thing to know is that you don’t buy insurance  
on the internet like other products. Insurance products are complexe. They usually can scare 
people away, especially when you talk about issues such as health, you want to know exactly 
what you are buying.

You could go to a hospital where you need to have medical care from a specialist doctor, 
etc. You need to understand the terms. You need to compare one contract to another.  
Consequently,  you don’t just buy it just with a simple click on your smartphone. The consumer, 
and French consumers, need to be coached by an advisor. If this advisor is independent from 
the insurance company, then it works best because they inspire trust. And here at Santiane,  
we have a team of advisors who coach new clients. They stay on the phone for a long time, for an 
average of 1 hour and 15 minutes per call. So it is not the call center you can imagine with short 
conversations, etc. It is really an intensive pedagogical kind of call. As far as the other topics are 
concerned, perhaps we can address them later on, with products such as big data, etc.”

Aimé LACHAPELLE

I have been working for around 5 to 6 years in the insurance sector, mainly in pricing  
with Axa global direct, direct insurance in France. Since then, I have been working in the 
consulting business, where I basically spend half of my time on AI and data transformation topics  
in the insurance and banking industry and the other half on the same topic but for other 
industries.

So, I’m going to tackle this question very quickly here. I have seen very profoundly what has 
happened within Axa, and also for slightly more than 10 clients in the last 3 years, in 10 
insurance companies. Therefore, what I have observed is that insurance is an information and 
technology business by essence. It is a fair tight ground but then the segment is the same, i.e.  
it is shared, there is no disruption that was announced or expected. Perhaps it’s because it was 
wrong to announce or expect it. Finally it is continuously evolving, like in many other industries. 
For instance, there is a similar situation in other sectors, such as the banking industry, the 
automotive industry, etc. People are doing things, step by step, with all of the usual barriers, 
i.e. how to industrialize a new technology that is used to doing AI and data. It is not the same 
technology. We need to go for the clud. Clud for insurance is not an easy question because there 
are a lot of personal data. Yet something is happening. As Microsoft announced, there was a big 
deal in Switzerland involving UBS and Swissfree. These are huge moves of these companies for 
the clud that will facilitate the transformation. Then there is a clear opportunity at all levels of 
the industry. At the core business level, even if it is tricky, for instance for claims :  how to simplify 
and make more cost effective claims processes? There is obviously pricing augmentation, and 
then we go for a new paradigm with more incentive schemes with telematics, for instance. There 
are also all things customer experience-related. So, I heard Pierre Alain that you mentioned 
that the byclick is not the right thing, but maybe there is a claimclick that could be done.  
You are in a car, you just push the claim button and everything is done and settled by your 
risk partner who is your insurer. So the opportunity is clear, i.e. more disruption, no revolution. 
Regarding strong barriers, we already mentioned some of them. So for new entrants they 
need reserves to come, it is a very complexe product, so many things need to be managed.  
You have all the risk management aspects. You have technological barriers but still some 
changes, which we will come back to later. I would also like to jump in on what Pierre Alain 
said on the UK market, that there was a clear disruption on the brokering side. I think that 
the figures are even higher now. The latest figures are more than 90%, with motor figures that 
are bought through aggregators, i.e. internet aggregators. You mentioned several factors that 
allowed for this disruption, so I think there is probably also a more open regulation in the UK 
that encouraged this type of evolution. Something happened 3 or 4 years ago. There was a 
very sophisticated insurer with Admiral Group who announced that  they would use Facebook 
information data in their pricing, and the regulator didn’t block this, Facebook did. So I think this 
tells us a lot about what is going on in this country.

Philippe TRAINAR

Yes, thank you very much. In fact let me come back to the background. What is digitalisation and 
what is digitalisation in insurance? When looking at digitalisation, it is economically interesting 
because it reduces costs, and in turn reduces costs through former channels, the first one being 
big data. We know that data is all of the current economy and it reduces the cost of tracking 
and searching data. The second dimension is the internet of things. What is the novelty of 
the internet of things? It can provide a data cluster, i.e. reducing largely the cost of surge in 
tracking again. You have a bijection between the different data in the cluster. It is accepted 
not to do any statistical analysis to infer bijection. Then you have the third pillar that is robotics 
and artificial intelligence, which replicates young behavior and which in other words causes 
verification, replication, etc. It is very dangerous for the most skilled labels in our economies. 
Finally, you have the last pillar, which is very interesting because it is there when disruption 
happens in different economies. It is a kind of comeback of the economy which brings them 
closer and closer to supply on an industrial level. It has been seen in the disruption of different 
arising sectors, yet we did not see it in insurance in France. The reason is because distribution 
in France is largely integrated to the agency system that is dependent from one company  
to another and integrated in the insurance banking system. In some health insurance companies, 
employees directly sell  products. In France, brokers have no place or no important place  
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in the retail market, except the dynamic actor which is probably the future of the market with  
Pierre-Alain. Consequently, we have not seen any revolution within the retail distribution in France  
for it is very difficult for it to happen. We have to indeed change everything before a revolution 
can happen.
May I just complete this very quickly. I think effectively that the digital revolution is some kind  
of silent revolution. What we see is that insurance companies are using more and more big data 
and the internet of things, as well as robotics. They are beginning to use artificial intelligence,  
and I don’t know what Aimé would say about that. But it is more progressive. It is really progressive 
because at the same time, insurers are cautious, as there are a lot of liability problems when 
using, for instance, artificial intelligence or internet of things and therefore they just progressively 
advance, step by step, in order to be sure they are on secure ground.

ROUND TABLE « ADDING VALUE TO FINANCIAL MARKETS WITH THE BLOCKCHAIN »: 
PROMOTE BREAKTHROUGH INNOVATION BY DAVID DUROUCHOUX
20/05/2019,
ACPR, PARIS 
ORGANIZED BY FaIR

David DUROUCHOUX

There’s a press release dated from mid April, regarding a Security Token, for which we worked 
in partnership with PwC . We are very happy with this participation and we had a lot of feedback 
from them. Thank you very much Sébastien. The initial idea originated when the bank’s General 
Management decided to launch a call for projects to all employees, looking for disruptive business. 
Everything was eligible.

It was a pretty nice mix of formalwear and casual wear. The goal was to bring out and directly 
sponsor by executive committee members ideas that would drive the bank’s businesses  
in the upcoming years. We have a very high regulatory influence and offer solutions with a very 
high technical debt, at a time when global competition is heightened. It is the consequence  
of the business strategic projections in decline. The idea behind this initiative at Société Générale 
was to see how, through new technologies, particularly the Blockchain and artificial intelligence, 
it would be feasible to develop innovative solutions.

It was also an opportunity to give people the chance to step out of their usual teams’ box,  
to give them a budget, and to see what they could come up with in terms of «start-up mode».  
These volunteers received support and coaching from bank’s managers, who consequently were 
also confronted with their own business choices. The idea was to see if they too were capable  
of going beyond their habits and to push them towards breakthrough innovations.
Approximately 1,000 projects have been submitted with 60 to 70 funded. And we’re one  
of about 20 or so that have come through, with two start-ups that have merged. Our project was 

ROUND TABLE: EXCERPT 2 
RESOLUTION OF POST-TRADES VIA A DISTRIBUTED 
LEDGER

based on the observation that the technical Proof of Concept on the Blockchain part era was 
outdated. So the question was how to move into commercial production, in order to bring out 
real business issues. It was therefore a question of understanding how to provide the bank with 
a commercial offer based on digital assets. Our aim is above all to understand how to continue  
to sell products in such a context. Whether the technology is R3, Ethereum, H-Graph, etc, it doesn’t 
matter, since, as Jean Safar pointed out earlier, technologies are in fact evolving very rapidly.  
Our goal was to understand how concretely speaking our traditional origination processes could 
benefit from these new technologies.

Since it’s complicated, when you’re not a bank, to be a Fintech that truly operates in a 
regulated market, we chose to position ourselves within Société Générale. This way we could 
understand, from the inside, the regulatory complexity that digital assets’ marketing could face.  
Today, our areas of work are based on a regulation context and on the understanding of the 
adapted commercial positioning. 

Our objective is to provide our customers with new offers, based on Blockchain of course,  
and to see how smart contracts can help us improve. For instance, there is obviously transparency 
provided to the customer. An Automated Transfer Agent would risk disintermediating us 
ourselves. But we need to tackle this issue head on. We could theoretically talk about the 
Blockchain for hours on end. Some people do it very well. The problem is the organization.  
You have to get something out in production, that’s what’s very challenging. That’s why we wanted 
to take advantage of start-ups to release a viable product with just a small but meaningful number  
of features.

With respect to the mid-April bond issue, as described by Sébastien, it is Société Générale,  
a refinancing subsidiary that issues a $100 million bond amount, and Société Générale parent 
company that buys back these bonds.

It is nevertheless a real test that we practice widely. Innovation in relation to what we have seen 
elsewhere is firstly on a Public Blockchain. We’re not on R3, Ripple, etc., or the Settlement 
Blockchain. Secondly, the token carries the legal privilege, i.e., the holder of the token obviously 
owns the rights to the bond. 

With respect to the mid-April bond issue, as described by Sébastien, it is Société Générale,  
a refinancing subsidiary that issues a $100 million bond amount, and Société Générale parent 
company that buys back these bonds.

It is nevertheless a real test that we practice widely. Innovation in relation to what we have seen 
elsewhere is firstly on a Public Blockchain. We’re not on R3, Ripple, etc., or the Settlement 
Blockchain. Secondly, the token carries the legal privilege, i.e., the holder of the token obviously 
owns the rights to the bond.
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Although the focus is usually made on financial actors, new technologies are also a great challenge  
for regulators. The main concern is that the regulatory framework should put strong barriers in order  
to protect the consumer while giving the ability to financial institutions to keep innovating. This 
question is particularly important for the robo-advisor business. Indeed, since the goal is to advise 
consumers on their investment, the regulator really wants to make sure the robot acts in the best 
interest of the client. On the insurance side, it is more a question of privacy. In this case, the regulator 
wants to prevent misuse of personal information in the move to segmentation.

Here follows two excerpts of FaIR round tables. Each addressing the regulatory challenges regarding 
robo-advisors, STO and insurance respectively. The first one is from the Robo-advisor round table.  
The second one is from the Insurance round table in which Philippe, Aimé Lachapelle and Sandrine 
Lemery talk about segmentation and the corresponding regulatory issues. 

16/01/2020, 
ACPR, PARIS,
ORGANIZED BY FaIR

Mark SINSHEIMER

I’ll speak as a regulator, but I’m really curious as to what other panelists have to say. We looked 
at this quite carefully. And teaming for best protection, we really put ourselves on the client 
side, rather than on the firm side. So, how we approached it was to regulate at least in Europe,  
and I’m thinking specifically of MIFID for the security sector. It sets a series of controls and elements 
that have to be executed by an intermediary when it performs certain investment services such  
as investment advice or portfolio management. What we didn’t want to do was lower some  
of these controls or simplify them based on the technology you are using because that is not 
relevant for the client, contrary to the nature of the service they are receiving. Therefore, for us, 
the issue is not really to set different rules or requirements according to whether you are providing 
human advice, or robo advice, because as previously mentioned this can change tomorrow.  
It’s not even robo-advice, it’s an app, or something else. It can be done over the phone, you can have  
a million models. What we find challenging as regulators and what we are trying to do is instead, 
is to guide robo-advisors and explain how to apply current regulation. We acknowledge that 
this regulation has been, willingly or not, drafted with the traditional banking model in mind. 
 So, sometimes it can be challenging for the robo-advisor because they don’t think that way, 
they’re not structured as a typical bank. To sum up,  once again, from a regulatory perspective, 
the issue is not really about setting different rules but about working together, with the industry, 
to provide guidance and help them, and make the regulatory aspect not an surmountable barrier 
but help them comply with existing requirements.

NEW CHALLENGES FOR RISK MANAGEMENT 
AND REGULATORS 

ROUND TABLE: EXCERPT 3 
ROBO-ADVISORS

In the United States there is this issue regarding fiduciary responsibility, especially when it 
relates to DC pension funds, etc. For instance, regulators have roughly taken your approach but 
the department of Labor has been a little bit embarrassed because it’s hard to trust a robot.  
So, here is where we define whether it’s pure play, or not. If you trust an individual, who knows 
how to use a robot, then it’s business as usual. Yet, if it’s something that is purely algo-driven  
or it pretends to be so, then it could be business as usual, but some people can feel uncomfortable 
about it all. 

Matteo RAVA

In Europe, at least we are one step ahead on that topic, because there is a clear obligation  
for intermediaries to act in the best interest of the client. This is not the case in the US.  
And not for all services, and that is why they tried to fight. Industry is resisting. I think  
the advantage in the US is probably that the level of financial knowledge, i.e. the average financial 
understanding of clients is much higher than the average retail client. I come from Italy and let 
me give you the following example. My mother has a degree in Nuclear Physics, so quantum 
physics comes easily to her but if you asked her the difference between a bond and a share, 
she wouldn’t know what to answer. So, again, compared to the US, it’s quite striking I would say.

Philippe MAUPAS

I don’t really agree with your reference to the US. They have a fiduciary standard which doesn’t 
exist here, and registered financial advisors who are rarely subject to this standard. Broker 
dealers aren’t held to suitability standards which, unless I am very wrong, is the standard  
that prevails in Europe.  Even we have the expression «intermediaries have to work in the best 
interest of the client», provided they provide suitable advice. 

Matteo RAVA

Yes, but the best interest is legally a step before and you have to, of course, provide in Europe  
suitable advice which means matching the investment objective. Yet, there is always the higher 
presumption that, however you apply those details and requirements, there is always the best 
interest for the client, which, to me, is always broader in Europe in terms of legal requirements 
than in the US, in terms of actors to whom it applies to.

Mark SINSHEIMER

Do you see a problem regarding authorization and monitoring robo-advisors? How is inspection 
done for instance?

Matteo RAVA

My short answer is that the phenomenon in Europe is still very small in terms of numbers.  
The reality is that, for them, it still has very little impact in the overall supervisor activity,  
and they tend to supervise more by services, again, rather than by specific business models.

Jean-Philippe BARJON

Yes, I can confirm what Mateo said. Clearly, the general stance of supervisors is to be 
technologically neutral. I mean our mandate is to monitor and to supervise implementation  
of the rules regarding consumer protection. So, we are focused on this subject. The question  
of whether a kind of player will flourish in the next decade is not exactly our subject.  
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05/09/2019, 
CONSERVATOIRE NATIONAL DES ARTS ET MÉTIERS, PARIS, 
ORGANIZED BY TOULOUSE SCHOOL OF ECONOMICS

Philippe TRAINAR

Yes of course the segmentation question mentioned by Pierre Alain is largely political. The real 
question is : if you don’t know your risk, I don’t know my risk . What is the most profitable 
behavior of an insurer? It’s not up to my segmentation to just calculate the mean contribution 
you should pay. Using big data for market segmentation in this case is just a loss of money.  
It doesn’t change the premium level. Therefore I think that isn’t the question. The right one is : 
do you know the risk, and do I know my risk ? Obviously, if I am drunk and driving, I suppose you 
will never be favorable to an insurer who would ask you to pay for me. You would say ok, I am in 
shape and he is a bad driver, by definition. Then we know that if we don’t do this segmentation, 
and you and I know my risk, normally the insurance market should obviously be destroyed. 
Therefore, this is the reason why insurers are fearing the fact that we know our risk, but the 
insurer does not know your risk. In that case, it is very important. You have a very well known 
economics theorem that has been applied, not in insurance, but in banking and it is actually the 
same. You cannot differentiate with interest rates a good payer from a bad payer and who will 
pay or not their debt. Therefore, the only consequence is either that the market is happy or that 
you are very cautious offering very small credit, and in insurance very small covers. Therefore, 
maybe you should segment, and the challenge is not for insurers. The challenge is potentially 
for the government. It is therefore the redistribution policy of the government that is impacted, 
where the boundaries between insurance and redistribution are not so clear. Hence, here you 

Indeed, this is not an issue for us, as long as these players, will comply with the rules regarding 
consumer protection.

Mark SINSHEIMER

The main issue is supervision fraud, negligence, etc. if it’s human, it’s like «business as usual», 
but if it’s purely algo robo, I mean, honestly, you’ve got to evaluate the model risks. So what 
is the supervision model, how it is tested and monitored? How is it researched? You need  
to look at data risk, contingency risk, continuity risk, coding risk, etc. The best risk manager  
in the world, possibly Barr Rosenberg, who received numerous medals for his achievements,  
was banned from markets, because of a coding error in his firm. So, small errors, big 
consequences.

Jean-Philippe Barjon

Yes, I agree with you. But this is the discussion, automation creates a kind of systematic risk.  
I agree with you, it’s obvious. On the other end, it is clear as well that it is more easily auditable. 

ROUND TABLE: EXCERPT 4 
NEW CHALLENGES IN INSURANCE

have a real challenge that you have to address, and of course big data will later help you do what 
you can’t. You know your risk, I don’t know your risk. Will big data help me solve this problem?  
I say, in most cases NO. To me, the problem lies in my answer.

Therefore why isn’t it a question of big data? For instance if  you are using google for health 
issues, I don’t know if you are looking at data for yourself, for your wife, for your kids, for your 
grandmother, your grandfather etc. Therefore, if I offer you, and not, say, your grandfather,  
the wrong price, you will refuse, the deal will be off and I will have lost a client. Consequently, 
because there is no bijection between most of the data, I will be able to gather some data 
and your risk profile, and most of the time I will not be able to use it correctly. However, it is 
very costly to gather big data. Even if we have seen the reduction in gathering data in France, 
it remains very costly. Therefore, I have no incentive in terms of profitability if I am not sure  
of the bijection between data and your risk profile. Hence, I think that the segmentation question 
is not well understood, especially as politicians are confusing the question of redistribution 
and insurance. Therefore, at this point in time we are not correctly dealing with the question  
of segmentation. We should believe in separating the efficiency of the insurance market and the 
question of the efficiency of redistribution that is the consistency of redistribution with political 
targets and deals in different ways.

Aimé LACHAPELLE

Ok, thank you. I would like to react to what you just said Philippe. I think it depends on, first 
the paradigm, what are we insuring and what are the risks? I think that this is completely 
true when you talk about short term risks, i.e. you are the best at knowing your risks.  
For example, you know if you drink or not. My perspective on the yearly contract insurance is 
that I know less about my risk than what the machine learning model will say about my risk. 
Because it is just impossible for my mind to aggregate all the behavior I will have during a year 
when I am driving my car. Therefore, I am unsure if we stay with the scheme where we have  
a yearly contract. Insurers can disappear because we don’t know our own risk as well as complexe 
algorithm processing, even with imperfect data. The second point is segmentation - and you 
say this is a question of efficiency, and I fully agree - because now this is a market scheme,  
so players are following these rules. Hence,  segmentation also remains because all players are 
going along with it. There is probably a limit point. Today the capitalistic short term view is that 
the limit point is slightly better than others. The long term view could be different. As I mentioned 
earlier, with IoT and telematics, and scores that are impacting prices, you can downsize prices. 
The grading  scores are better, you have incentives, and you will reduce the overall claim level. 
So, you forget about segmentation when you are doing this. Therefore, my point is that this limit 
point depends on the point of view.

Philippe TRAINAR

May I just react very quickly. My point is that, if you don’t know your risk, and if I can’t know 
your risk, I have no incentive to know it. Why? Because I will spend money trying to know when 
I could simply effortlessly apply the mean tarif. You will accept it because you don’t know your 
risk. And Pierre Alain will also accept it because he does not know your risk. The only problem 
is if a significant fraction of my clients know their risk very well, then I have to segment in order 
to be sure that I am efficient. Sandrine?

Sandrine LEMERY

And if I may add, there are already segmentations which are very known, for instance in men 
and women. But they have been forbidden by European regulation, so you are not allowed  
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to discriminate on death or lifespan for men and women. So actually segmentation has not 
always been used and sometimes the regulation wants indeed to prevent this because the social 
contract is important. What you were saying, Philippe, on redistribution vs. mutualisation is not 
so obvious. So there has already been a lot of very well known segmentation. A case against 
segmentation, that has already been partly addressed here, is whether its cost is worth it.  
At one point it wasn’t. For instance, the insurance stereotype is that actuaries set the tarif.  
They say, for instance, well it is 100, and then the sales rep wants to sell the product,  
and they say «ok, but I can sell it 70», and then the real price of the product is not worth  
as much compared to what you can sell it for. So lots of effort has been put into selling more, 
and then deciding the right cost of the product. The other thing I’ve seen on segmentation  
is that all insurers, when you look at their business plans, have twice the market. It is because 
everyone makes huge projections using the same strategy, i.e. I have clients on this line  
of product, and my new strategy is to equipe my client with all kinds of insurance. That is what 
 we have seen for instance with bank insurers that are now coming from health into retail 
insurance, etc. So the strategy of an insurer is somehow segmentation, but it is also having  
the entire risk in order to deliver a good service and also to compensate the cost of risks between 
one branch and another. Therefore, what I would say is that currently segmentation can be 
worth only as a niche which is not what we have observed. On the contrary, I would say what  
we previously stated, i.e. that insurance is a national market. The European commission has 
tried time and again to make it a European market, but insurance is really dependent on taxes  
for savings. It is dependent on lots of issues, for health, etc. For instance, I would take the 
example of construction. In construction, it is exactly the opposite that has happened. In France, 
we have a construction market where insurers sell construction contracts to companies. 
Construction companies that carry a bad risk, ask them for a tariff that is very high or they refuse.  
Then we have foreign insurers, who came from Gibraltar and lots of other places, who started 
selling at the same price, or a bit less, than the other companies with huge commissions  
that were not obvious to the clients and we sort of had a segmentation at the opposite ends:  
bad risk going to companies in free service provision. These companies that were not supervisors, 
if they were in France, would go completely bust, and now we have a huge problem with this 
issue.

It is an interesting topic, because we seem to say in France that nothing is going on, but is  
it dependent on the French market. Actually, we could already have some European actors 
coming from abroad and selling with all these capacities. What Pierre Alain was saying 
about how GAFAs are not ready to enter the insurance market, is that they really understand  
the product and insurance products are not really standardizable. We speak a lot about 
determining the right price, but the thing is, how to design the right product for the client? This 
is at the time being not only a question of data. It is more complicated than that, and perhaps 
 it will change. There are huge possibilities for change, but nothing is shifting yet.

IMPROVING RISK INTERMEDIATION THANKS TO NEW TECHNOLOGIES
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The main goal of the financial system is to transfer risks in the economy. With recent technological 
innovations, financial actors and the financial system as a whole may find ways to better assess and move 
risks around in the economy. On the one hand, an increased digitalisation of financial products mainly 
due to recent developments in computer science and distributed ledger technologies creates new kinds 
of interactions between financial agents. With this, comes new regulatory possibilities and concerns. 
On the other hand, the recent boom in artificial intelligence offers new potential tools for financial 
actors to better extract structure in data that has the potential to allow a greater level of automation and 
understanding of risks.

Along those transformations may very well come an even more important change. Improved risk 
intermediation may also be accompanied with disintermediation. As competition increases, (from new 
financial actors, from GAFAM, as well as from alternative global borderless infrastructures), current 
financial actors may be at the risk of being disintermediate. With the correct technological design,  
the system as a whole could be more efficient at transferring risk with less intermediaries.  
This has the potential to fundamentally alter the value chain of risks.

Distributed ledger technologies (DLT) are only at their infancy, but they represent an important regulatory 
perspective. Most regulators around the globe are currently actively looking at the potential use cases 
of DLT. The main promise is a more efficient financial system, especially regarding the reduction of 
transaction costs that would be achieved with increased interoperability of existing systems. A regulator 
willing to implement such a system would have two options: 1) adding an interoperability layer that would 
connect to existing systems and make seamless transfers from one system to the others, and 2) creating 
a new global system that would be interoperable by design. The latter would most likely come with some 
degree of disintermediation. Current intermediaries may not have sufficient incentives to innovate in this 
direction (because they are intermediaries), so the regulators would have to tackle this question in the 
near future.

However, there are also new players (GAFAM) that are moving more and more toward financial applications 
(see examples in China : AliPay and Weechat - payment service providers). As they have been very effective 
at building global interoperable systems in the field of information transfer and communication, there is 
the possibility they will also be very effective at building a global financial infrastructure. With those tech 
companies but also smaller one, referred to as fintech, the traditional financial sector is under heavy 
competition on each of its functions independently. This unbundling of functions is very characteristic of 
the current context. Regulators will likely have to take decisions in this challenging context.

Alongside developments in infrastructure, the growing use of artificial intelligence in the financial sector 
can also have an important impact on risk intermediation. As more and more data are being collected  
(by both  financial and non-financial actors) more complex models can be used to have supposedly better 
representation of the economy. The recent developments in generative deep learning models may even be 
used to leverage the amount of data collected. Indeed, generative models will soon be able to have a very 
good representation of the underlying distributions of real data so that they could be used to generate 
several other alternative histories of data that could then be fed to other deep learning models.

IMPROVING RISK INTERMEDIATION THANKS 
TO NEW TECHNOLOGIES 

With a large amount of data, two of the main applications are Data-driven trading decisions and Deep 
hedging. While data analysis, and in particular machine learning, have been used to extract useful 
information from large amounts of data, being able to create actionable insights that can be used  
to automate trading decisions or hedging strategies is crucial for a lot of financial actors. Automation in 
decision making is not new of course, but big data and machine learning enables algorithms to exploit 
much more complex patterns.

Like almost any technological breakthrough, artificial intelligence induces a conceptual revolution.  
In many sectors, including  financial applications, research in this area has been quite dense in the last 
decade. We are to a point at which new types of jobs are created in the financial sector that require new 
skills and therefore new education programs. The next decade will likely settle on the direction this field 
will take and the true useful applications enabled by this technological revolution.

In the remaining of this chapter, there are a total of five short papers, including three from the International 
Scientific Committee (ISC) and two from members of one of FaIR’s research programs, as well as an 
extended abstract of a research paper and a condensate of relevant excerpts from FaIR’s round tables.  
First for the ISC, Darrell Duffie (Stanford) shares his view on the interoperability of International payment 
systems notably through the use of a Central Bank Digital Currency. Second, Alexander Lipton (MIT) 
explains how DLT as technological innovations can potentially help modernise the current financial 
ecosystem as a whole. Third, Cris Doloc (University of Chicago) explores the impact of machine learning 
techniques improving to the point where it is possible to generate actionable insights for automated 
models in trading. This chapter then features two papers from the FaIR research community. First Lukasz 
Szpruch (Alan Turing Institute) gives a technical overview of the recent developments in model based 
machine learning in finance. Lastly, Blanka Horvath presents her view on the transformative role of new 
technologies on market models, especially on market generators. In an extended abstract, Michel Crouhy, 
Dan Galaia and Zvi Wiener explore through a functional approach what is the fintech’s impact on financial 
intermediation. In the last part of this chapter, some excerpts from FaIR’s round tables are presented  
in the context of artificial intelligence and risk intermediation.
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ISC CONTRIBUTIONS

INTEROPERABLE PAYMENT SYSTEMS AND THE ROLE OF CENTRAL BANK DIGITAL 
CURRENCIES

Darrell DUFFIE, 
Adams Distinguished Professor of Management and Professor of Finance at Stanford University’s Graduate 
School of Business and Professor by courtesy in the Department of Economics

Abstract: I explain the meaning of an interoperable payment system and why interoperability  
is crucial for efficiency. I review some alternative approaches to interoperability, including central 
bank digital currencies (CBDCs). 

Keywords: Digital currency, payment system, interoperability 

1. INTRODUCTION 
Innovative payment technologies are transforming monetary systems, commerce,  
and banking. When new payment systems lack interoperability with each other or with important 
legacy payment systems, however, the result can be highly inefficient. Whether customer-to-
business, business-to-business, or peer-to-peer, user costs and delays rise with the multiplicity 
of non interoperable payment methodologies. Infrastructure costs grow. Complexity increases.  
Financial intermediaries and financial market infrastructure may be unable to achieve significant 
netting of inflows against outflows when using different payment systems, and may therefore 
require inefficiently high cash buffers. 
In this short note, I explore the essential meaning of interoperability and its implications  
for innovative payment systems, including hybrid or synthetic CBDCs. For brevity and focus, 
I abstract from many important policy factors such as financial inclusion, privacy, anti-
money laundering and other legal issues, competition for payment services, monetary policy 
transmission, financial stability, and disruption of banking franchises. 
While market forces associated with scale and network economies create incentives  
for convergence onto common or interoperable payment platforms, there are also “walled-
garden” incentives for firms to limit interoperability, sacrificing payment-system efficiency  
in order to raise customer switching costs. Interoperability is a public good whose benefits are 
not fully internalized by each market participant. This presents an opportunity for central banks 
and other official-sector players to regulate standards for interoperability, or to provide their own 
general-purpose payment systems. 
When every agent in the economy makes and receives payments in a common safe digital 
currency, interoperability is more easily achieved. For example, with a general-purpose CBDC  
in the form of central bank deposits, interoperability is dramatically simplified. Alternatively, 
with a CBDC that is transferred on payment systems operated by private-sector payment 
service providers, the central bank can enforce standards for maintaining interoperability. 
Yet the introduction of a CBDC raises a host of tradeoffs that have caused central banks to 
hesitate. Among these concerns are the disruption of the legacy commercial banking sector and  
the responsibility of the central bank for monitoring the legality of transactions and for securing 
private information. I will outline alternative feasible approaches for a highly interoperable and 
efficient payment system. 

2. THE MEANING OF INTEROPERABILITY 
To get at the meaning of interoperability, we can think of a payment system as a collection  
of multi-account ledgers. Each ledger is capable of instant transfers between any two accounts 
on that ledger. Two different ledgers are interoperable if there is always at least one intermediary 
holding accounts on each of the two ledgers that automatically meets legal requests to transfer 
funds from any account on one of the ledgers to any account on the other. For example,  
a request to transfer from an account on ledger A to an account on ledger B is met by a transfer 
from the source account on A to an intermediary’s account on A, and an equal transfer from  
the intermediary’s account on B to the destination account on B. For interoperability  
to be effective, transfers should be done at negligible latency and user cost. The definition  
of interoperability is extended by calling two different ledgers interoperable if they are elements 
of a network of interoperable ledgers (A network is a connected graph. In our setting, the links 
of the graph are defined by pair-wise interoper- ability).
A conventional two-tiered bank-based payment-system, as depicted in Figure 1, offers a degree 
of interoperability. The inner tier consists of a central bank (CB) and banks holding accounts 
at the central bank. In the inner tier, banks make most of their payments to each other  
by transferring deposits held in their accounts at the central bank. The outer tier consists  
of the banks and their customers, who can direct payments from their own bank accounts  
to accounts at other banks. The account ledgers of two different banks are thus interoperable 
via an inner tier settlement system, such as Fedwire in the U.S. or the Eurozone’s Target2.  
In practice, however, the degree of interoperability is reduced, often significantly, by user 
costs and fees of various types, significant latencies (often more than a day), and limited 
time-of-day access. Some payment system authorities, including those of the United Kingdom  
and the Eurozone, have reacted by introducing “fast payment systems” that offer almost 
instant transactions, around the clock, with low user costs. Still, however, fast payments are 
not dominant in the U.K. and the Eurozone, and are in a much earlier stage of development  
in the United States. 
A CBDC that is based on central bank deposit accounts for every user has only one ledger. 
With a broadly used CBDC, interoperability is therefore not an issue, given the relative ease  
of arranging for low-cost instant transfers across the entire economy. 
Alternatively, a high degree of interoperability can be achieved by upgrading a conventional  
two-tiered bank-account-based payment system, of the sort depicted in Figure 1, by introducing 
a single common account ledger for the customer accounts of all banks in the system. This 
single outer-tier ledger is interoperable with a single inner-tier ledger, containing the accounts 
of all banks at the central bank. With this two-ledger approach, each bank is responsible for 

meeting its own deposit liabilities and is able to observe only the account information of its own 
customers. Although this two-ledger approach has yet to be adopted, it is already technically 
feasible and seems to satisfy the criteria of central banks that wish to improve the efficiency of 
their payment systems without introducing a general-purpose CBDC. 

Figure 1: A schematic of a two-tiered 
payment system. The inner tier consists 
of a central bank and banks. Banks make 
most of their payments to each other by 
transferring reserves held in their deposit 
accounts at the central bank. The outer 
tier of the payment system consists of 
banks and their customers, who can direct 
payments from their own bank accounts to 
the bank accounts of others
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3. INTEROPERABILITY WITH CBDC 
Until now, most central banks have shied away from providing CBDC directly to everyone  
in the economy. But there have been serious prototypes and proposals for “hybrid” or “synthetic” 
CBDC, by which private-sector actors would be responsible for payment services associated with 
one or more digital currencies backed by the central bank. Of the proposed variants of this 
model, two are prominent: 
1. The central bank issues CBDC “tokens” to one or more payment service providers 
who redistribute the tokens to a broad set of customers, along with payment apps and 
other infrastructure. The CBDC tokens are analogous to paper currency, as direct claims  
on the central bank, but are transferred electronically. Token holdings are recorded in ledger 
accounts maintained by the central bank or by payment service providers. The payment service 
providers could be commercial banks or fintech firms. Interoperability requires that all actors 
in the economy are able to seemlessly transfer the CBDC to each other, implying a common 
payment technology or strong standardization. The Peoples Bank of China has begun to test  
a related form of CBDC called DC/EP (digital currency/electronic payment). The Bank of England 
has published its principles for a similar approach to CBDC. 
2. As an alternative, which Adrian and Mancini-Griffoli (2019) call “synthetic CBDC,” payment 
service providers can be permitted to back their own private-sector digital currencies 100% with 
deposit accounts at the central bank. In effect, each of the resulting private sector digital currency is 
in the form of narrow payment-bank deposits (I am a member of the board of directors of a proposed 
narrow bank, TNB Inc., which is not a payments narrow bank.). In this case, interoperability requires 
not only interoperable payment technologies, but also perfect fungibility of the various resulting 
private digital currencies. This raises various addi tional technical challenges that deserve  
a lengthier discussion. 

4. FINAL REMARKS 
I believe that fast highly interoperable payment technologies of some form will dominate some 
major economies within the next decade or so. These new technologies can be based on next 
generation bank-account-based payment systems, central bank digital currencies, or some  
hybrid or synthetic form of CBDC. 
Most developed-market central banks continue to show a preference for increasing  
the efficiency of bank-account-based payment systems over the deployment of CBDCs, but have 
also become more open to discussing the potential benefits of the introduction of a CBDC. 

STABLE COINS AND THEIR ROLE IN TRANSFORMING THE FINANCIAL ECOSYSTEM

Alexander LIPTON, 
Co-Founder and Chief Information Officer at Sila, Partner at Numeraire Financial, Visiting Professor and Dean’s 
Fellow at the Hebrew University of Jerusalem, and Connection Science Fellow at MIT

1. INTRODUCTION
It became painfully obvious during and after the Global Financial Crisis (GFC) that the  existing 
banking and payment systems, are unstable, obsolete and no longer aligned with the  constantly 
changing requirements of the real economy. Unfortunately, the GFC turned into a  wasted 
opportunity to reorganize the world financial ecosystem. Too-big-to-fail banks  dramatically 
increased (rather than decreased!) in size by amplifying their share of the  banking business  
at the expense of their failed competitors, while the number of banks has  shrunk. Superficially, 
banks are better capitalized, but their complexity increased to such a  degree that their true 
financial positions cannot be ascertained with neither by regulators  nor by depositors, investors, 
and, somewhat alarmingly, by their own management. Balance  sheets of large banks which were 
opaque before the GFC became even more so and have  added risks of unquantifiable complexity. 
As a result, many banks and other financial  institutions have become too-big-to-manage.  
In addition, clearing and settlement of many  over-the-counter derivatives was mandatory moved 
to central clearing counterparties  (CCPs), making CCPs potential points of failure for the system 
as a whole. A high level of  interconnectedness of CCPs due to the fact that they have many 
common general clearing  members adds an extra degree of instability. 
Not surprisingly, the general public is frustrated with the status quo. This frustration manifests 
itself in various aspects of economic and social life and almost universal aversion  to banks 
and banking. Thankfully, companies harnessing new technologies, including  blockchains and 
distributed ledgers, can put much needed competitive pressures on the  incumbents, help 
newly formed fintech companies to enter the market, and provide considerable benefits to the 
general public. Assuming that regulators encourage competition  and properly adapt regulation, 
we expect to see contests between fractional reserve and narrow banks; physical and digital 
cash; fiat currencies and asset-backed cryptocurrencies;  and, most importantly, centralized and 
distributed payment systems. The outcome of these  contests will reshape the entire financial 
ecosystem going forward, and, in a few years, might  change it beyond recognition. If properly 
executed and regulated, a financial system of the  future will be much better at payments, 
products issuance and personalization of financial  services, and much closer connected to the 
real economy. In addition, it will become  significantly less risky.  

2. THE BANKING SYSTEM 
2.1. Overview  
While Internet Protocols (TCP/IP) have been responsible for the phenomenal proliferation  
of the Internet, which inspired and promoted completely new business models in numerous  
fields, such as digital commerce, social media, communications, etc., banking lags way  behind. 
One of the biggest impediments in unleashing creativity and developing new  business models 
in banking and finance, rather than mending existing legacy businesses, is  the absence  
of successful TCP/IP for money and identity. In particular, in the 21st century, we still do not 
have a perfect electronic analogue of paper currency, which allows for an  instantaneous and 
anonymous transfer of value without involvement of a middleman. 

2.2. Credit Money Creation and Annihilation 
In order to improve the system, we need to understand how it operates at present, and, first   
and foremost, the true nature of the process of money creation and annihilation. In our  opinion 
the so-called modern monetary circuit theory, which claims that money is created  by commercial 
banks when it is lent to their clients and destroyed by banks when it is repaid, 
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provides the most convincing explanation of the process, see [1], [6]. The corresponding  
interest comes from the next round of borrowing and stays in the system for good. In case  when  
a borrower defaults, money is not repaid and destroyed as it should, and remains in  the system 
forever, which is tantamount to forgery. 

2.3. Bookkeeping and Transactions 
As a result of the above process, the preponderance of money in circulation is just a sequence  
of transactions, organized in ledgers, which are maintained by various private banks, and  
by  central banks providing means (central bank cash) and tools (various money transfer  
systems) for reconciling these ledgers. As part of ledger-maintaining and transactional 
functions for their clients, private banks play two very important roles, which central banks 
are not equipped to perform. They serve as the system gatekeepers, via know your customer  
(KYC) services, and system policemen, via anti-money laundering (AML) efforts. It is clear  that,  
in addition to the better known areas of application of distributed ledger technology  (DLT),  
for instance, in digital currencies (DCs), including central bank issued digital  currencies (CBDCs), 
DLT can be used to solve such complex issues as trust and identity, thus  helping to address 
the KYC and AML requirements. Moreover, since all banking activities boil  down to maintaining 
a ledger, judicious applications of DLT can enable development of the  distributed Financial 
Market Infrastructure (dFMI), with numerous promising applications  in trading, clearing  
 and settlement triad, payments, trade finance, and so on. However, if  applied for its own sake, 
DLT can make the situation even less satisfactory than it already is. 

2.4. Payments 
The hallmark of the current financial system (if not its raison d’etre) is a long chain of middlemen 
engaged in moving money and securities between a buyer and a seller, not least  in the form  
of correspondent banks. As usual, middlemen thrive in most situations,  particularly when 
foreign exchange transactions are involved. The amount of various fees  can easily reach 3%  
or more of the transactional amount, which is a very meaningful amount  for most participants. 

2.5. What is Wrong with the Current Setup? 
The biggest problem with the existing banking system is that it is too complex for its own  good, 
predominantly due to the fact that it commingles three distinct activities: 
• creation and annihilation of credit money through lending;  
• record keeping;  
• execution of transactions.  
Obviously, separating these activities is highly desirable in order to make banking less risky,  
nimbler and more efficient. Setting lending aside, we emphasize that judicious usage of DLT  
can be very helpful in bringing record keeping and transaction execution into the 21st century. 

3. DISTRIBUTED LEDGERS 
3.1. General Considerations 
IBM defines a distributed ledger as follows, [3]: “Blockchain is a shared, distributed ledger   
that facilitates the process of recording transactions and tracking assets in a business  network.  
An asset can be tangible - a house, a car, cash, land - or intangible like intellectual  property, 
such as patents, copyrights, or branding. Virtually anything of value can be tracked  and traded 
on a blockchain network, reducing risk and cutting costs for all involved.” 
While the idea of a BC is old, since BCs naturally occur whenever power, land, or property  change 
hands, modern technology gives the old idea of BC a new lease of life [6]. DLT opens  exciting 
opportunities for making conventional banking and trading activities less expensive  and more 
efficient by removing frictions. Moreover, it has the potential for restructuring the  whole financial 
system on new principles of dFMI. Obviously, achieving this goal requires  overcoming not only 
technical but also epistemological and political obstacles. 

In theory, payment systems using DLT can significantly reduce transaction costs to below  1% 
as they involve significantly fewer middlemen and have shorter paths for information  flows. 
However, to build such systems in practice one needs to overcome several challenges,  including 
regulation, scalability, privacy, and ease of use for all the relevant parties. 
Potentially DLT can have numerous applications outside of payments, for example, in  clearance 
and settlement, trade finance, rehypothecation, syndicated loans, and other areas where 
frictions are particularly high. However, before applying DLT to all these areas, one needs  
to appreciate that some current systems are shaped by business and other  considerations 
much more than by pure technological reasons. 

3.2. Cryptocurrency Creation and Transactions 
Cryptocurrencies took the world by storm. Bitcoin, proposed in a seminal paper published  
in 2008 by Satoshi Nakamoto, [10], was the first in a very long line of cryptocurrencies. Some  
of Bitcoin’s initial appeal was due to the fact that its creation was purely algorithmic in nature  
in sharp contrast to fiat. Shortly afterward, Ethereum, a second-generation, secure,  decentralized 
computing system, was introduced by Buterin, [2]. Since 2008, several thousand of native 
cryptocurrencies operating on their own purpose-built ledgers, as well  as tokens built on top  
of existing blockchain platforms, such as Ethereum, have been  launched with varying degrees 
of success. 
Bitcoin, Ethereum and, to a lesser degree, Ripple all tried to play the role of money but ended  
up as a new speculative asset class. While technically very impressive, existing cryptos  cannot 
be money in a traditional sense for at least three reasons: 
• they are not stable enough, even for short transaction times, which prevents their  usage  
for purposes of conventional commerce,  
• they are operationally inconvenient to use for an average economic agent, which is a  prerequisite 
for their wide adoption, 
• their built-in algorithmic monetary policies are too mechanical and inflexible to be  practically 
useful.  
Not surprisingly, the status quo in cryptocurrency land is not satisfactory and encourages  further 
developments. 

4. STABLE COINS AND THEIR TAXONOMY
4.1. Overview 
One of the most exciting developments in this regard is the introduction of stable coins.  
The  main advantage of a properly design stable coin is that it can serve as the cornerstone  
of a  fully digital ecosystem facilitating fast and regulatory compliant payments on a commercial  
scale with minimal reliance on the existing banking, [11].  
We feel that rather than designing monetary policy of its own, which is a challenging task in  itself, 
innovators should initially aim at tokenizing existing stable financial instruments  denominated 
in fiat currencies, such as US dollars. Later on, if these efforts prove to be successful, they 
should be able to tokenize more diverse asset pools, which can serve as a  counterbalance  
to fiat currencies and will be very useful for cross-border transfers. 
Contrary to numerous claims, at present it is not possible to build a truly decentralized,  stable 
coin. In fact, the mere estimation of the price on a crypto coin in terms of a fiat currency requires 
an oracle and automatically breaks decentralization. Ideally, it should be possible to directly 
observe this price from the distributed ledger. This is not quite possible for both  conceptual and 
technical reasons. Hence, any potentially successful stable coin has to  combine centralized  
and decentralized features.  

4.2. Coins fully collateralized with fiat 
Custodial coins that are fully collateralized with fiat are relatively centralized as their  creation and 
annihilation is performed by a single party, which is also responsible for  maintaining collateral. 
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However, once created, coins can freely move on the corresponding  blockchain. Due to their 
semi-centralized design, custodial coins are particularly prone to  regulatory influences and 
must be regulatory compliant in order to be able to survive.  Several coins of this nature, such 
as Theter, TrueUSD, Sila, etc., either already exist or are  currently being developed. It is easy  
to see that crypto exchanges, which are not fully  integrated with the existing banking system, 
have to rely on stable coins in order to do  business. However, building stable coins suitable for 
more broad commercial applications is  a much more exciting goal. 

All fully collateralized coins have inherent drawbacks, since, by construction, they are  centralized, 
represent single points of failure, and an irresistible attraction for both  regulators and hackers 
(for different reasons, of course). In many instances, particularly, in  the case of Theter, there  
is no transparency regarding underlying reserves, which makes it  difficult for users to trust 
these coins. Unless very carefully structured, fiat-backed coins have  to rely on third parties, 
most notably banks, to keep the corresponding collateral and execute  transactions on their 
behalf. As a result, they suffer from high costs of carry of the collateral. Inherent low profitability 
is a major danger in its own right, which cannot be overestimated. In order to overcome it, stable 
coins require a large scale to become profitable. 

4.3. Coins Collateralized with Assets 
When economic environment in a country is stable, it makes sense to collateralize crypto  
coins with the corresponding fiat. However, in some parts of the world it is not a viable  
option since the local fiat itself is not stable versus the USD and other major currencies. In 
such cases, coins collateralized with real assets can be developed, see, e.g., [8], [9] where  
the  so-called digital trade coins (DTC) are introduced. These coins have significant utility value  
in stable environments as well, for example, for supply-chain financing and, such as oil  trading 
or cross-border financing. In addition, asset-backed coins also useful by limiting the  freedom 
of central banks to manipulate their currencies and serving as a much-needed  counterbalance 
to the USD, in its role of the world reserve currency. The USD domination  causes serious trade 
imbalances, triggers trade wars and exacerbates the international  frictions. To alleviate these 
ills, several central banks have suggested that it makes sense to  complement fiat currencies 
with a supranational currency. By combining the ideas of narrow  banking (for stability),  
and asset-backed digital currencies (for efficiency and transparency,  we can dramatically improve 
the global financial system. This is an exciting possibility of  designing a digital supranational 
currency backed by a diverse and widely held assets, which could combine the best features 
of historical currencies, including finality of settlement,  partial anonymity, and usability  
on the web. 
It is obvious that, if so desired, a basket of fiat currencies can be used as a collateral  
for a  DTC. This idea was recently popularized by the Libra Association, [4], without giving any  credit  
to the similar ideas introduced in [8], [9]. 

4.4. KYC and AML Considerations 
The role of KYC and AML requirements for regulatory compliance cannot be overestimated.  KYC 
procedures have to be performed when new tokens are issued, or existing ones redeemed for fiat. 
Given that stable tokens are going to circulate on a public blockchain, which keep an immutable 
record of all transactions, AML can be performed indirectly by  analyzing the corresponding 
transaction social graph. In general, stable token transactions  are more transparent  
than conventional physical cash transactions and are more or less on  a par with traditional 
banking transactions. It is rather telling that when Bitcoin and  Ethereum just got introduced, 
criminal elements were extremely excited about their illicit  usage. However, eventually  
they realized that immutable record of transactions opens new  avenues for the law enforcement 
agencies to monitor and prosecute their activities. Hence,  at present, they are leaning back  
to cash transactions. 

4.5. Conclusions 
Although the idea of distributed ledgers is not new, modern technology gives it a new lease   
of life. Potentially, distributed ledgers have numerous applications in finance.  
Cryptocurrencies are the best known but not the only ones. While conventional  
cryptocurrencies are interesting, they are not very useful for real economy. Digital cash holds 
a great promise and can change the whole financial ecosystem to the better. Asset-backed  
cryptocurrencies can serve as a much-needed counterpoint for fiat currencies,  
and a way  forward toward ensuring world-wide financial stability and inclusion. It can also limit 
the  impact of trade wars which disrupt existing supply chain. 
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DATA DRIVEN DECISION MAKING IN TRADING AND INVESTING

Cris DOLOC, 
Quantitative & Computational technologist

1. A NEW PARADIGM
We are currently witnessing the onset of a powerful tidal wave that could have a long-lasting 
impact on our civilization for generations to come. Jim Gray, one of the greatest computer 
scientists of the 20th century and recipient of the Turing award, has predicted the advent of this 
new era more than a decade ago. He has called it the “Data exploration” era [1], or a period 
where theory, experimentation and simulation will come together to solve some of the most 
important problems of our time. This paradigm is driven by the availability of extremely large 
amounts of data generated as a result of the latest technological innovations. This is the dawn 
of a new era where the process of decision-making is going to be driven by data and powered 
by algorithms. 

The concept of data is central to this new paradigm. Data represents the modern vehicle used to 
encode the surrounding reality, while being an orthogonal dimension to the algorithm concept 
which is the complementary device used to decode the same reality. The impact of Big Data  
on the financial industry nowadays has the proportions of a tsunami. Solving problems  
of increasing complexity demands more high-quality data and better algorithms for processing.
 
The topic of Financial Machine Learning has attracted a lot of interest recently, specifically 
because it represents one of the most challenging problem spaces for the applicability  
of Machine Learning. The applicability of Machine Learning techniques has increased dramatically 
in the field of financial trading, especially because the need to speed-up and automate tasks  
that humans do not have the capacity to handle. Financial trading and investment rely  
on accurate inputs being fed into business decision-making models, which traditionally were 
handled by humans who made judgements based on these inputs. Nowadays this functionality 
is provided by informatics systems that can compute at a massive scale and extract Intelligence 
from a multitude of sources to reach better decisions practically instantaneously. However,  
one should emphasize that the utility of data can only be measured by our ability to extract 
actionable Intelligence from it. This transformation process is quite opaque, often misunderstood 
and very domain specific. 

While the ability to extract actionable insights from data is central to scientific discovery  
and the innovation process in general, it is absolutely critical in the decision-making process  
in trading and investing. The last decade has seen the emergence of a new interdisciplinary 

field called Data Science that provides an extensive toolset that covers a large array of domains, 
from Mathematics and Statistics, to Computer Science as well as more specialized scientific 
methods. The extraction of actionable insights from data is a very complex transformation  
that involves distilling Data into meaningful Information, encoding it into Knowledge to eventually 
achieve the desired outcome – actionable Intelligence (see figure above). 

2. THE CURRENT AI HYPE
John von Neumann, one of the most prolific polymaths of all times, said once: “If people do not 
believe that mathematics is simple, it is only because they do not realize how complicated life is”. 
Dealing with complexity is a hard-core requirement for the survival of biological entities, especially 
for humans. And dealing with complexity requires the use of properly defined terminology.  
The use of consistent and proper terminology is paramount to Science and Engineering,  
and it is especially essential when it comes to the use of novel technologies.  
As such it is important to define an adequate level of engineering and scientific clarity when it comes  
to using the term Artificial Intelligence, specifically as it relates to the financial industry. 

The term AI has become the mantra of our time as this label is used more and more frequently 
as an intellectual wildcard by academicians and technologists alike. The AI label is particularly 
abused by media pundits, analysts and venture capitalists. The liberal use of terms like AI 
disruption or AI revolution is the manifestation of a systemic failure to understand the technical 
complexity of this topic. The zeitgeist of the AI pop culture envisions a future defined by a hyper 
intelligent singularity. In this worldview, digital AI villains will coexist with humans, as abstracted, 
ethically deprived and omnipotent overlords that will control our very existence. We are led  
to believe in a future world of superintelligence that has moved beyond our comprehension, and 
therefore we as humans are running the risk of abdicating our greatest gift and responsibility – 
the human rationality! The utopian vision of general AI (as opposed to its limited pattern-matching 
current incarnation) is based on the extrapolation of the past exponential growth of computer power. 
This growth extrapolation is core to the belief that “singularity is near”. The phenomenally complex 
problem of General AI is a not numerical one. According to leading experts like Prof. Leslie Valiant [2],  
it is plainly wrong to assume that human intelligence is a computationally bound problem. 
According to Immanuel Kant being human means having consciousness and virtuous behaviour. 
If one believes in the thesis that humanity requires consciousness, the myth of virtual humans 
could be exposed for what it is, i.e. an irrational construct that negates the very nature  
of humans. To embed human intelligence in an agent would require programming consciousness 
into it. This is not a computational problem that will be solved as Moore’s Law continues playing 
out over time. There is no level of computer power where one may have any indication that  
a computer would magically have consciousness. This is not a processing or memory limit bound 
problem, and finding a solution is not a natural consequence of just increased computational 
power.

Since the beginning of the AI era, the goal of emulating human intelligence was central to this 
new field of science. The “human-imitative” view has later evolved towards the development 
of a more applicable engineering discipline in which algorithms and data are brought 
together to solve a variety of pattern recognition, learning, and decision-making problems.  
More and more, the AI research started to intersect with other engineering and scientific 
disciplines. A different approach was adopted, where the “human-imitative” perspective 
was replaced by a more practical one – “intelligence-augmentation”. The systems needed  
not to be intelligent themselves, but to reveal patterns that humans could use. Examples are 
search engines, recommender systems of natural language translation.
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While solving the challenge of understanding General Intelligence will be quintessential  
to the development of Artificial Intelligence it may also represent the foundation of a new branch  
of engineering. Like many other classic engineering disciplines that have emerged in the past 
(i.e. Civil, Electrical or Chemical), this new engineering discipline is going to be built on already 
mature concepts such as information, data, algorithm, computing and optimization. Some 
people call this new discipline Data Science. No matter the label employed, this new field will 
be focused on leveraging large amounts of data to enhance human life, so its development 
will require perspectives from a variety of other disciplines; from quantitative sciences like 
Mathematics and Statistics to Computational, Business and Social sciences. 

3.THE CURRENT STATUS
The accelerated pace of technological progress of the past decades has contributed  
to the generation of vast amounts of data, and the birth of what one calls the “Big Data” age. 
Recent advances in High Performance Computing (HPC) and hardware acceleration (GPUs and 
FPGAs), coupled with new discoveries in algorithmic processing has created the conditions  
to train and utilize very complex Machine Learning algorithms at an unprecedented speed. 
All these new technological developments are going to have a revolutionary impact on many 
industries, and as usual, the financial industry will most likely be at the forefront of it. A new 
concept is already making its way in today’s financial world: “Data-Driven Decision Making”. 
Nowadays both trading and investing are more and more driven by large-scale data analysis, 
and the new concept of “alternative” data is becoming more ubiquitous. 

The most important development of the last decade, i.e. the advent of Deep Learning, came  
as a surprise to many researchers in the field of AI. It was the result of combining the availability  
of massive amounts of data with great computational power, and it was assisted by new 
innovations in the field of hardware acceleration. The use of this novel approach has yielded  
surprising outcomes, particularly in speech and image recognition, as well as for most 
classification tasks. 

Another exciting new field of research for the ML community is related to the problem of learning 
to learn. The goal of Meta-Learning is to train a model on a variety of learning tasks, such that 
it can solve new learning tasks using only a small number of training samples. Fast learning  
is a hallmark of human intelligence. Recognizing objects from a limited number of observations 
or rapidly learning new skills after a limited practice is something that a human could  
do “by default”. The next generation of “artificial” agents should be able to learn and adapt 
quickly after being exposed to only a few examples and continuing to adapt as more data 
becomes available. As an example, the Alpha Go program that beat the Go world’s champion 
cannot hold a simple conversation about the game of Chess for which it was not trained.  
By contrast, a human can adapt and act “intelligently” to a wide range of new, unseen situations. 
Enabling the “artificial” agents to acquire such versatility is will be the next big revolution  
in Computational Intelligence.

The ML algorithms have an implicit problem space where they could be extremely effective – i.e. 
speech and image recognition. One of the most important questions that need to be addressed 
is whether ML algorithms could be successfully applied to financial problems. This exercise 
will require a solid understanding of the nature of the problem space. What is really special 
about the financial markets? How are the characteristics of this particular problem space going  
to impact the applicability of general-purpose ML algorithms? In order to answer all these 
important questions, one needs to carefully consider the nature of several important mechanisms 
that are responsible for the uniqueness of financial market data, such as:
The Data generation process – is the process that generated the data stationary such as  
to ensure that training and testing could be performed on the same “kind” of data?

The Data quality – is the financial market data associated with “manageable” noise-to-signal 
ratio such that overfitting will be kept under control?
The Dimensionality of the feature space – could one engineer a feature space of enough 
dimensions such that the “measurable” properties of the financial markets could be properly 
learned by the ML algorithms?
Moving from the current paradigm of “Representation Learning” (or learning by “imitation” 
from data) to a paradigm of “Machine Consciousness” (where the agent will be able to make 
decisions based on independent “thinking” by using an approach that is more akin to human 
behaviour) is still a distant milestone. 

Until these disruptive scientific and technological breakthroughs will occur, the best course 
of action is to continue to make steady progress on automating some of the most complex 
tasks at hand and in finding new ways of learning from data by using the great computational 
tools already available. At the same time, we would need to redirect the focus of the education 
process form mastering ever more complex tools and frameworks, to the development of solid 
and scalable “problem-solving” skills. One should hope that this quantitative accumulation  
of knowledge will one day mutate into the great discovery that will trigger the “singularity” point.

CONCLUSIONS
Recognizing Data as the principal contemporary artifact used to “encode” the surrounding reality, 
will shed more light into the importance of deeply understanding the generative processes 
associated with the observed data. The idea that the availability of more data is enough  
to solve any problem is simply incorrect. The sheer amount of available data or the availability  
of the most efficient algorithms and fastest compute platforms are not going to magically make 
up for the lack of understanding of the process that generates the data. Data by itself is nothing 
more than an opaque artifact that needs to be captured, filtered, analyzed and modelled in order  
to decipher from it the true meaning of the process that generates it. Identifying and understanding 
the nature of the process that generates the Data should be the ultimate goal of Data Science.
The goal of this paper was to create some awareness about both the promises and the formidable 
challenges that the new era of Data-Driven Decision-Making is bringing forth for the financial 
industry. This also could be seen as a message of confidence in the possibilities offered by the 
new era of Data Exploration. At the same time, practitioners need to have realistic expectations 
of these possibilities, since moving from the current paradigm of “Representation Learning to 
a paradigm of “Machine Consciousness” is still a distant milestone. Until research in Cognitive 
sciences makes more progress in the understanding of how human intelligence works and how 
it can be emulated, financial quantitative practitioners will have to concentrate their efforts  
on applying novel Computational Intelligence methods [2] to their specific problem domain  
and focus on improving the automation aspects of the process that transforms financial Data 
into actionable market Intelligence.

I will conclude by making a prediction about the emergence of a new engineering discipline, 
one that I would label as d2ice - data-driven intelligence and computational engineering.  
This new engineering discipline will be at the same time Data-driven, Computationally 
intensive, Biology-inspired and Human-centered. All of these components will need to coexist  
and to be nourished with up-to-date knowledge in order to properly develop the new breed 
of engineer of the 21st century. This new profession will represent a significant evolution  
in respect to the quant of the 20th century, as it will address the needs of the modern economy 
by making itself available to a variety of industries, way beyond the realm of the Finance. Fields 
like Medicine, Healthcare, Education and the Internet-of-Things are going to be big consumers 
of this novel specialty. Since the modern society is so immersed and dependent on data  
and the methods to extract actionable information from it, this new breed of engineers will 
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position themselves at the core of the system that drives the most important business decisions. 
This new discipline will fulfill a very important societal role and will have a critical contribution  
to the success of next industrial revolution.
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1. INTRODUCTION
Mathematical and Statistical modelling is ubiquitous in the financial industry and drives  
key decision processes. Broadly, one can distinguish between two approaches to mathematical 
modelling [Lehman, 1990, Cox et al., 1990, Hand, 2019]. The first approach that goes under 
the name phenomenological, handcrafted or iconic modelling is based on the formulation  
of a simplified representation of phenomena we aim to model. The second approach, known  
as empirical or data driven, seeks to summarise the relationships in the data is some convenient 
way, and the model, typically, does not have any theoretical bases. The former approach  
is dominant in the world of quantitive finance, where one often seeks parsimonious models 
that can be well-calibrated to data, the latter is at the heart of modern machine learning which  
is extremely effective in extracting stat istical relationships in seemingly large dimensional data 
sets but their black-box natures means that the individual parameters do not have a meaningful 
interpretation. 
The recent advances in machine learning bring new opportunities to quantitive, and with greater 
computational power, more complex models can now be used. This is due to the fact that argu ably 
the most complicated and computationally expensive step of calibration has been addressed. 
Indeed, in the seminal paper [Hernandez, 2016] used neural networks to learn the calibration 
map from market data directly to model parameters. Subsequently, many papers followed  
[Liu et al., 2019, Ruf and Wang, 2019, Ruf and Wang, 2019, Benth et al., 2020, Gambara and 
Teichmann, 2020, Sardroudi, 2019, Horvath et al., 2019, Bayer et al., 2019, Bayer and Stemper, 
2018, Vidales et al., 2018, Cuchiero et al., 2020]. These approaches focused on the calibration 
of the fixed parametric model but did not address perhaps even the more important issue, 
which is model selection and model uncertainty. The question of how seamlessly integrated 
modern machine learning methods with well-understood risk models that are currently used  
in the finance industry is perhaps the most critical. While these new techniques bring many new 
opportunities, they also carry new risks. Many of the machine learning tools produce opaque 
models that do stand on the solid mathematical foundation and do not back by decades  
of research in the area of quantitive finance. 
In recent work [Perez Arribas et al., 2020, Gierjatowicz et al., 2020] authors showed that  
it possible to combine both approaches achieving the best of both worlds. By augmenting 
classical risk models with modern machine learning approaches, we are able to benefit 
from expressibility of neural networks or signature of the path, while staying within the realm  
of classical models, well understood by traders, risk managers and regulators. This mitigates, 
to some extent, the concerns that regulators have around the use of black-box solutions  
to manage financial risk. 
These models, called Neural-SDEs or Sig-SDEs, depending on the choice of feature space can 
be used to find robust bounds for prices of derivatives and the corresponding hedging strategies 
while incorporating relevant market data. These models are an instantiation of generative  
modelling and are closely linked with the theory of causal optimal transport. Neural- and  
Sig- SDEs allow consistent calibration under both the risk-neutral and the real-world measures. 
Thus the model can be used to simulate market scenarios needed for assessing risk profiles 
and hedging strategies. 
In Neural- and Sig-SDE setting we let the data dictate the model, while still keeping a strong 

prior on the model form. This is achieved by using SDEs for the model dynamics but instead  
of choosing a fixed parametrization for the model SDEs we allow the drift and diffusion to be  
given by an overparametrized neural networks or linear combination of the (log-)signature 
terms. Neural and Sig-SDE are shown to not only provide a systematic framework for model 
selection, but also, quite remarkably, to produce robust estimates on the derivative prices.  
Here, the calibration and model selection are done simultaneously. In this sense, model selection  
is data-driven. For the neural SDE model is overparametrised, and there is a large pool of possible 
models and the training algorithm selects a model. For Sig-SDEs one can benefit from linear 
structure and decide whether it is more appropriate to work with over or under parametrised 
model. To simplify the presentation from now on, we focus on neural-SDEs and refer the reader 
for related ideas presented in signature feature space to [Perez Arribas et al., 2020]. We believe 
that it is helpful to view these new approaches to modelling in finance through the lens of robust 
finance paradigm. 

2. ROBUST FINANCE PARADIGM
Let us now consider a probability space and a random variable  
that represents the discounted payoff of a illiquid (path-dependent) derivative. The problem  
of calculating a market consistent price of a financial derivative can be seen as equivalent  
to finding a map that takes market data (e.g. prices of underlying assets, interest rates, prices 
of liquid options) and returns the no-arbitrage price of the derivative. Typically an Ito process 

, with parameters  has been the main component used in constructing such 
pricing function. Such parametric model induces a martingale probability measure, denoted  
by , which is then used to compute no-arbitrage price of derivatives. The market data 
(input data) here is represented by payoffs  of liquid derivatives, and their corresponding 
market prices . We will assume throughout that this price set is free of arbitrage. 
To make the model  consistent with market prices, one seeks parameters  such that 
the difference between  and  is minimized for all  (w.r.t. some 
metric). If for all  we have  then we will say the model is 
consistent with market data (perfectly cal ibrated). There may be infinitely many models that 
are consistent with the market. This is called Knightian uncertainty [Knight, 1971, Cohen et al., 
2018]. 

Let  be the set of all martingale measures / models that are perfectly calibrated to market 
inputs. In the robust finance paradigm, see [Hobson, 1998, Cox and Obloj, 2011], one takes 
con servative approach and instead of computing a single price (that corresponds to a model 
from ) one computes the price interval . The bounds 
can be computed using tools from martingale optimal transport which also, through dual 
representation, yields corresponding super- and sub- hedging strategies, [Beiglbock et al., 2013].  
Without imposing further constrains, the class of all calibrated models  might be too large 
and consequently the corres ponding bounds too wide to be of practical use [Eckstein et al., 
2019]. See however an effort to incorporate further market information to tighten the pricing 
interval, [Nadtochiy and Obloj, 2017, Aksamit et al., 2020]. Another shortcoming of working 
with the entire class of calibrated models  is that, in general, it is not clear how to obtain 
a practical/explicit model out of the measures that yields price bounds. For example, such 
explicit models are useful when one wants consistently calibrate under pricing measure  and  
real-world measure  as needed for risk es timation and stress testing, [Broadie et al., 2011, 
Pelsser and Schweizer, 2016] or learn hedging strategies in the presence of transactional cost 
and an illiquidity constrains [Buehler et al., 2019]. 
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3. NEURAL SDES 
Fix  and for simplicity assume constant interest rate . Consider parameter space  

 and parametric functions  and .

Let  be a n-dimensional Brownian motion supported on   
 
so that  is the Wiener measure and . We consider the following 
parametric SDE
 
(1)                                         . 

We split  which is the entire stochastic model into traded assets and non-tradable 
components. Let , where S are the traded assets and V are the components 
that are not traded. We will assume that for all ,  we will assume that  

 and .
Then we can write (1) as 

(2)                                     

Observe that  and  encode arbitrary correlation structures between the traded assets 
and the non-tradable components. Moreover, we immediately see that  is a (local) 
martin gale and thus the model is free of arbitrage.

In a situation when  are defined to be neural networks, we denote by  the class 
of all solutions to (1). Note that due to universal approximation property of neural net works, 
see [Hornik, 1991, Sontag and Sussmann, 1997, Cuchiero et al., 2019],  contains 
large class of SDEs solutions. Furthermore, neural networks can be efficiently trained with 
the stochastic gradient decent methods and hence one can easily seek calibrated models  
in . Finally, neural SDE integrate black-box neural network type models with the 
known and well studied SDE models. One consequence of that is that one can: a) consistently 
calibrate these under the risk neutral measure as well as the real-world measure; b) easily 
integrate additional market information e.g constrains on realised variance; c) verify martingale 
property. Given a loss function , the search for calibrated model can be written 
as 

    , where  .

Let us connect neural SDEs to the concept of generative modelling, see [Goodfellow et 
al., 2014, Kingma and Welling, 2013]. Let  be the true martingale measure  
(so by definition all liquid derivatives are perfectly calibrated under this measure i.e.  
for all ). We know that when (1) admits a strong solution then for any  
there exists a measurable map  such that .  
Hence, one can view (1) as a generative model that maps , the joint distribution of   
on  and the Wiener measure on  into . We see that by construction G  
is a causal transport map i.e transport map that is adapted to filtration , see also 
[Acciaio et al., 2019, Lassalle, 2013]. 

One then seeks  such that  is a good approximation of  with respect to user 

specified metric. In this paper we work with 

   
There are many Neural SDE models that can be calibrated well to market data and that produce 
significantly different prices for derivatives that were not part of the calibration data. In practice 
these would be illiquid derivatives where we require model to obtain prices. Therefore, we com 
pute price intervals for illiquid derivatives within the class of calibrated neural SDEs models. 
To be more precise we compute 

     ,  .

4. CONCLUSIONS 
i. Neural SDEs provide a systematic framework for model selection and produce robust 

estimates on the derivative prices. The calibration and model selection are done 
simultaneously and the thus the model selection is data-driven. 

ii. With neural SDEs, the modelling choices one makes are: networks architectures, structure 
of neural SDE (e.g. traded and non-traded assets), training methods and data. For classical 
hand crafted models the choice of the algorithm for calibrating parameters has not 
been considered as part of modelling choice, but for machine learning this is one of the 
key components. In it has been shown in [Gierjatowicz et al., 2020] that the change in 
initialisation of stochastic gradient method used for training leads to different prices of 
illiquid options, thus providing one way of obtaining price bounds. Furthermore even for 
basic local volalitly model that is unique for continuum of strikes and maturities, produces 
ranges of prices of illiquid derivat ives when calibrated to finite data sets. 

iii. The above optimisation problem is not convex. Nonetheless, empirical experiments in [Gier 
jatowicz et al., 2020] demonstrate that the stochastic gradient decent methods used to 
minimise the loss functional D converges to the set of parameters for which calibrated error 
is of order 10−5 to 10−4 for the square loss function. Theoretical framework for analysing 
such algorithms is being developed in [Siska and Szpruch, 2020]. ˇ 
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ON THE TRANSFORMATIVE ROLE OF NEW TECHNOLOGIES ON MARKET MODELS  
IN QUANTITATIVE MODELLING

Blanka HORVATH, 
Lecturer in Financial Mathematics at King’s College London  as well as a Honorary Lecturer at Imperial College 
London and a researcher at The Alan Turing Institute

THE RELATIONSHIP OF CLASSICAL QUANTITATIVE FINANCE MODELS AND DEEP LEARNING
Deep learning has undoubtedly had a major impact on the possibilities of mathematical 
modelling in finance. The application of deep neural networks in this field has helped push the 
boundaries of the achievable further in terms of:

• providing numerical alternatives to established means of forecasting, pricing and hedging,
• speeding up calculations beyond what was possible with traditional numerical methods, and 
modelling higher dimensional scenarios than previously possible,
• finding (approximatively) optimal strategies under consideration of market frictions, beyond 
the regimes that were analysed and understood by classical methods,
• but also in terms of generalisations of the very concept of a financial market model to what 
we now call market generators.
This is by far no exhaustive list of the many avenues through which financial modelling is aided
today by deep learning. With the above examples we are only scratching the surface of a wealth
of ongoing developments.

But perhaps conceptually more import than the direct impacts listed above is an emerging 
symbiosis of algorithms and the data. The influence and impacts in this symbiosis goes both 
ways:

Data used in training influences the algorithms and the chosen architecture has implications  
on the structure of data on which it can be applied reliably. The former comes as no surprise: 
Deep learning models being so flexible, the data used for training influences the type of output 
of the application. The latter in turn calls for rethinking risk management routines profoundly. 
Effects of the latter influence are visible for example in [2, 12, 13], where a suitable network 
architecture has decisive implications on network performance. Risk management should 
therefore include ongoing monitoring on the structure of the data and the suitability of the 
network architecture to that data as well as regular updates of the training data that algorithms 
are exposed to.

THE CASE FOR MORE FLEXIBLE DATA-DRIVEN MARKET MODELS: The technological advances 
and tools developed in recent years create the desire for market models that are directly  
data-driven and closely reflect evolving market reality. The implications of the influence of data 
on algorithms becomes quite visible in [4]: When training data is numerically generated by the 
Black-Scholes

model, the trained network (the hedging engine) approximates the corresponding delta as  
an opti-al hedging strategy. Analogous effects can be seen when the training data is generated 
by Heston paths. In fact, the approach in [4] is inherently model agnostic: For an arbitrary1 
collection of sample paths provided to the network in the training phase, the hedging engine 
generates response strategies that are indeed approximatively optimal in market regimes where 
path distributions resemble the ones presented during the training phase. The more realistic the 
market paths presented to the network during the training phase, the better performance can  
be expected on real data. Classical models are however known to suffer from a relative 

inflexibility. This and similar model-agnostic neural network based financial applications therefore 
drove interest towards such market scenario generators (or simply market generators) that are 
capable of closely reflecting real market dynamics, in a model-free and directly data driven way.  
This leads us back to neural networks as powerful approximators of functions and distributions 
to build generative models for financial markets. Such generative models are based on the idea 
of transforming random samples of latent variables to distributions observed in data samples 
via differentiable functions, which are approximated by a neural network by backpropagation.  
The application of such frameworks to financial settings is what we refer to as market generators. 
The case for classical models: Market generation is currently still in its infancy. The flexibility  
of these models, the great variety in which they appear and their inherent synergy with the data 
are all factors that make them difficult to risk manage. Classical models on the other hand 
are well understood and a wealth of research and analysis of their properties is available, and  
so is decades worth of experience in their risk management. Furthermore, classical models 
have also been developed with the aim to reflect (despite their relative inflexibility) a selection 
of stylized facts of financial markets [8]. Some model families [10] have the impressive ability to 
exhibit these with a remarkable precision and provide an overarching theoretical basis for their 
behaviour across markets and applications. Most importantly, the distribution and dynamical 
properties of classical models can be carefully controlled by a handful set of parameters  
at each point in time. They can therefore conveniently provide training sets for deep learning 
algorithms (see [13]) where certain properties of the training set are present or absent to 
test the robustness of a deep learning algorithm under those market conditions. Synergies:  
Through the available analytical and numerical solutions classical models also provide much 
needed benchmarks–in the cases where these are applicable–for deep learning applications 
to facilitate risk management of the latter. On the other hand, approximative solutions obtained 
by neural networks can facilitate finding analytical solutions for classical models under market 
conditions where these hadn’t been available. 

THE TRANSFORMATIVE POTENTIALS OF MARKET GENERATION 
In several situations it is advantageous to rely on simulated data rather than working with data 
directly. Market generators–in contrast to classical models–are so flexible that they are capable 
of generating data samples that are statistically indistinguishable from a given original dataset. 
This flexibility opens the door to applications that were so far not typically a core part of financial 
modelling in the classical setting. 

Applications of Market Generators: Sailing on new waters of modelling.  
(i) Data anonymisation: When the available data is confidential, it is desirable to generate 
anonymised datasets that are representative of the true underlying distribution of the data but 
cannot be traced back to their origin. Financial data and medical data are often proprietary, 
or confidential. When testing investment strategies or the effectiveness of a treatment it is 
imperative not to be able to trace back the datasets to the individual client or patient. 
Evaluating whether the produced data is representative of the distribution that a dataset 
stems from, depends on the distributional properties (evaluation metrics) that we control for.  
Thus the question of adequate performance evaluation metrics is a central matter for research  
on market generators, see [5]. Also the level of anonymity achieved by such generative procedures  
is a highly interesting question on its own. The study presented in [16] is devoted to understanding 
the latter question in more detail. 
(ii) Small original training datasets: Though big data as a concept is ubiquitous today, in more 
situations than not, the amount of data available for training a neural network is small rather 
than large. When there are natural restrictions on the number of available original samples 
(constraints on the number of experiments, restrictions on the access to data), the available 
data may not be sufficient to train the neural network application at hand (e.g. hedging engine). 
Clearly, the more complex the application, the more data samples are needed to train it. 
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Once such a generative network is available, more complex neural network applications can 
also
be trained, using the market generator that produces the necessary amount of training samples 
for the latter. Generative models for sparse data environments therefore need to be relatively 
parsimonious and trainable on a low number of data samples. Further practical applications  
of market generators include (but are not limited to) the following use cases: 
(iii) Outlier detection: Once the distribution of a dataset can be statistically identified and 
reproduced (even if the data does not follow any known parametric distribution) it be comes 
possible to identify typical regimes–that is, datapoints that are typical for the distribution—as 
well as outliers or atypical events. Detecting outliers and atypical events enables us to identify 
occurrences of regime switching in a market, gives the basis for fraud detection and for the 
identification of human-machine interfaces in automation: that is, such events that alert  
an automated machine to hand over the handling of an atypical process to a human with 
appropriate responsibilities. 
(iv) Backtesting: When developing a trading strategy, carrying out a backtest to measure how 
the strategy would perform in a realistic environment is of crucial importance. However, using 
historical data may result in overfitting of the trading strategy. Having a market simulator 
capable of generating realistic, independent samples of market paths would allow a more robust 
backtest, less prone to overfitting. 
(v) Risk management of portfolios – be it of financial derivatives or trading strategies – is  
of utmost importance. A realistic market simulator can be used to generate synthetic paths  
to estimate various risk metrics, such as Value at Risk (VaR). 
These applications are to date fairly unexplored, however they are gaining more and more 
relevance in a landscape where data increasingly assumes a central role in quantitative 
applications. And so, market generators have the very real potential of creating a whole new era 
of financial modelling. 

REFERENCES 
[1] D. Bartl, S. Drapeau, J. Ob l´oj and J. Wiesel. Data driven robustness and uncertainty 
sensitivity analysis. In preparation, 2020. 

[2] C. Bayer, B. Horvath, A. Muguruza, B. Stemper,and M. Tomas. On deep pricing and calibration 
of (rough) stochastic volatility models. Preprint, arXiv:1908.08806, 2019. 

[3] P. Bonnier, P. Kidger, I. Perez Arribas, C. Salvi and T. Lyons. Deep Signature Transforms. 
ArXiv:1905.08494, 2019. 

[4] H. B¨uhler, L. Gonon, J. Teichmann, and B.Wood. Deep hedging. Quantitative Finance, 19(8) 
p. 1271-1291, 2019. 

[5] H. B¨uhler, B. Horvath, T. Lyons, I. Perez Arribaz, B. Wood. Generating financial markets with 
signatures. Preprint SSRN:3657366, 2020. 

[6] C. Cuchiero, W. Khosrawi, J. Teichmann. A generative adversarial network approach  
to calibration of local stochastic volatility models. Preprint, arxiv.org:2005.02505, 2020. 

[7] I. Chevyrev and H. Oberhauser. Signature moments to characterize laws of stochastic 
processes. Preprint, arxiv.org:1810.10971, 2018. 

[8] R. Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative 
Finance, (1): 223-236, 2001. 

[9] P. Friz, M. Hairer. A Course on Rough Paths: With an Introduction to Regularity Structures. 
Cham: Springer International Publishing, 2014. 

[10] J. Gatheral, T. Jaisson, M. Rosenbaum. Volatility is rough, Quantitative Finance, 18:6, 933-
949, 2018. 

[11] P. Henry-Labordere. Generative models for financial data. Preprint, SSRN 3408007, 2019. 

[12] B. Horvath, A. Muguruza, M. Tomas. Deep learning volatility. To appear in Quantitative 
Finance, 2020. 

[13] B. Horvath, J. Teichmann, Z. Zuri`c. Deep Hedging under Rough Volatility. Working Paper, 
2020. 

[14] Patrick Kidger and Terry Lyons. Signatory: differentiable computations of the signature and 
logsignature transforms, on both CPU and GPU. Preprint, arXiv:2001.00706, 2020. 

[15] A. Kondratyev, C. Schwarz. The market generator. Preprint, SSRN:3384948, 2019. 

[16] A. Kondratyev, C. Schwarz, B. Horvath, Data anonymisation, outlier detection and fighting 
overfitting with Restricted Boltzmann Machines. Preprint, SSRN:3526436, 2020. 

[17] T. Lyons. Rough paths, signatures and the modelling of functions on streams, Preprint, 
arXiv:1307.7244, 2014. 

[18] H. Oberhauser and F. Kir´aly. Kernels for sequentially ordered data. Journal of Machine 
Learning Research, 20(31):1-45, 2019. 



66 67

IL
B 

Fa
IR

 A
D

VA
N

CE
S 

R
EP

O
R

T 
20

21
ILB FaIR

 AD
VAN

CES R
EPO

R
T 2021

THE IMPACT OF FINTECHS ON FINANCIAL INTERMEDIATION: A FUNCTIONAL APPROACH

Michel CROUHY, Dan GALAI  and Zvi WIENER

EXTENDED SUMMARY
Fintech refers to the technological start-ups that are emerging to rival traditional banking and 
financial players. It covers a wide array of services from P2P and crowdfunding platforms, mobile 
payment solutions, international money transfers to online portfolio management tools, service 
comparators/aggregators (APIs), ICOs (Initial Coins Offerings), and more. 

Recent technological innovations are disruptive for many industries, especially the financial 
industry. They have made possible the new financial intermediation offered by FinTech.  
Without the easy access to large digitalized dataset, the massive increase in storage capacity 
and processing capacities, especially with the “cloud”, FinTech would not have emerged.  
It’s been a while since we’ve seen a game-changer, but FinTech may be the one.

Bigtech is a subset of the broader fintech sector. Bigtech companies are defined as “…technology 
companies with established presence in the market for digital services”. In the U.S., bigtechs 
include the so-called “GAFAM” firms: Google, Amazon, Facebook, Apple and Microsoft. “BATX” 
refers to the four largest Chinese technology companies: Baidu, Alibaba, Tencent and Xiaomi.
Bigtechs often started their finance activity in the payments sector as a means to facilitate  
their core business, e.g., e-commerce. They subsequently leveraged their platform to expand 
into vast ecosystems, which extend far beyond payments into other operations, such as lending, 
insurance, savings and investment products, either independently or in association with 
established financial institutions. 

FinTech is not a natural evolution in financial intermediation but a true revolution. One major 
consequence of these technological improvements is disintermediation. The financial system 
being essentially an intermediary is first in line to be disintermediated. 

The growth opportunities are huge. Venture capital funds were quick to recognize these 
opportunities and provide a significant amount of funding.

Previous academic review papers analyze the various areas of operations in which fintechs 
engage.  We take a different approach and map fintechs based on the six functions of financial 
intermediation rather than on their main activities. We follow Merton’s functional approach  
in which the six core functions performed by a financial system are analyzed. According to 
Merton, a financial system provides: 
A. A payment system for the exchange of goods and services;
B. A mechanism for the pooling of funds to undertake large-scale indivisible investments in an 
enterprise;
C. A way to transfer economic resources through time and across geographic regions and 
industries;
D. A way to manage uncertainty and control risk;
E. price information that helps coordinate decentralized decision-making in various sectors  
of the economy; 
F. A way to deal with asymmetric-information and incentive problems when one party to  
a financial transaction has information that the other party does not. 

In banks all these core functions are fully integrated. Technology allows for the unbundling and 
fragmentation of financial services among specialized fintech companies. Fintechs deliver these 
services in a cheaper and friendlier way, and to new clients, not served by traditional institutions.

Banks offer basic services such as low-cost checking, and so-called “sticky customer 
relationships” used to allow them to earn attractive margins in other areas such as asset 
management, credit card fees, or foreign-exchange transactions.  Banks have unique expertise 
in credit underwriting. They are heavily regulated and offer protection to depositors through 
deposit insurance. Historically, consumers have been very loyal customers and slow to change 
banking services providers. Banks still enjoy greater trust than tech companies, although it  
is changing.

Fintechs are moving beyond strictly addressing a customer’s financial needs (product centric)  
to offering a wider range of services (platforms and ecosystems).   

Let’s now address each of the six core functions of a financial system.

A. A PAYMENT SYSTEM FOR THE EXCHANGE OF GOODS AND SERVICES
The first core function of a financial system, i.e., “a payment system for the exchange of goods 
and services” is currently the area with the many new entrants with innovative products such  
as digital currencies also referred to as crypto-currencies  or e-money, and mobile wallets. 

Payments is today a great business: revenues totaling up to $1.9 trillion globally in 2018.  
Due to the pandemic, it is expected that the revenues from payments will decline by 7% in 2020 
due to the reduction in the volume of transactions in the retail sector.

Mobile wallets have been widely adopted by consumers worldwide: Apple Pay, Ali Pay, WeChat 
Pay, Samsung Pay and Android Pay. Digital wallets are rapidly replacing cash in executing both 
customer-to-customer (C2C) and customer-to-business (C2B) transactions..

The adoption of digital wallets worldwide has been facilitated by the ubiquity of smartphones, 
particularly in developing countries where few have access to the banking system.  
A good example is Kenya, where M-Pesa® allows users to deposit money into an account linked 
to a cell phone, to send payments to sellers of goods and services, and to withdraw deposits  
for cash. It offers many of the essential services provided by banks without requiring customers  
to have a bank account. This feature of fintechs is termed «inclusion» of new unbanked customers.

There is a new wave of technological innovations that allows the transactional use of so-
called “crypto-assets”, i.e., digital tokens recorded in distributed ledgers and held in electronic 
safety “wallets” stored in the cloud. In crypto-currency systems, encryption techniques control  
the generation of currency units with the use of blockchain technology or DLT (Distributed 
Ledger Technology).  This technology allows person-to-person transactions, independently of 
the banking system, with transactions authenticated by many computers (minors), around the 
world without the need for a trusted financial intermediary like a bank to verify the transaction. 

The cryptocurrency “Bitcoin” was the first implementation in 2009 of the blockchain technology. 
It has no intrinsic value, and fulfills only the first attribute, out of three  we expect from money: 
medium of exchange, store of value and unit of account. It is a speculative investment,  
not a currency. Bitcoin has been followed by the creation of more than 2,000 cryptocurrencies, 
the most notable at this time being Ethereum. So far, the pricing of these cryptocurrencies has 
been highly speculative. Several initiatives have been launched to invent so-called “stablecoins”, 
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cryptocurrencies backed by real-world assets. To summarize, the “payments” industry is 
undergoing rapid changes driven by a combination of increasing customer demand, the need 
for technology investments and potential regulatory pressure. Fintech invaders have recognized 
the value of payments as a gateway to customer acquisition.

B. A MECHANISM FOR THE POOLING OF FUNDS TO UNDERTAKE LARGE-SCALE INDIVISIBLE 
INVESTMENTS IN AN ENTERPRISE
The second core function of a financial system according to Merton is “a mechanism  
for the pooling of funds to undertake large-scale indivisible investments in an enterprise”. 

Lending has always been the core of commercial banking business: Banks collect short-term 
deposits and extend long-term loans to retail customers and companies (maturity intermediation).

Peer-to-peer (P2P) lending platforms were first launched in the early 2000s, initially concentrating 
on lending among individuals. “Crowdfunding”, the funding of a private project by raising small 
sums from a large number of people via the Internet can be viewed as collaborative P2P. 
Crowdfunding has been used to fund various sorts of entrepreneurial ventures, such as artistic 
projects, including movies, concerts and books, as well as non-profit community-oriented social 
projects.

Another fintech-based innovation in capital raising is the issuance of tokens rather than shares 
to finance ICOs (initial coin offering):  offering of tokens instead of shares to finance corporations. 
It can be noted that the majority of the ICOs were found to be fraudulent.

With lending innovation, alternative new credit models have emerged, including automated loan 
approvals. These platforms have developed data mining and machine learning techniques for 
credit scoring using non-traditional data sources (behavioral information, social networks like 
Facebook,…) and powerful data analytics to price risks and lower operating costs. 

C.A WAY TO TRANSFER ECONOMIC RESOURCES THROUGH TIME AND ACROSS GEOGRAPHIC 
REGIONS AND INDUSTRIES
This third core function  “A way to transfer economic resources through time and across 
geographic regions and industries” relates to the production of financial products to retail 
investors. 

Current liquidity can be transferred to the future via bank savings accounts, or by investment 
in stocks and bonds. Individuals can also transfer wealth from the future to the present  
by borrowing for various maturities. For centuries, commercial banks, have provided basic 
financial products to fulfill this function, which is one of the banks’ core businesses. For their 
part, commercial banks offer time intermediation by collecting short-term deposits and investing 
them in longer-term loans. Investment banks, on the other hand, specialize in trading securities 
and offer portfolio management and advisory services as to how to move resources to the future 
through securities investments.

P2P in this area allows small individual depositors to finance large-scale loans (Lending 
Club, Kabbage, SoFi,…) Once the loan is originated, the credit platform acts as an agent  
for the investors by servicing the loan.  Investors have the flexibility to invest 100% of their capital 
in one loan, or diversify and make partial investments in multiple loans. P2P platforms have set 
up systems of loan selection where investors specify criteria for the loans they want to purchase. 
These systems then filter out these loans for the investor. P2P platforms generate revenue from 

origination fees charged to the borrowers, servicing the loans, as well as additional charges 
such as late fees.
Neobanks are playing a growing role in this area. Neobanks are pure digital institutions with two 
big cost advantages relative to traditional banks: the absence of branches and their up-to-date 
cloud-based software. In partnership with Visa and Mastercard the neobanks also offer credit 
and debit cards, with no fee even when used internationally. 

These neobanks have the common characteristic that they don’t make money yet. Still there 
is uncertainty on the future of these neobanks as they need to convince clients that they are 
financially solid and will remain solvent 

In asset management, fintech providers, including “robo-advisors”, offer an interface for retail 
investors to trade and invest either directly or through financial intermediaries. Robo-advisors 
are progressively replacing human financial advisors, since the automated services are less 
expensive than traditional financial advisory services. Robo-advisors are computer programs 
that generate investment advice based on customer data. Through the use of machine 
learning (ML) techniques, robo-advisors offer a less costly alternative to human financial 
advisors, particularly for individual retail investors pursuing passive investment strategies.  
The cost of entry is also much lower.

D. A WAY TO MANAGE UNCERTAINTY AND CONTROL RISK
The fourth function of financial intermediaries according to Merton is «a way to manage 
uncertainty and control risk». 
Leading risk softwares in the 90s are: Riskmetrics (JP Morgan), Creditmetrics (JP Morgan), 
KMV (Moody’s), Kamakura,  Algorithmics (Fitch, IBM, SS&C). They can be viewed as the fintech 
response to Basel II regulatory demands.

An important innovation in bank capital regulation emerged as a response to the GFC. Following 
the GFC the Fed in the US and the EBA in Europe imposed on banks to run stress tests with 
the purpose of ensuring that banks have sufficient capital to absorb losses under a financial 
downturn, while maintaining sufficient capital to keep making loans. The pandemic highlighted 
the need of stress tests in controlling risks in the financial markets. Fintechs are now offering 
banks solutions related to stress testing and the generation of scenarios. 

A key industry in which technology is in the process of revolutionaizing traditional financial 
intermediation is insurance. Insurtechs is reinventing the insurance business through the use 
of new digital technologies. For example, the pricing of insurance contracts relies heavily on ML 
techniques, and not only on traditional approaches where clients are placed in broad categories 
such as age, gender, etc.

Smart contracts may radically change existing contracts, such as car insurance contracts.  
With a smart contract, the car insurance is embedded in the vehicle and data generated by 
the driver’s use of it is fed continuously to the insurance contract. The terms of the contract 
can then be adjusted according to the transmitted data. This development is underway as 
insurance companies propose usage-based insurance policies, known as “pay-as-you-drive”. 
Smart contracts will facilitate more accurate pricing of these policies.

The new technologies change the risk landscape and introduce new risks such as cyber-risk. 
Risk managers now consider cyber-risk as the biggest threat to the business of their enterprise. 
Fintech companies are emerging to help various organizations around the world to automatically 
24/7 test their cybersecurity measures and identify their main risks and the most cost effective 
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way to protect their organization against hackers. 

E. PRICE INFORMATION THAT HELPS COORDINATE DECENTRALIZED DECISION-MAKING IN 
VARIOUS SECTORS OF THE ECONOMY
The fifth function of financial intermediaries according to Merton is providing “price information 
that helps coordinate decentralized decision-making in various sectors of the economy”.  
This function relates to processes and technologies that contribute to the efficient allocation  
of resources in the economy. 
Major contributors to the information processing are:
- Robo-advisors,
- Algorithmic trading or Algo-trading: algorithmic trading encompasses a wide variety  
of trading and portfolio management strategies, such as Quant Funds, financial products such  
as Exchanged Traded Funds (ETFs) and High Frequency Trading (HFT).  
- Personal Financial Management (PFM) emerged with Open Banking

F. A WAY TO DEAL WITH ASYMMETRIC-INFORMATION AND INCENTIVE PROBLEMS WHEN ONE 
PARTY TO A FINANCIAL TRANSACTION HAS INFORMATION THAT THE OTHER PARTY DOES NOT. 
The sixth function of financial intermediaries according to Merton is providing “a way to deal with 
the asymmetric-information and incentive problems when one party to a financial transaction 
has information that the other party does not”.

In this area we should note the critical contribution of:
 - Artificial intelligence (AI) which describes algorithms in decision-making that can perform 
functions typically associated with human intelligence. This includes understanding speech, 
pattern recognition, reasoning, knowledge representation, planning, machine learning, analysis 
of social interactions, etc.
- Data intelligence systems which are the major source of information on any aspect of life today 
is the Internet. The major task is to unveil the information, verify its validity, and analyze its 
economic implications. 
- Smart contracts. 

CONCLUDING COMMENTS
In our paper, we follow Merton’s functional approach to analyze the impact of fintechs  
on financial intermediation. This approach is the most appropriate since the six basic functions 
outlined by Merton are independent of the structure of the financial system.  

The functions can be fully integrated, as is the case with universal banking, or can be unbundled 
and fragmented, allowing for the delivery of at least some financial services by non-bank fintechs. 
Many fintechs started as niche players developing a specific service, but have since transitioned 
from product-centric to customer-centric enterprises. They use data as an extremely important 
factor of production and lever it to provide more diverse customer services. An example among 
many others is Oscar, a young health insurance company, which is evolving into an enterprise 
offering extensive online health care monitoring and advice. This trend is expected to expand in 
the future. 

Are fintechs going to replace the banks and insurance companies? The most probable answer  
is no. Banks maintain several important advantages over fintechs. First, they have the reputation 
and trust of many loyal customers.  Second, banks have equity capital, generally in excess 
to what they need. Third, banks operate under a regulatory umbrella and enjoy government 
support. This was made evident during the 2008 financial crisis, when the Federal Reserve 
in the U.S. and other central banks intervened to help the banks overcome the crisis. Banks 

exploit these advantages, and they acquire directly, or through related companies, many of the 
emerging fintechs to enhance banking services. Very often traditional financial intermediaries 
supply the third-tier capital (in the form of long-term loans) to non-bank lending platforms.
Since banks can cross-sell many financial products on their platform, we can expect a combination 
of many niche firms and large banks. Since banks are also heavily regulated and slow in making 
changes, it can explain how small outsiders can still survive. 

It can be expected that in the future, new regulation will encompass fintechs in such a way that 
any financial service offered on any platform will be subject to the same regulation. The position 
taken by commercial banks is that regulation should follow the principle of “same product – 
same regulation”, in order for banks not to suffer adverse discrimination and to ensure a “level 
playing field”.  In principle, regulation should be based on functions, and not on tools. As we have 
seen in the past, regulation has a major impact on the competitive structure of the financial 
intermediation industry. The presence of fintechs forces regulators to rethink how to structure 
the financial services industry to enhance consumer protection and stability without impairing 
either innovation or competition.

Banks continue to adopt automation at a fast pace, and offer a growing number of online digital 
services. As a result, many banks close branches, shrinking the size of departments engaged  
in advising clients, approving loans and providing other services. Some major financial institutions 
have acquired online brokerage and robo-advisory fintechs, and now offer these automated 
services internally.  Only relatively few fintechs enjoy IP protection, hence their services can be 
duplicated by incumbent banks and insurance companies which have large research and IT 
departments.

It is expected that some fintechs, those not acquired by traditional financial institutions, will likely 
undertake horizontal mergers and acquisitions to become multi-faceted service companies. 

In the spirit of Merton’s conclusion “the functional perspective emphasizes the discovery  
of more efficient ways to perform one or more of the six basic functions of the financial system”, 
the evidence is clear that fintechs are reimagining these services and making their delivery more 
efficient, at times reaching market segments that have been ignored by incumbent financial 
intermediaries.
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ROUND TABLE SPEAKERS

Sandrine UNGARI
Sandrine is currently head of the quantitative cross-asset research 
team at Société Générale. Within the Cross-Asset Research group,  
the quantitative research team is active in risk premium strategies, 
derivatives and structured products, portfolio risk modeling, and provides 
research to investors worldwide. The group has been recognized as a market 
leader in quantitative research and was ranked No. 1 in the Extel survey  
in the Quantitative Strategies category. Sandrine joined Société Générale 
in 2006. Previously, she worked as a quantitative analyst at HBOS Treasury 
and Reech Sungard in London. She graduated from ENSTA (Paris) and holds 
a Master’s degree in Quantitative Finance from the University of Paris VI. 
She is a lecturer at the University Paris Diderot.

Charles-Albert LEHALLE
Responsible for data analysis at Capital Fund Management (CFM, Paris) 
and Visiting Scholar at Imperial College (London), Charles-Albert studied 
Machine-Learning for Stochastic Control during his PhD, 20 years ago.  
He started his career as IA Project Manager at the Renault research center 
and joined the financial community in 2005 with the advent of automated 
trading. In 2016, Charles Albert was awarded the prize for the best article 
in finance by the Institut Europlace de Finance (IEF) and published more 
than fifty academic articles and book chapters. He is co-author of the book 
«Market Microstructure in Practice» (World Scientific Publisher, 2nd edition
2018), analysing the main characteristic of today’s markets.  
He is the Scientific Director of the interdisciplinary research programme 
«Finance and Insurance Reloaded» at Institute Louis Bachelier.
This program explores the influence of new technologies (from the artificial 
intelligence blockchain) on the banking/financial/ insurance industry.

Nicole EL KAROUI
Nicole is Professor Emeritus at Sorbonne University (Paris VI), after having 
been a professor at the École Polytechnique for ten years. A specialist  
in stochastic control, she has used her ideas in financial markets, contributing 
to the emergence of the international field of «financial mathematics».  
École Polytechnique gave her the opportunity to create a research team  
in this field, with an international reputation. Her current research concerns 
the risk of longevity seen from the perspective of population dynamics  
and dynamic utility. Very concerned about the question of transmission to 
youth, she created in 1990 in Paris VI, the DEA (Master of Probability and 
Finance), the first in a scientific university. Through this training, she became 
known in financial markets around the world, even making the front page 
of the Wall Street Journal in 2006. French «quants» are highly sought-after 
in investment banks. Following the creation of the «Financial Risks» chair 
by Société Générale, she is actively working on the creation of the Risk 
Foundation in 2007 and at the Institut Louis Bachelier, convinced that this 
structuring of ties between academics and professionals represents a very 
important asset for France.
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Among the FaIR’s round tables, this chapter will focus on a very interesting discussion that happened during  
the Deep Hedging round table. The focus of this round table is on the use of data implied by artificial intelligence 
in the financial system as well as the resulting challenges.

Over the past couple decades, artificial intelligence, as a technological innovation, has lead a important number 
of transformations in the financial landscape. Some transformations are still ongoing and some new opportunities 
will most likely come in the next couple of years. This is intrinsically linked to the availability of large amount data. 
For a number of reasons, including bias reduction and liability of automated algorithms, the data cannot just be fed 
to deep learning models making predictions, some level of explicability is desired.

In this first excerpt, Sandrine Ungari (SG) presents her view on how Deep Learning tools can be used for products 
valuation and risk assessments. She also stresses important challenges that might have limited deep learning 
adoption in the financial sector.

19/12/2019, 
AFGAP,
ORGANIZED BY FaIR

Recently, more and more researchers have been trying to apply these approaches to the valuation 
and risk analysis of derivatives.

Using deep-learning for the valuation of derivatives is not a new idea. The first paper on the subject 
was published in 1994 in The Journal of Finance by J.M. Hutchinson, A.W. Lo and T.A. Poggio  
(A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks). 
The authors developed the idea of using a neural approach to value derivative contracts.

This approach was not pursued at the time. It is back in the spotlight today, thanks to advances 
in optimization and the computing power of modern computers. In a classical approach, the 
model takes a series of parameters as inputs: the underlying price, strike, maturity, rates, implied 
volatility. A formula is applied, such as the Black Scholes formula for instance, and a price  
is obtained.

Graph 8. Valuation of derivatives in a classical model

ROUND TABLES DEEP LEARNING VS. THEORY: 
ILLUSTRATION WITH DEEP HEDGING

Source : SG Cross Asset Quant Research

With neural networks, we take a maximum of input, and historical or simulated data.  
So the network is calibrated to minimize the gap between prices coming out of the network and 
market prices. The model is non-parametric and is the result of a calibration.

Graph 9. Valuation of derivatives with a neural network

Source : SG Cross Asset Quant Research

Deep-hedging uses the same idea. It is an approach that was developed and proposed by a group 
of researchers at ETH Zurich and JP Morgan (Deep Hedging, the Journal of Quantitative Finance, 
Jan 2019, Hans Bühler, Lukas Gonon, Josef Teichmann, Ben Wood).

This approach simulates a lot of market data and optimizes the hedging strategy.  
Rather than calibrating the network on the price of an instrument, we calibrate the network in 
such a way that we minimize the portfolio variance containing the hedge instruments and let  
the network set the optimal hedging strategy.

Graph 10: Hedging risk management with deep pricing

Source : SG Cross Asset Quant Research

The theory and approach behind the concept is much more complicated. For the time being  
this type of technique is primarily based on simulations. The available market data is not enough 
to calibrate neural networks. Artificial data must therefore be generated. There is a whole branch 
of research, popular at the present time, which consists of studying how to simulate realistic 
data, and which is consistent with the reality of financial markets. 

The challenges of deep learning : the last issue that I wanted to address is the constraints and 
challenges of this type of approach. In the study published by the FCA and the Bank of England, 
several questions emerge about the implementation of these techniques.
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So the first question is the management of historically used systems. This is not a problem specific 
to deep learning, but one that arises as soon as one seeks to do something new in an industry 
such as banking or insurance. Switching from an old system to more modern technologies  
is always complicated to handle. More particularly in Machine Learning (ML), there is the integration  
of these techniques into the processes used to run the business. This issue is related  
to the training needed to get users to apply these new techniques. Users must be familiar with 
the concepts discussed at the beginning of this presentation. This is quite a cultural change that 
needs to be made within organizations. Another point that is often cited is the lack of explainability. 
This is a major problem with the deep learning approach. In a non-parametric approach, one 
cannot change a parameter and see how the result of the model is impacted. There is a lack  
of intuition on how the model reacts and on the origin of the results. For example, Deep Mind has 
created an algorithm capable of playing Go, called AlphaGo. In the game where AlphaGo first beat 
a professional Go player, the computer came up with a move that no one understood or could 
explain at the time. In retrospect, it was a stroke of genius.

Graph 11. Constraints and challenges of Machine Learning in practice

Source: Machine Learning in UK Financial Services – Bank of England, FCA

With deep learning, you can have completely unexpected results. As an investor, a trader  
or a risk manager, you don’t know if it’s a stroke of genius, or just a numerical problem. In 
practice, this kind of behavior can become troublesome. Insufficient data is also a theme that is 
regularly mentioned. Machine Learning is a data thirsty approach. We only have about ten years 
of data on most financial markets. This can be a problem in the implementation of this kind of 
algorithm.

Related to this, other questions arise regarding the use of alternative data: how should the use 
of personal data be regulated? What are the governance processes for data, how is it managed? 
How do we ensure its reliability? How do we ensure that data is reliable? That’s a good question. 
You can’t have an 100% guarantee that the data is reliable. On the other hand, we can set up 
checks to get the best possible representation of reality. For instance, if we take trading data,  
we can observe the prices being traded, and we have to make sure that there are no errors in 
the databases. 

So here is a brief introduction to machine learning, deep learning, and deep hedging, which 
already raises many questions.

The specific case of Deep Hedging is especially relevant as one of the most direct application of deep learning 
in finance. In financial intermediation, replication strategies have always been an important determinant of risk 
sharing among financial actors. There are however a few technical considerations that should be taken into account 
when applying deep learning to hedging strategy replications. In the following excerpt from the Deep Hedging round 
table, Charles-Albert Lehalle proposes a general presentation of the so called Deep Hedging technique as well as 
the main challenges of using deep models for hedging. In particular, he explains how being able to reason in the 
risk neutral world is fundamental for hedging strategies, and also that a deep model will only minimize the mean 
error whereas a traditional model can minimize the local error. This tends to show that research is still needed in 
order to better leverage the use of deep learning models in hedging.

Charles-Albert LEHALLE

It is time to discuss the case of deep hedging. Deep hedging is a way to develop strategies  
for replicating the risk of an uncertain position that is based on reinforcement learning. Let’s 
review the principle of risk replication. If I have a position that has non-linear exposures  
to stochastic processes, i.e. uncertain dynamics of economic variables such as volatility, prices, 
rates or correlations, how much should I buy or sell each day of tradable products in order  
to reduce this exposure? At the end of the day, when the hedged portfolio matures, if my strategy 
is well designed, I have exactly the amount to be delivered to my client, or I am short of the 
amount they are going to pay me. These replication strategies are very important for investment 
banks because not only do they reduce exposure to economic risks, but they also provide  
an estimate of the average cost of hedging over the product lifespan, and therefore allow them  
to price it.

In a «traditional» hedging technique, price dynamics are estimated on the basis of implicit variables.

If we consider the operating principle of «traditional» hedging, price dynamics are simulated using 
implicit variables. Several trajectories are generated and the combinatorics of a very large part  
of the possible hedging strategies are explored and compared with the simulations. Only the most 
efficient strategies are selected and form the trajectory components of the so-called optimal 
strategy. It should be noted that the implicit process amounts to not using a historical database  
of market prices of negotiable instruments, but to using solely the current prices of derivatives, i.e. 
products of the same nature as the hedged product, which also leads to the hedging strategies’ 
implementation. It is argued that we are not using the historical measure, which is the database 
measure that would be used by a learning algorithm, but the risk-neutral measure.

This measure has many attractive properties. The one I prefer is that it guarantees that if, during 
the lifespan of the replicated product, there are other products of the same nature available 
for purchase or sale, then the bank will be able to «resell its risk» and will no longer have any 
exposure of any kind. The price that will have been calculated in this manner at the beginning 
of the product’s life will be quite fair. This would be less the case under historical probability. 
By using this risk neutral measurement to generate trajectories to evaluate the performance 
of hedging strategies, the bank therefore perfectly fulfils its role as a financial intermediary.  
It places itself temporarily between several buyers and sellers of different risks and does not take 
«historical risk», as an investment fund might do. 

With a deep neural network, one can generate fewer replication strategies, to focus on those that seem to work 
better.
Once we understand this principle of generating trajectories in order to evaluate the performance 
of potential strategies, we can use learning techniques to improve it in a preliminary way. When 
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we systematically cover almost all possible replication strategies, it is very costly from a computer 
point of view, especially when we increase the problem’s dimension, i.e. when we want to cover 
portfolios with many assets and many nonlinearities. With a «deep neural network», one can 
generate fewer replication strategies, trusting the neural network parameters to quickly focus  
on those that seem to work better, and thus converge more quickly towards the optimal strategy, 
or at least that seems optimal. Sufficient comparisons have already been made by academics  
to convince us that it is indeed more economical in computing time and memory.

Traditional methods guarantee a maximum «local» error, whereas neural networks only guarantee an «average» 
error.
Obviously, once we realize this, we only want to increase the size of the problem to handle 
cases that are simply impossible to handle with traditional methods. Indeed, it is possible.  
But this raises the question, since we no longer have any elements of comparison, and since 
we are on a large scale, of verifying that these strategies are indeed valid. Indeed it must  
be understood that traditional methods today guarantee a maximum «local» error, in the sense 
that the error is controlled in the same way everywhere, whereas neural networks only guarantee 
an error «on average». For a measured level of error it is not known if the neural network makes 
an error of this order of magnitude everywhere or if it makes very large errors in some places 
and very small ones in others. And in large dimensions, we know that what is called the «curse 
of large dimensions» is very much misleading the calculations «on average». This implies that 
a method has yet to be developed that translates this «average» guarantee into a «nearly 
everywhere» guarantee. There are leads but nothing conclusive to my knowledge. The next step, 
if one is comfortable with using learning methods to develop hedging strategies, is to use similar 
methods to generate trajectories from data, rather than making simulations from modelled 
processes whose parameters are implied under riskneutral measurement. And that’s still a very 
big change. On the one hand we can say that this is an opportunity to get closer to reality, notably 
by taking into account self-correlations in a non-parametric way, but on the other hand we must 
avoid leaving the attractive
properties of the neutral risk world. Some researchers are working on this subject but it is complex. 
Indeed, no one wants hedging strategies to be influenced by six recent months of bull markets; 
it is only a matter of time before the market becomes more stable. It is not up to intermediaries, 
such as investment banks, to take these kinds of bets, these kinds of risks, which are typically 
investment fund risks.

The success of this type of project depends on a small team of experts working together with business experts 
on well-defined projects.
I will summarize some key aspects for me. First of all, implementing a secondary innovation 
coming from AI is not simple, it requires effort and investment. The right way to foster the success 
of this kind of project is to have a small team of experts working together, for a short period  
of time, with business experts on well-defined projects. Always keep in mind that a learning algorithm  
is made up of three things that all three need to be tracked: external computer libraries, internal 
code and databases. This creates a certain complexity in versioning, deployment and monitoring. 
Another very important aspect comes from the data bias. We should not believe that because 
it is not necessary to write equations to implement learning algorithms, we do not make model 
choices. The choice of model is hidden in the data, and in the way the algorithm will do its best  
to adapt to the data. It is necessary to keep a critical, modeler’s eye on the data. And when it 
comes to deep hedging, you have to remember all these points, and especially that of bias. 
We do not want a replication strategy to be influenced by recent sporadic specificities in price 
dynamics of tradable products. This raises some interesting issues for researchers in financial 
mathematics. Some of them are already tackling them, and I am convinced that they will provide 
answers. These will certainly not be that we should close our eyes and «trust the data».

As Sandrine Ungari pointed out, the lack of explicability can be an issue at the individual level (bad risk assessments) 
but also at the macro level (systemic related issues). This is especially relevant for risk evaluation as Charles-
Albert Lehalle pointed it out regarding Deep Hedging. For these reasons, the regulator might need to intervene  
to prevent bias in order to ultimately protect investors. However, as it tends to be forgotten, bias in decisions is also 
an important issue in the human world. So bias should be supervised within automated algorithms but also within 
human-based decisions. This is essentially the point of the following discussion that Charles-Albert Lehalle had  
in the Deep Hedging round table.

Charles-Albert LEHALLE

The novelty of the approaches we are talking about today, deep learning methods, lies not 
only in their profoundly non-linear nature, which seems to be able to adapt to a wide range  
of relationships between variables that are not perfectly known, but it also stems from the fact 
that the data they gather have a great influence on the results obtained. The implementation  
of a learning algorithm requires:
- External» code libraries, often provided by Google, for example with TensorFlow, or Facebook, 
with pyTorch,
- Code developed for the application, which specifies for instance the criterion to be minimized, 
the choice of the optimization technique and its parameters. A database that will serve as a 
reference for the algorithm.

How to protect the result from a possible bias in data or even from data manipulation that will change  
the algorithm outcome?
A range of questions can be asked regarding the level of quality that should be required  
on the data. How to protect the result from a possible bias in the data or even from data 
manipulation that will change the outcome of the algorithm? There is the subject of cyber security 
of course, which is more of an industrial issue. How to secure access to the multiple interfaces 
that result from the use of distributed components? One can think of the cyber attack on the 
Mexican central bank’s payment systems in May 2018. Will this type of attack be facilitated when 
market participants use algorithms that connect several times with many more intermediaries?
 
But that’s not the topic for today. Let’s focus on the specific issues related to the implementation 
of AI technologies. Difficulties can come from several factors: External libraries: how to reliably 
measure the impact of a change of version of one of the big learning libraries, such as 
TensorFlow or pyTorch? You need to be able to restart learning with the new version, on the 
same data as used with the older version, and to compare the «results». What exactly are the 
results? The parameters resulting from the training (i.e. the « mass « of the neural networks)?  
Or the predictions obtained by these neural networks? Probably both. But learning’s random 
nature, because let’s not forget that most of these methods rely on stochastic gradient descent, 
renders this comparison difficult.
- The data itself can change and be updated, when there is an inaccuracy, or we can simply 
increase the volume of this data. In this case, it is then necessary to start learning again and 
compare the results once again, using statistical criteria. It is necessary to check that the results 
are not «statistically different».
- Even before talking about a data change, one must consider the possible influence of «bias»  
in data. The classic example is that of a gender bias: if the learning base is not balanced, then 
the results will not be balanced either. If we think about loans’ allocation, an algorithm should not  
be more willing to lend to men than to women, for instance. In market finance there are many 
other drawbacks, including the very important «contributed data» drawback, that I will talk about 
later.
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- Obviously, the code that implements the specific functionality of an application, very often 
developed internally by the financial institution, and which includes a criterion to be optimized, 
called in statistical learning the «loss function», has a central place. It plays a very important role 
in the learning outcome. Which function should we choose? Particularly, is it better to choose a 
statistical precision criterion, or an «operational criterion», i.e. for example a gain in euros? Should 
a penalty be assigned to risk-taking, and how should it be combined with the gain criterion? The 
insurance and market finance industries are especially regulated, and rightly so, since they can 
have very strong negative externalities.
It is therefore necessary to find a clear framework for the use of these technologies.

Once we start thinking about the regulation of AI technologies, and to avoid embarking on the 
subject, which is a bit of a cliché of «algorithm ethics», it is worth taking a step back.

Why demand to control the bias of an algorithm when we do not demand control over the bias of decisions of the 
same nature, but made by humans.

On a personal note, I remember the debates around high-frequency trading, to which I contributed 
a lot. The debate was not much different from today, since high-frequency trading uses automatic 
trading algorithms that are calibrated with data and have relative autonomy. Once again, I have 
the feeling that posing the problem in an automated and technological framework has the virtue 
of bringing out real issues. When you study a process that involves a lot of human decisions, 
you can always think: «since there are humans in the loop, the description we make here is  
a bit approximate and never exactly respected, so we’re not going to think too much about its 
implications». When we are faced with machine-driven processes, we ask ourselves the real 
questions in a much clearer and more concise way. We must therefore take advantage of this  
to regulate better. To regulate machines well, of course, but also to regulate humans better. What 
struck me in the debate on high-frequency trading is that at one point there were decisions of 
this type: «let’s regulate machines and essentially machines». But no, the way in which humans,  
as intermediaries, made prices on certain illiquid products was obviously to be regulated as 
much as the way in which machines make prices in a systematic way, even if it is often on more 
liquid products.

To return to biases, we also need to supervise biases that come from human decisions

It is necessary to organize «decision making reviews», which, based on statistical criteria,  
will make it possible to establish whether the decisions made last month by the institution were 
biased, and if so, it will have to justify why. And if it is not justified, the institution will have  
to demonstrate that it is taking measures to prevent this from happening again. Whether 
these decisions are made by machines or by humans. So I’m taking a chance that automation  
and the use of AI technologies allow us to ask these questions. And I hope that the conclusions 
that will emerge from the debates will allow us to give life to regulations that will apply to processes 
managed by humans as well as by machines. And that’s really a strength, even if it raises several 
problems, but I think they will be better addressed.

With the previous discussion it is clearer that artificial intelligence in risk intermediation has already proven very 
useful, although there are a lot of technical and regulatory challenges. However, it should be kept in mind that 
artificial intelligence is a generic technology. The true application of this generic technology will have to be driven 
by secondary innovations. More practical use cases may be created by the interaction between experts in the 
technology and experts in a narrow field for which the generic technology might be applied to. This is the general 
idea of the next excerpt from the Deep Hedging round table presented by Charles-Albert Lehalle.

Charles-Albert LEHALLE

Once the debate has been framed in terms of financial services’ disintermediation, we may 
question the nature of what we want to call «Artificial Intelligence technologies», even if we can 
debate for hours about whether we should really call them that. I have to admit that everyone 
is using this term today, so I’m going to use it too. What is the particularity of AI when it comes 
to implementing it? I think it’s because it belongs to what some economists call Generic 
Technologies.
I’ll give you other examples of Generic Technologies: steam engine and electricity. Just 
because you’ve used a steam engine to drive a locomotive doesn’t mean that it’s easy to use 
a steam engine to run a loom. You have to redevelop what are called secondary innovations.  
Artificial intelligence works the same way. It may work very well on signal processing to recognize 
images or sound, but if you want to use it in a bank you have to redesign a lot of things, and 
readapt AI to each set of problems. This requires investment. Therefore the ecosystem needs  
to organize itself, in order to put in contact generic experts of this technology, and specific experts, 
during specific small short-term projects, to be able to manufacture secondary innovations that 
will respond to a particular industry or company.

The deployment of AI in banking and insurance cannot be done without investment and will require many 
secondary innovations.

The distinction between secondary innovations and generic technology, and especially the fact 
that investment is required to produce secondary innovations, creates a complicated bias.  
Since, on the one hand, I can read every day in the newspaper that AI is great, that it works for lots  
of applications. Yet, on the other hand, when I want to apply it without investing time and money, 
in a well thought out project, it doesn’t work on the problems I’m interested in. Today’s Villani 
report has made this clear, and it means that there will soon be areas of excellence in France,  
the interdisciplinary institutes of artificial intelligence (3IA), that will bring together generic experts 
in AI, big data, data sciences and specific needs, with their business experts. Typically in the Paris 
region, one of these 3IAs is called PRAIRIE. Companies will be able to make partnerships, with 
periods of one to three years, to try to manufacture secondary innovations. The major English 
universities have done this with the Turing Institute, which was created in 2015, and it seems 
to be working well. In the United States, each major American university has created a «small» 
center of this nature, such as the Center for Data Sciences at NYU, created in 2013 by Yann 
LeCun.

University centers of excellence are set up in France to bring together generic AI experts and business experts.

Before getting to the core subject, I wanted to stress the need to invest, no doubt in collaboration 
with academics, in order to obtain the secondary innovations needed to make AI work well  
in market finance.
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In the last round table excerpt for this chapter Nicole El Karoui presents a really interesting retrospective of innovation 
in financial mathematics in the last 30 years. The main point is that big trends in financial intermediation, like the 
derivative products boom, are generally due to important technological changes. In a way similar to how financial 
mathematics reshaped the financial landscape and our view of it, current breakthroughs in deep learning (from 
computer science this time) have the potential to drastically change our approach of risk intermediation.

Nicole EL KAROUI

You could say that I have been a kind of «companion on the road» on «financial risk» markets, 
particularly on the issues of derivatives’ hedging and the emergence of their regulation  
(not to mention crises) over the last thirty years. Surprisingly, it seems to me that there is  
a certain interest in confronting the current evolutions resulting from Big Data and its extraordinary 
technological tools with those of finance in the 1980s. When the futures markets (MATIF  
and MONEP) opened in France in 1985-86, ten years after the United States, we were in the midst  
of a computer revolution, corresponding to the switch from IBM mainframes to PCs. French 
banks took advantage of this to set up their derivatives business in a very quantitative way, 
notably at the Société Générale. Engineers were developing the business, focusing primarily  
on the possibilities offered by IT.

At the same time, at the Faculty of Science and the Ecole des Ponts et Chaussées, and later  
in other universities and «Grandes Ecoles», very quantitative financial mathematics courses were 
being set up, most of them led by women (a French exception in this highly technological world).  
The rapid growth of computer power (Moore’s law) allowed the development of numerical 
probabilistic methods (Monte Carlo type) which were effective (at the time). From the experimental 
(start-up type) period of the 1990s, when the question of the meaning and effectiveness  
of dynamic hedging of derivative products was constantly questioned, we moved on  
to the «industrial» phase of the years 2000-2008, when financial innovation and market expansion 
(parallel to that of computers) boomed, despite increased regulation. All media became allowed, 
credit derivatives, or commodities, without any further consideration of the new risks created, 
since this was very profitable. The theoretical aspects were very much overlooked.

The rise of derivative products was caused, like learning machine today, by technology

The analogy with the current period concerns technology. As with credit derivatives in finance, 
everything seems possible and feasible. First of all, it becomes a matter of accelerating calculations 
and algorithms, on which we think first and foremost of technology and computer problems,  
and only then of analysis and interpretation. As Sandrine has pointed out, the modeller’s 
knowledge and market intuition is no longer central to the validation process.

This reflects the 1960s, when French statisticians surrounding Benzécri were among the pioneers 
in developing data analysis, also known as principal component analysis etc. The idea was  
to geometrically represent data, and to project it on the most significant axes. One of the major 
innovations was to display the graphical representation of the data in the new axes. The data 
was no longer a statistical model, and spoke for itself. Such graphs could be found, for example,  
in non-specialized journals such as the «Nouvel Observateur». But this speech could be 
very difficult to interpret and validate, especially in medicine when confronted with « mixes «  
of explanatory factors. Its simplicity made it beautiful but ended up limiting its use. This question 
is connected with current concerns about interpretability, even if today the data dimensions are 
infinitely more numerous.

Having a large amount of data does not eliminate uncertainty

Another bias is linked to the myth that a large number of data limits uncertainty by providing 
«probabilistic» information. However, this is clearly wrong if the data is not independent  
or stationary, hence the importance of empirical knowledge of the data panel you are working  
on, in relation to the problem you are trying to solve. For example, what is important in  
an exchange rate is its drift and trend, whether you are investing and its volatility if you are 
hedging. It has little to
do with it and has a significant influence on the data choice and models to be taken into account.

This bias is less important when referring to physical phenomena, which reproduce themselves 
in a relatively similar way over time. In the world of banking and insurance, and for much societal 
data in general, we are confronted with the fact that markets and societies learn quickly.  
Past data is therefore rarely informative for projections into the future, hence the need  
for increased vigilance. In fact, all three of us have raised in one form or another the topic 
of results’ validation. The first phase is empirical, and concerns the consistency of the data 
produced, the «output»: outliers, comparison with the results of the previous day. The second 
phase is indissociable from a proper representation of problems, and this issue concerns both 
the data and the models.

The first thing is to have a good representation of the problems. For example, in market finance, 
the question of the time scale to be taken into consideration is not as trivial as it may seem.  
The product maturity may be very distant, but the hedging horizon is a day’s time, regulatory 
or almost regulatory, not to mention all the intermediate maturities due to regulation.  
It is not easy to know how to take these elements into account simultaneously in the data vision 
and the algorithms that will be implemented. This is also the case in the choice of mathematical 
models, the only difference being that it is theoretically easier to measure the consequences, 
and to question the initial hypotheses if the results are not appropriate.

Mathematics requires the use of precise terminology, which helps to structure data processing

Another fundamental contribution of mathematics to the applied sciences, prior to any modeling, 
is the emphasis it places on vocabulary. There can be no exchanges or ambiguity.
When I started in finance, there were about ten notions under the name of volatility: market 
volatility, implicit, local, average, currency, and many other qualifiers that were not specified. 
Imagine the implications of this for data collection.

Moreover, in the matters that we are concerned about, the questions are the same: for instance 
what is the data for you, or for me? Raw data, re-processed, of large dimensions (which 
one?), reproducible, original, generated by bank algorithms, bought, sold, personal, retrieved  
on the web, stored on the Cloud, in your computer, obsolete, historical, etc. We are quickly getting 
close to a «Prevert-style» inventory. With my banking culture, I’m tempted to associate notions  
of risk and so this inventory is endless.

In the thirty years that I have observed (as an academic) the world of banking and insurance, 
whose risk is by definition time-dependent, I have never seen a sometimes weak culture  
of signals being put in place to warn us on possible breakdowns. This should be a necessary 
culture in an uncertain world, whether or not bottom-up vigilance is required. This implies 
increasing the diversity of views, points of view, but also training. It must be stated that although 
my job as an applied mathematician is to decipher the fundamentally dynamic and uncertain 
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worlds that I study in a new light (financial markets, regulation, life insurance and longevity), I find 
that the paths are often blurred, and that I sometimes find it difficult to find my way around, even 
if the challenge is often exciting. I’ll explain myself a little better, by taking an academic example. 
The first time I saw that to draw numbers in a perfectly random way between 0 and 1, we used a 
deterministic algorithm, I was more than surprised, stunned, you could say. This is the algorithm 
behind the random key on your computer. It’s the basis of all the simulations we talked about.  
So there is no randomness and I had a «real soft spot» for randomness...

I was «reassured» when I discovered that Google’s algorithm for finding the best page (containing 
a given word) consists in randomly disrupting the system to prevent it from getting trapped  
in a non-optimal « pit «. «Phew», I could still consider «my» probabilities to be great...

But the world is becoming very intertwined; it is very difficult to quantify the respective importance 
of deterministic and random aspects.

This is similar to what we were talking about. We get used to interpreting data in a world where 
we often don’t know how and who created it. 
Of course, these are only questions, but they seem important to me in our field. Besides, it is not 
only about interpretation but also about a form of conditioning. I’ve noticed that I don’t think in 
the same way in math since I’ve been typing on the screen, compared to when I used to write on 
paper. All these effects create a Google culture, as you say, Charles-Albert, on research, on the 
way of seeing, on the vocabulary, which is very conditioning. You have to think about it seriously, 
so that you don’t lose too much credibility in the way of thinking and evolving in the AI world.  
For instance regarding the «formatting» of algorithms, when you’re the one who programmed 
the algorithm, you know what’s inside, you get tired of doing it. You know some of its limits.  
Yet when you’re going to use «open source» software or one of the algorithms in Python or R, 
there’s a whole part of it that you no longer control, that you’ve appropriated from the outside,  
a black box. At a certain level, what does it give you in terms of freedom of thought, for example? 
Where are the singular spaces to ask yourself the proper questions?
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The digitalisation of the world has important consequences in terms of data production. Not only more and more 
data are being produced, but also new types of data are now publicly available. This creates great challenges  
in terms of data analysis but also considerable opportunities for many actors in the finance and insurance sector.
Historically, the finance industry has relied on a number of data sources. First, asset valuation and risk assessment 
was performed with financial statements and other financial data that the companies would provide to the market. 
Second, actors in the financial infrastructure, like exchanges and settlement houses, would also provide some 
very insightful data like market prices but also volumes, order-book related data and other post-trade data  
for derivative products. Third, national agencies would be in charge of providing aggregate data about the underlying 
economy. Those data sources have been used for decades in the finance industry.

In addition, there are now quite a lot of other data, coming from different sources, which are usually labelled  
as alternative data. Such data may include but are not limited to: satellite images, geolocation data, job posting, 
tweets, social network activity, or textual content in general. 

Since the recent technological boom of artificial intelligence, algorithms such as Image Processing Neural Network 
or Natural Language Processing algorithms are now increasingly more efficient at extracting complex patterns 
within those alternative data. 

The goal is essentially to make predictions from those new patterns. The finance industry may use alternative data 
to front-run the release of companies’ financial statements, or agencies aggregate economic data like jobless 
claims or even national growth data for instance. The insurance industry may use alternative data to better 
estimate the damages of natural disasters or use sensors and detectors to better estimate the probability of a car 
accident or other disasters. All of this is referred to as Nowcasting which is the idea of better predicting the present 
before the release of official reports which can take from days to months to be publicly available. In other words, 
powerful data analysis tools, like machine learning, can be used to have a better, more accurate, representation  
of the underlying economy.

However, with those opportunities come some important challenges. On the one hand, a general concern with 
machine learning algorithms is their lack of explainability. As those algorithms heavily rely on data and lack 
explainability, it can be quite challenging to detect a bias in the learning process which could have important 
consequences whether it is used for nowcasting or other purposes. Building a safe environment for learning 
and executing machine learning algorithms is therefore an important objective, but this is highly non-trivial.  
On the other hand, there is also an important education challenge. In fact, running and actually writing and using 
complex machine learning algorithms require high computer science skills. But a strong economic intuition 
is also needed as the goal of those algorithms is to learn more about the underlying economic fundamentals.  
The link between them would usually have to be operated by mathematicians with high level understanding of the 
machine learning models (without necessarily the implementation details). This can be quite a challenge for teams 
that try to build and create a better understanding of the economy from data. As the hype surrounding data analysis  
is unlikely to stop, financial education programs are likely to evolve which has the potential to transform  
the financial and insurance industry in the long run.

The remaining of this chapter is organised as follows. First, Aimé Lachapelle, managing director at Emerton 
Data, presents his view on responsible AI in finance and insurance. Second, Christian Robert from the University 
of Paris-Dauphine explores improvements to the insurance industry made thanks to the use of new data.  
Lastly, a discussion based on excerpts from FaIR’s round tables explores more the relation between alternative 
data, artificial intelligence and the finance and insurance landscape.
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FaIR NETWORK CONTRIBUTIONS

RESPONSIBLE AI IN FINANCE AND INSURANCE : SHIFTING FROM CONCEPT TO ACTION

Aimé LACHAPELLE, 
Co-founder and Managing Partner of Emerton Data

THE POTENTIAL OF AI 
Following the lifting, in the 2000s, of technological locks (GPU computing power) and information 
accessibility (Imagenet database), Artificial Intelligence technologies have considerably 
penetrated our daily lives.
If anybody is going to push prospective thinking to the theory of singularity – comparable 
to completely autonomous AI), it is now a reality that our machines, that always remain 
parameterized by the human expert, are capable of intelligences close to the cognitive processes 
usually performed by humans1.

The advent of such a technology, even in its early stages of maturity, is on paper an unequalled 
transformational promise for our society and our daily habits. 
In the business world, and in particular in the financial services sector, the major transformation 
is the shift from expert-based to machine-based modeling and decision-making. 

IN REALITY, THE THEORETICAL PROMISE IS QUICKLY PUT ON THE BRAKES
However, it must be acknowledged that the massive adoption of AI happened only for very few 
applications and business cases. Additionally, the many applications of AI already in place, 
initially in the insurance and banking industries, are in danger and hampered by the fear  
of impacts and the lack of human control resulting from that shift.
AI today suffers from a lively and powerful deployment, leading to actions that are the result  
of decision-making processes that humans and professionals no longer fully master.  
This typically arises for «black box» algorithms, having potentially learned from biased data sets.

In order to remove such a brake on the development of AI, many initiatives and reflections 
have recently emerged, in particular across Europe institutions and member states, on how  
to develop a powerful and trustworthy AI. 

Still, many questions need to be answered to switch from these various upstream initiatives to 
reality and action. How do we create proper short-term incentives for organizations to consider 
Responsible AI?  How do we set-up proper governance at organization level?

In the book “The Ethical Algorithm”, Kearns and Roth reflect on the core societal question  
of keeping control on human role versus machine role. The risks of algorithmic decision-making 
are very real: should we expect that avoiding these risks will excessively shrink the benefits? 
What will be the role for law and regulation, in particular in the financial sector, probably  
a crucial one to help identify what should remain human vs machine? How do we scale since 
everything cannot remain human assessment?

In the next paragraphs, after quickly reviewing Responsible AI generalities, we deep dive  
on specific challenges for bankers and insurers, with a concrete illustration in risk modeling 
regarding the explainability of machine learning algorithms, in the case of multiplicative 
underlying structures.

A PROPER GOVERNANCE OF AI NEEDS TO BE DESIGNED IN THE FACE OF ITS SPECIFIC 
APPLICATIONS’ IMPACTS AND RISKS
Among the various frameworks that can be found in the literature, three main pillars stand out 
regarding Responsible AI: 
-Explainability of Artificial Intelligence algorithms and resulting models that need to be 
understood to a certain extent by various parties, depending on the end goal;
-Bias and fairness of algorithms and models: the resulting discrimination must be steered and 
controlled;
-Accuracy and robustness: often as a trade-off with the two formers. Most accurate models 
are indeed usually less explainable and less fair with respect to given sensitive segments (e.g. 
regarding unemployment or gender in the case of motor insurance risk). On this point it is clear 
that not all applications will require emphasis on the same topic: if in medicine diagnostics the 
accuracy is the main focus, it is less clear for credit scoring or risk pricing. 

In its whitepaper published on February 2020, the European Commission highlights the ambition 
to create an “ecosystem of trust” for AI, making the observation that very disparate initiatives 
are being launched across its member states: German’s 5-risk levels framework, Denmark’s 
Data Ethics Seal, etc. Two outstanding elements from this whitepaper are worth mentioning. 
First it is important to understand that setting up the governance of a trustworthy AI must 
pursue objectives as an extension of very fundamentals ones, of which the cornerstone is  
to protect fundamental rights, as it has done for years in the absence of AI. To illustrate,  
human decision making is not immune to bias and discrimination. For many applications, we 
have developed complex systems – law and appeal process in court, audit and regulation in 
banks, multiple “lines of defense” in risk management, peer review and collegial decisions in 
medicine, etc. - to steer and control the human decision making. Then basically the same must 
be done for AI-based models and decisions, which requires specific approaches and tools to 
control bias in the data (the “food” of AI), but also to control the discrimination outcome from 
the AI models.
The second key insight from the EU whitepaper, which gives a taste of forthcoming regulation 
from the EU, is to drive the governance of AI by the criticality of underlying applications and 
risks. Showing the wrong advertisement to the wrong customer does not have the same 
impact as making a medical prescription or as rejecting a credit loan or an insurance policy.  
Regulation must be adapted depending on the impacts and risks.

FINANCE AND INSURANCE SECTORS FACE SPECIFIC CHALLENGES AND ARE MOVING 
REGARDING RESPONSIBLE AI 
Here we reach the core problematic: most mature AI methods and tools have been developed 
by the GAFAM ecosystem, mainly on advertisement, media and content applications. Therefore, 
they poorly address specific challenges of higher risk applications such as healthcare, transport, 
security or in particular financial services.

Making Responsible AI a reality in finance and insurance, an operational set of processes, 
methods and tools, relies on 3 challenges that are today very poorly addressed:
- Research should focus on the right topics, for instance fairness Machine Learning approaches 
have been developed only for classification, leaving aside all regression topics, with metrics 
such as disparate impact, that unfortunately do not compare discrimination resulting from  
the scoring to inherent observed discrimination, yet an important comparison for many 
applications such as insurance pricing or fraud investigation.
- Technological solutions are not ready, e.g. to audit models in terms of explainability  
and discrimination, to take into account fairness criteria during data preparation and model 
design, etc.
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- Governance is complex because the topic is by its very nature transverse, and because 
uncomfortable trade-offs between accuracy and fairness or explainability must be achieved. 
What is the acceptable price to pay to constrain AI algorithms? It has implications from front-
office functions (e.g. scoring, pricing) to back-office ones (e.g. risk management).
Many financial services companies are currently approaching the Responsible AI topic. 
AXA was one of the first movers on the topic, with the creation of a dedicated R&D team within 
AXA Rev, its entity dedicated to data & new tech. “A few years ago, we launched a dedicated and 
substantial R&D effort on explainability and fairness”, says Marcin Detyniecky, Head of R&D 
and Group Chief Data Scientist. This effort results in several international-class publications. 
“We are now starting to focus on setting-up the governance and embedding our research work 
in operational tools to be provided to the various entities of the group”, Detyniecky concludes.

The French bank and insurance supervision, namely the ACPR, has recently led a consultation 
and working group, resulting in a working document on the “Governance of Artificial Intelligence 
in finance”, co-authored by Laurent Dupont, Olivier Fliche, and Su Yang. This report presents 
practical guidelines for companies on the governance of AI and provides valuable insights 
regarding the governance of AI and its inclusion in the company’s processes, e.g. regarding the 
integration to business processes, model validation processes, audit procedures, the definition 
of human-algorithm interaction, and last but not least the compliance with security. 

ILLUSTRATION: EXPLAINABILITY OF AI IN THE FINANCIAL SECTOR
One of the major takeaways from this work recently performed by the ACPR is the sketch of 
a framework on explainability of machine learning, and in particular on the effort made on 
defining explainability expectations with regards to the end goal (the degree of understanding 
of models expected by a client cannot be the same as the one controlled by internal audit or by 
model validation teams for instance). The document highlights in particular the need to develop 
tools for the empirical audit of models.

Following the example of AXA, several large financial services groups have launched specific 
activities on the explainability of machine learning. JPMorgan Research has recently created a 
dedicated stream on explainable AI. “The challenges include the ability to explain your AI – what 
we call “AI explainability.” When AI is used, the regulatory environment requires banks to justify 
or rationalize decisions. JPMorgan is trying to be the leader in applying explainability to financial 
markets”, says Apoorv Saxena, global head of AI and machine-learning services for JPMorgan 
Chase.
To complete the picture, the reinsurance company SCOR is very active on the explainability topic, 
as confirmed by Antoine Ly, Head of Data Science: “We are currently including explainability of 
models as a core part of our model governance processes”.

Explainability in risk modeling is a perfect example of the need to undertake the development 
of specific methods in order to make Responsible AI operational. Let’s deep dive on the specific 
example of machine learning explainability for actuaries.

Many methods used to explain machine learning models have been developed during the last 
few years, with the release of the concept of surrogate models. Here the principle is to fit an 
explainable model (linear, few variables) on a more complex one, that is on a black box model 
with sometimes tens of thousands of parameters, which arises e.g. when using deep learning. 
Several methods and toolboxes are available, but very few of them are usable in practice since 
explainability remains arguable and since there is no easy consensus nor adoption. Among 
the most famous ones we can cite LIME and SHAP. This latest method has a nice property: 
the contributions of variables sum to the total, which is a key property for human expert 
understanding.

On the other hand, if we take the example of actuaries’ risk modeling (e.g. auto claims, home 
flooding or robbery), as it is well-known that risks factors have a multiplicative effect, these 
experts are used to a certain kind of statistical models called Generalized Linear Models. 
Designing such models remains overall very manual and requires a strong effort. For these 
experts, the switch to machine learning models that are more automated, more complex,  
and less interpretable, is a real challenge. It has been very much discussed in the community  
for years, with no breakthrough. 

Explainability is probably one of the main reasons for this conservatism. As far as all  
the research effort was focused on developing additive explainability, actuaries are not equipped 
with explainability methods and tools that would allow them to assess the multiplicative 
contribution of risk factors in machine learning models.
A recent paper has been released by the Emerton Data team, “X-SHAP : towards multiplicative 
explainability of machine learning”, co-authored by Luisa Bouneder, Yannick Léo and Aimé 
Lachapelle, to specifically address this pain point for actuaries and to provide them with a tool 
to explain machine learning models the way they are used to understanding models.

CLOSING REMARKS
Making Responsible AI a reality relies on 3 main challenges: focus research on the right 
topics, develop adequate technological solutions, and set-up a governance in a complex  
and transverse environment. 

Among the 3 challenges mentioned, only the first one seems to be already on track: better 
connecting the R&D effort to business reality. Indeed, this is a clear dedicated emerging activity 
for several bankers and insurers. The previous example of providing actuaries with specific 
explainability approaches that suit their current practices is part of the same goal.

Regulators and supervisors are expected to play a key role to make bankers and insurers 
implement Responsible AI in practice and to address the 2 remaining challenges (technological 
solutions and governance), by providing guidelines and rules.
One of today’s major questions is: How do we leverage regulation and supervision to create 
short-term incentives to make AI more Responsible, facilitating the development of tools  
and governance in banking and insurance organizations, without overly slowing down the 
actual innovation trend?
E.g. supervision requirements can stimulate the development of empirical audit tools but can 
also slow down Fintech/Insurtech innovation. 
How do we ensure consistency with other regulations, e.g. GDPR which imposes time constraints 
to delete individual data, when AI regulation could impose to keep record of datasets used to 
train the algorithms?
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NEW DATA AND PROCESS IMPROVEMENTS IN THE INSURANCE INDUSTRY

Christian ROBERT, 
PhD in applied mathematics from University Paris Denis Diderot and is a former student of the Ecole Nationale 
de la Statistique et de l’Administration Economique (ENSAE)

Insurance companies have always relied on their own claims data and a few variables obtained 
at the time of underwriting to price insurance contracts and offer their customers customized 
premiums. As one of the oldest and most traditional sectors of the economy, it has proven  
to be quite resistant to changes brought by new technologies until recently. But today,  
the sector is undergoing a profound transformation thanks to artificial intelligence and  
the arrival of alternative data such as images, texts, exchanges on social networks or information 
transmitted by the internet of things. Insurers are now using machine learning in traditional 
tasks to increase operational efficiency, improve customer service, detect fraud, ... but also in 
new tasks.

IMPROVING CLAIMS AND CLAIMS PROCESSES
The insurance industry handles thousands of claims and responds to an even greater number  
of requests from its customers. In some cases, claims do not require the work of human 
employees and it is interesting to have automatic tools to respond to these claims and  
to leave more time for employees to deal with more complex claims. Insurance companies  
are automating parts of their claims handling process today, saving a lot of time and improving 
the quality of service. Machine learning can improve this process and automatically move claims 
through the system - from the initial report to analysis and contact with the customer.

Lemonade is a US insurance company founded in 2015 that uses AI to process claims faster 
and provide customers with prompt payments using various applications such as chatbots. 
More and more insurance companies are using algorithms capable of extracting handwritten  
or typed forms from a database with nearly 100% accuracy, helping insurers to reduce response 
and claim times.

Another example is the technology provided by Tractable, a start-up company that offers 
software to assess damage and predict repair costs using photos of claims to speed up claims 
processing. This start- up is changing the way motor insurers will assess claims amounts in 
the future. The technology examines property damage and predicts repair costs based on real-
time photos so that claims can be settled more quickly. Instead of taking days or even weeks 
to assess a claim after a car accident, insurers using Tractable now only need a few minutes. 
Previously, this image recognition technology was not advanced enough, and companies did  
not have access to enough data for their models to operate accurately.

New image-based technologies could transform the way non-life insurers manage their claims 
and could be an important part of the broader transformation that artificial intelligence brings 
to the insurance claims process.

INCREASINGLY SOPHISTICATED UNDERWRITING ALGORITHMS
There is a famous saying in the world of actuaries: «There are no bad risks, only bad underwriting».
This means that insurance companies should be able to cope with most risks provided they 
find good pricing. However, many insurers continue to use traditional econometric methods 
combined with historical risk factors to assess risks. In this context, machine learning associated 

with new data can provide actuaries with new tools and methods to help them classify risks and 
calculate more accurate predictive pricing models that should ultimately reduce anti-selection.
One example is motor insurance telematics, which is the combination of data collected  
by vehicles, wireless telecommunication technologies that facilitate the flow of information over 
large networks, and predictive algorithms. Current motor insurance models that use variables 
such as age, education level, marital status, vehicle type, etc. have found their limits in identifying 
the most dangerous and potentially life-saving driving behaviours on our roads. We are seeing 
the appearance of in-car devices in our vehicles that monitor our driving behavior.

PERSONALIZATION IN MARKETING
Customers expect to receive personalized services that match their needs, preferences and 
lifestyle. Creating personalized insurance experiences using advanced analytics and automated 
learning is now an option that firms can use to improve their marketing effectiveness. They can 
use data on individual preferences, behaviors, attitudes, lifestyle details and hobbies to create 
customized products, loyalty program services and recommendations. This is achieved by using 
machine learning algorithms applied to new data to develop suggestions tailored to specific 
customers through sophisticated selection and matching mechanisms.

By taking advantage of machine learning solutions, insurers can offer their clients personalized
services, machine-generated insurance advice or even use chatbots to communicate directly 
with them. Younger consumers are prone to new technologies and the majority of them are 
willing to interact with machines in this context.

FRAUD DETECTION AND PREVENTION
Fraud is a major problem that costs for example the US insurance industry more than $40 
billion a year. Insurance companies are looking for ways to effectively limit fraud and that could 
have a positive impact on their profit and loss accounts. And this is where machine learning 
algorithms can help. They begin to be intensively used by industry leaders to identify claims that 
are more likely to be fraudulent than others and subject them to further investigation by human 
employees. Machine learning tools allow insurance companies to take action against fraud 
much faster than when relying solely on human analytical capabilities.

NOWCASTING NATURAL DISASTER DAMAGES WITH SOCIAL NETWORK
Researchers have begun to use social media platforms to obtain information about natural 
disasters themselves. For example, it has been shown that the number of photographs uploaded 
to Flickr is highly correlated with the physical variables that characterize natural disasters  
(the atmospheric pressure during Hurricane Sandy, for example). Although it is not clear what 
causes this correlation - external information, network effects or direct observer effects -  
the correlation suggests that digital traces of a natural disaster can help measure its physical 
strength or impact very quickly. Based on a similar concept for tweets, other studies have 
tested the links between the spatial and temporal distribution of tweets and the physical extent  
of flooding, or the link between the prevalence of disaster-related tweets and the distribution 
of damage predicted by modelling in the case of Hurricane

Sandy, or some studies have explored the feeding of tweets transmitting observations from 
socialsensors in the field into predictive models to predict the perceived intensity of earthquakes.

Social media messages posted in the aftermath of a natural disaster have a predictive value 
that goes beyond the detection of the event itself. The exploitation of these digital traces 
provides more accurate knowledge of the situation, helping to estimate the consequences  
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of the disaster on the population and infrastructure in an almost immediate manner. 
To date, however, automatic damage assessment has not attracted much attention from 
insurers, but this should soon change. 

In conclusion, since insurance companies have always worked with data, it makes sense  
for them toride the wave of digital transformation and implement machine learning 
solutions that allow them to examine these data more deeply to discover new information.  
And these solutions are useful for everything from fraud detection to the development  
of underwriting algorithms that determine the best underwriting strategies. Machine learning 
is on the rise, so we are bound to see these applications mature and new ones appear  
on the insurance scene to accelerate the digital transformation of the industry.
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This chapter will present excerpts from two of the FaIR’s round tables that are the alternative data round table and 
the IA, Math and Industry round table.

- Alternative Data : towards new corporate governance and price formation paradigm ?, 14/01/2020, 
As part of the Euronext annual conference, accelerating growth in europe
- Artificial Intelligence, Mathematics and Industry, 14/05/2019, ENS Paris-Saclay, Cachan, 
Elements of Mathematics for AI

Artificial intelligence is being more and more popularized, made available to the general public and therefore  
to specialised actors in the finance and insurance industry. This has been achieved through two main channels. 
First, high grade machine learning tools have been open-sourced for everyone to contribute and access.  
Second, the world is producing more data than ever, which can be analysed precisely with those open-source 
tools. However, the finance and the insurance industry have been using data for a long time, so what’s new?  
In the first excerpt from the Alternative Data round table, Charles-Albert Lehalle shares his view on the general 
definition and classification of data to point out what alternative data refers to.

14/01/2020, 
PAVILLON CAMBON, PARIS,
AS PART OF THE EURONEXT ANNUAL CONFERENCE, ACCELERATING GROWTH IN EUROPE

Charles-Albert LEHALLE

Alternative data is an original name because it doesn’t define it at all and in fact we started to 
say alternative because it’s non-financial data, i.e. in the financial world we are used to dealing 
with data generated by the markets, the most important data being used the price, which results 
from the confrontation between supply and demand and which summarizes a lot of information. 
Next, we looked at flow information, at the volumes of data exchanged, which is financial data 
generated by the financial world, then fundamental data on companies: balance sheets, which 
are also financial data generated by accounting, and finally by accounting through companies’ 
activity, and more recently many data sources have been invited into all this available information 
in the world around us. So to give you a few easy to understand examples: satellite images, 
geolocalization on our cell phones, credit card use, company job postings, therefore company job 
advertisements, transcripts of speeches by company managers, etc.
So all of this is data that is certainly not data generated by the financial world, but which provides 
a great deal of information about the economic reality that surrounds us. If we want to try  
to understand a little bit and classify this data more, we can classify it by «originators»: who is 
the originator of this data. The first source of alternative data is you and me, individuals, through  
our activity we produce data. So when you drive a car, there is geolocation, when you enter a 
parking lot there is a count of people in the parking lot. 
When we consume with our credit cards, data is also generated. Our own activity, as individuals,
when we have a watch that is connected, well, this watch can connect to the internet, put  
our itineraries, if we go jogging, on the internet every morning, the itinerary is stored, etc.  
So our activity as human beings and as part of the economic world is available and becomes data. 
Then there is data that is generated by companies, so I’m not talking about financial data, but 

ROUND TABLES: EXCERPT 1, 2, 3, 4 
ALTERNATIVE DATA : TOWARDS NEW CORPORATE GO-
VERNANCE AND PRICE FORMATION PARADIGM ?

just by their activity, so purchases and sales of raw materials, transportation for all the data that 
makes transportation, all the transportation data, by plane, by sea, by train, so all this activity of 
companies, web traffic, so B2B companies that connect, individuals - I didn’t name them those 
- who connect to websites and so that makes a second category of alternative data available.  
The third category is the one that is over, so in fact these are data that have existed  
for a long time but that were not electronic, it’s the data generated by agencies, so we can think  
of the INSEE in France, which publishes a lot of data on the state of the economy on a quarterly 
basis. Now there are a lot of independent agencies, there are news agencies, of course, which also 
provide figures on various objects in the world around us, and then there are various government 
agencies. All these agencies make up figures that are available. Three years ago now there was 
an Open Data initiative of the Banque de France. If you’re an academic, in particular, you can be 
eligible for this Open Data initiative and use data that is preserved and kept by the Banque de 
France.

The increasing use of artificial intelligence creates opportunities to look for patterns in this large amount of data with 
the goal of getting a better understanding of the underlying economy. By being more connected to the real economy, 
financial institutions and regulatory agencies hope to be able to improve their reactivity and overall understanding 
of fundamentals, whether it is driven by profit in the case of private institutions or by policy improvements  
in the case of regulatory agencies. In the following, there are two excerpts from the Alternative Data round table.  
First Helman le Pas de Sécheval and then Charles-Albert Lehalle both present some important use cases  
for alternative data and the questions that would be raised by those use cases.

Helman LE PAS DE SÉCHEVAL

“So to complete what Charles-Albert has just said, I would like to take two examples and try  
to see how this data differs from more traditional data.
So, for the first example, you know what has a big impact on markets, is the publications  
of famous agencies, e.g. GDP growth, economic growth which is strong or weak or slowing down 
or accelerating, it usually has an immediate impact on markets, even before we release economic 
data, or employment data. Obviously everybody is looking forward to when US employment comes 
out, quarterly, and the markets usually react to this good or bad news.

So there’s a researcher in the United States, whose name I have, whose name is Apoorv Jain,  
and he decided to try to get the information faster than official agencies were releasing it.  
He simply analyzed 1.2 billion tweets from 230,000 people who were posting messages  
on Twitter and selecting of course «I lost my job» or «I found a job». And so clearly with the help  
of that analysis he managed to get, not the number obviously, not the precise figure, but clearly 
the trend. He was able to negotiate, trade as we say in the jargon on this market information.  
Let me take a second example, which is even closer to a manager job.

It’s a hedge fund called Point72 Asset Management which was cross-checked by three sources  
of data: firstly, classic online research, secondly, credit card transactions, then of course 
aggregated, anonymized, large volumes of credit card transactions, and finally, just like  
on Twitter, reviews of messages posted on social networks. So with the help of all this,  
it concluded that it was likely that Weight Watchers, a producer of low-fat meals, was losing 
ground to its competitors. So, it didn’t have the amount, nothing precise. You would say it got 
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the news ahead of time somehow and he was making money. So, I think what’s interesting 
actually is to try to characterize these data. These alternative data are well named: alternative 
data are to traditional data what alternative management is to management. So we can see 
that it is not official information, it is not financial statements, nor analyst presentations.  
They are not press releases from press issued by listed companies or agencies in the case of my 
first example. Yet it is clear that this is data that requires not only formatting but also analysis, 
a thorough analysis. You must extract the signal from the noise and then you have to go and do 
the right analysis. So as Charles- Albert said, there are four essential data sources : Firstly, there 
is everything that involves satellite images and drones, secondly, there is everything that comes 
out of the payment means that have been digitized over the past twenty years. So all the bank 
card transaction data. There is the classic skimming of what can be found on the internet which 
is more and more abundant, and then finally there are these social networks in which everyone, 
finally, when you look at the number of individual terminals, the progression of the number  
of individual terminals and the use of these individual terminals by people, you can see that  
the data explosion has been exponential and that as a result it has become Finally, when  
you look at the number of individual terminals, the progression of the number of individual 
terminals and the use of these individual terminals by people, you can see that the explosion  
of data has been exponential and that as a result it has become an extremely interesting mass 
of data. If you know how to work with it, you can find things.”

Charles-Albert LEHALLE

“So maybe before I give the floor to business, I’ll talk about central banks that have a similar 
problem, since a central bank’s prerogative is to make governance decisions at the country level, 
and ultimately the only weapon a central bank has is surprise, i.e. it’s managing the surprise 
effect. If information is available on the state of the economy in real time, in an extremely relevant 
way, then the academic discipline that is developing on this is called now casting, by analogy 
with forecasting, which is to guess the future, then we are only trying to guess the present.  
Therefore, if we have the state of the economy in real time, what is the capacity to surprise a 
central bank?

So, that’s a real challenge and there’s a real transformation today of central banks that have 
several hundred economists who usually publish reports at the rate of a human being by 
digesting information, they’re also specializing and having labs, data labs, using a machine  
to try to understand how to make sensors on the state of the economy that allow them  
to «compete» in quotes with investors and market participants.

So, the problem already exists at the country level. Obviously, at the company level I think similar 
things are happening, where there is a kind of competition. Traditionally, when you think about 
market actors in the old economic theory, market players and then company players, the latter 
have the private information and the ability to decide, and that’s what makes it possible for them 
to make money, to earn money, to have a successful business. On the side of market participants, 
it is rather information on the flows that are available. In an investment bank, what they have 
 is information on flows, so they will give a price to the liquidity, which depends on whether  
or not everyone wants to buy. So, all I see are flows, and I learn from this that the price will go 
up, so I won’t give the same price for liquidity to people who want to buy as to people who want  
to sell, and that’s how these two forces are regulated. Intermediary actors, market participants who 

Although it might be the case in the future, It is important to note that none of these use cases work perfectly as 
of 2020. There are indeed a number of limitations that prevent the ideal goal of being able to perfectly anticipate 
everything. First, alternative data are usually not very precise. Although regular data can also be imprecise because 
of aggregation, alternative data are imprecise by nature. In general, publicly available sources of data concerns 
flows while the internal state of inventory will have to be estimated for instance. Another important limitation 
relates more directly to the tools used. Indeed, machine learning algorithms, in general, lack explainability which 
makes it quite challenging to detect bad modelling or biased learning for instance. The following two excerpts from 
FaIR’s round tables detail those ideas. First, in the Alternative Data round table, Helman le Pas de Sécheval and 
Charles-Albert Lehalle, present their views on imprecision in alternative data. The second excerpt is a discussion 
between  Charles-Albert Lehalle, Oussama Cherif, Bruno Durand, Anne-Sophie Taillandier and Stéphane Herbin 
in the IA, Math and Industry round table. The second discussion is not directed specifically toward the financial 
system, but as a general AI concerns, the lack of safe learning environments they mention can be directly extended 
to the financial context.

have information about financial flows and little information about economic and fundamental 
reality, and fundamental companies and investors who lease capital by following longer-term 
and medium-term information. Nowadays we can ask ourselves if the balance is not changing. 
It has already happened, we have already had the debate on the frequency trader when it 
was pointed out, on the frequency trader, when they had access to fundamental information  
in any case, e.g. they had computers, they could read the news, they could read the dispatches.  
So, they were more on equal footing with a traditional market maker who only sees the flows 
and who already has a lot of effort to assimilate all the financial flows that they have to respond 
to, the requests to buy and sell, well, they’re on an equal footing because they know all the flows 
but no more than the investor who knows the information, who can understand what’s going  
on in the news, read the newspaper and so on.

Technological actors today can process fundamental information, or a first filtering  
of fundamental information, and that changes the balance, and that is a world that all actors 
have to be prepared to enter. How do I make decisions that are increasingly public. And so I find 
it harder to preserve some sort of advantage from operating on information that only concerns 
my company and me?”

Helman LE PAS DE SÉCHEVAL,

So the difference, to get back to it, is that it is at the same time less precise. We manage  
to have clues, trends, to have leading indicators as we say in economics, but not precise data. 
We can see that it is less reliable.If there is a place where fakes news is spreading it is first 
 and foremost on social networks. So all these tweets that we are analyzing may be part 
of «wishful thinking» like we thought, people who are acting rather than corresponding 
to a specific reality, when we compare this to the process of production and verification of 
information that I called traditional, i.e. the information disseminated by listed companies 
or by agencies that publish statistics. But as it comes out ahead of the phase, in advance,  
it is obviously data that can be processed, that can be traded on the markets.
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Charles-Albert LEHALLE, 

Yes, in order to give an idea of the level of ease, of the noise level of the information that  
can be extracted from this data, I think that we have to consider that we are observing all  
this information related to a company in activity, and therefore often this information represents 
flows, because what we are observing are incoming and outgoing flows, or customers, 
or the supply of raw materials, or things that happen in parking lots, in warehouses, etc.  
And so we see flows, which are noisy because we don’t have all the flows, and it’s true that there 
are companies, there are activities that are essentially activities of flow and transformation 
with just-in-time flows. So, if this is the case, this extra-financial information will give a rather 
precise vision of what is happening in the company’s balance sheet. If now we have companies 
that manage stocks and therefore have private information that remains inside the company 
and therefore is difficult to capture by external means regarding the state of the stocks,  
then understanding the level of noise to comprehend the state of the company’s good health 
or not is more complicated. An anecdote about this is the use of satellite images to understand 
oil stocks, which were much more used in the last ten years. So it’s quite easy because where 
the oil is stored is in large tanks, they have a removable roof to prevent the oil from coming 
into contact with oxygen, and so in fact there is a drop shadow, and with satellite images,  
by measuring the drop shadow you can see whether the tanks are full or empty. It’s a 
technique that has been used for a very long time, i.e. imagery to understand the state of oil 
stocks. Which is not enough because you also need to know the state of the supply and what’s  
there now. But if we look at the stocks, well, a few years ago the oil companies understood 
that this is normally private information about the way they managed their stocks and they 
put covers on top of all these containers, and in fact now we don’t have any more information  
on the state of the stocks with satellite images. So this frontier, we can see that these 
images that are available outside the companies, it’s more like flow information, it allows  
us to understand the state of the balance sheet and the good health or not of the company.  
If it’s a company that essentially does just-in-time transformations, since when we see what 
comes in and what goes out, we actually see what is gained or not gained. So, there is private 
information that is preserved, that can be preserved, and this is what makes the noise level  
on some activities higher than on others.

14/05/2019, 
ENS PARIS-SACLAY, CACHAN, 

Charles-Albert  LEHALLE

This is very true. The last sequence of questions is in line with what you’re saying. How is a system 
designed, from the beginning, with an understanding of what will happen when difficulties will 
arise? We can talk a bit about the man-machine interface. We all know that these systems 
are not 100% reliable. We hope that the person who ran them in production has put, over it,  
a monitoring system which will know, at some point, that it is not no longer in its comfort zone 
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and that it is therefore going to have to hand it back to the person. The question is not to give the 
human the take-over by saying: it doesn’t work anymore and where are the controls? you have  
to give back to the human in an enlightened way, by giving them very quickly enough information 
to put them in the right mind frame to make decisions to play their role as a human being.  
In addition, we give them back power when it is more complicated, since all the simple cases 
have been managed by the machine. I think this is a last round of questions. How is it that 
we can help humans take control at the appropriate moment? What do we need to do?  
That has to be managed with design.

Oussama CHERIF

Yes indeed. There is a first issue, that Robert raised, It seems to me that artificial intelligence 
makes people lazy. Handing over to them once they get used to being passive is going to be  
a bit complicated. Maybe we should rethink uses differently. Here, I’m going to tease Bruno a little  
bit on the autonomous car. Do we really need an autonomous car or is the only interesting 
aspect of the autonomous car to actually replace a valet? I go home or I go to a restaurant,  
I leave the car, empty, to park by itself. In any case, it will drive smoothly and since there are  
no passengers inside, it actually solves a number of problems: a primary objective, not to injure 
pedestrians, and a secondary one, to avoid damaging the car. I’m exaggerating a little bit,  
but there may be similar things to think about.

Bruno DURAND

Even if we test them, validate them, and revalidate them, our systems are indeed not perfect. 
What we always try to do is plan how we’re going to hand over to the driver. For instance,  
on the service that consists of triggering emergency braking if the user forgets to brake on  
an obstacle, when this time becomes less than 2.5s, we switch on a light on the dashboard, 
which is therefore a first reminder that we send to the driver to take back the hand. If the driver 
does nothing and there is a collision that is getting closer, a buzzer will sound, which will also 
incite the driver to regain control.

This is a first example. On more autonomous examples of vehicles, which we expect to see 
within the next two years, the usage case is as follows: I’m on the highway or on the outskirts in 
a dense traffic situation. I’m driving at less than 70 km/hr. In this case, what the system will do 
is to position you in the lane in which you are and regulate your distance from the vehicle in 
front of you, managing the lane entries of people coming into the lane, motorcycles coming 
up from the lanes, and so on. What is the driver asked to do? The driver must be seated  
in the driver’s seat. However, they are not required to have their feet on the pedals, 
nor their hands on the steering wheel, nor even to look. They can read, knit or eat.  
However, they are warned that they may be asked to take over. In this case, they have 10 seconds 
to do so. During those ten seconds, we must continue to ensure a safe trajectory.

Generally speaking, we try to assure the driver that the car is in control of the scene in which  
it is driving. This objective is achieved, for example, via the HMI, in which we present what  
the system has perceived, what obstacles and vehicles the system has perceived and what lines 
and lanes the system has detected.

Anne-Sophie TAILLANDIER

On research projects that I could see or follow from a distance, I found that it was very interesting 
to have an involvement from the social sciences and humanities,i.e. that there is a mathematician 
and a scientist, on the AI and algo side, and that there is also a team in the social sciences 
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The increasing need for data analysis with AI algorithms creates a shift in the skills that were used to be required  
by traditional actors in the finance and insurance sector. The ideal skill set would be : i) technical skills to implement 
a particular algorithm for alternative data collection or to deploy large machine learning models, ii) sector specific 
skills which are needed to create good predictive models, and iii) strong mathematical skills because in the end 
a machine learning model is nothing more than a mathematical model. Although some education programs are 
already shifting to incorporate all those skills, it will probably be quite challenging to find all of them in a single 
profile. This creates an important HR issue because teams with individuals with very different skills will have  
to efficiently work together in order to allow for this better connection to the real economy. To end this chapter,  
here are two discussions that happened during the IA, Math and Industry round table. Those two discussions extend 
the idea of the wide range of needed skills as well as a more precise discussion regarding the role of academia  
in this challenging context. Although those discussions concern any industry, the financial and insurance industry 
are not specific and will have to deal with the same issues as more general industries.

and humanities. It seems to me that AI results in collaborations with social sciences, which  
I did not expect and which is very interesting. This is for instance the case in the health 
field. You can imagine a lot of things. It is rather a quantitative approach that will be brought  
by the very scientific side and a perhaps more qualitative approach that will be brought  
by the social sciences. I find that the results are very valuable and innovative.

Stéphane HERBIN

The question of monitoring troubles a lot of people at this time, especially in all steering systems, 
for example. There are the car piloting systems, but the piloting systems of big planes that crash 
from time to time. The last accident may be due to a defect in the relationship between a system 
and a human. It is true that these are things that have an impact.

As for doing something interdisciplinary, yes, I think there is also neuroscience that has a big role 
to play in this, since we are doing intelligence.

Charles-Albert LEHALLE

That’s good, we are concluding the round table by addressing the initial topics  
of interdisciplinarity that you claimed to be something that goes along with the artificial intelligence.  
Finally, even if we are not necessarily all promoters of this term, artificial intelligence, there is still 
something behind it that draws other disciplines than hard sciences to interact on rather social 
and societal issues. Perhaps that’s why it deserves to be called intelligence.

Alain TROUVÉ

The first question I’m going to ask you is the following: what should we think about the role  
of balances and interactions between three types of profiles? A profile that is data oriented 
and about hardcore learning, in which you need to know PyTorch, Tensorflow. You have to 
know Hadoop, Python and also perhaps calculation structure problems . A profile that is more  
of a mathematician, focused on models’ manipulation and their properties and algo construction. 
Finally, the business profile, or for its academic version, the expert profile for questions  

and domain, who knows the main paradigms and the prerequisites of the domain.  
There are therefore three types. This may be too simple a classification, but what can be said 
about these three elements? What are their roles? What are the balances and interactions?  
Does it change? Is it an obsolete vision?

Oussama CHERIF

I think the third profile is the most serious one, i. e. the one who knows the trade. It seems to  
me that the question to raise is the following: what is the purpose of AI? Why do we do it?  
Is it just for fun? In the industry, we lack experts and we especially lack the possibility of being 
able to transmit expertise from one area to another, from one generation to another. We want to 
be able to build, improve an expertise and/or be able to transmit it through tools. Do we need 
someone who only masters tools, like TensorFlow, etc.? All you have to do is place an offer and 
there will be plenty of people who will come forward. Personally, I have a little sympathy towards 
the mathematician profile. Moreover very often in our teams , I try to play this mathematician 
role, especially to allow people to think differently, because they have a very engineer-like  
or down-to-earth approach. At a given moment, you have to take a step back and you need to have 
an abstraction background to be able to do that. You have to have a mathematician background, 
you don’t have to be a proven mathematician, but you need that kind of profile.

Anne-Sophie TAILLANDIER

I believe that AI, even if it’s a bit of a buzzword right now - we used to call it big data three  
or four years ago -, what it’s really changed in companies... I feel it strongly. Among all the projects  
we follow on Teralab - we have more than sixty of them, in all fields, agriculture, industry, health, 
etc. - we’ve been working on a lot of projects. Companies need to open up to the outside world.  
I think that what Oussama has just pointed out is very important. There is a need to be able  
to pass on this knowledge, especially in the car industry. There are automotive engineers who were 
there and who must also pass on their knowledge and be able to discuss with data scientists, data 
engineers, who will prepare the data, and so on. It’s something that is quite cross-disciplinary. 
It can also shake up habits in companies. There can be internal power struggles. There may be 
departments that say: it’s AI, it’s my place. There is a question of change management, which 
is still very important and is an important obstacle. And that’s true in all economic sectors.  
The data scientist, that sort of five-legged sheep that everyone is looking for, who is at the same 
time a mathematician, a bit of a geek, knows how to use things, has to work with people in the 
trades, has to be able to understand what we are looking for, and has to be able to take into 
account the company’s information system, because there is a technical architecture that has  
to be implemented. In the end, it’s really a team effort. This kind of teamwork can also be 
done with outside teams. Sometimes, internal teams need a bit of inspiration - that’s why 
they try to interact with laboratories - in order to lift the technological or scientific barriers.  
So I want to stress the crucial role of people who know the business and who are sometimes from 
another generation than data scientists... And this exchange is critical.

Bruno DURAND

Indeed, at Renault, there is a big buzz on AI, there are lots of people and structures  
that are being set up. Particularly an IA expertise channel that is influencing various trades: 
design, manufacturing, sales and after-sales.

What we are asked to do is to make a car with different services, such as a driving assistance 
system.
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The major constraint is that we have little or no ground truth. The cost of acquiring and 
labelling ground truth is very high: e.g. knowing where the vehicle in front of me is, what angle  
it has in relation to me, how fast it is going, what class it is in, etc. We do small data collections 
on equipped circuits, but far away from real traffic. For these instrumented scenarios,  
we equip different vehicles, cyclists and pedestrians with very precise GPS markers, and after 
a week, we manage to have a few kilometers with a ground truth on the positions and speeds 
of these objects. Apart from that, we don’t have any labeled data, i.e. data on which we have  
a very precise ground truth. Consequently, for the generation of vehicles to be marketed within 
five years, we didn’t start with a massive learning curve, which would have required millions and 
millions of data. I stress that the cost of qualified, clean data, for which we are ready to swear that 
it tells the whole truth, is very high. Of course, precise and measured tests are carried out, such 
as crash tests, for instance. The service consists in avoiding a collision with a vehicle, a cyclist or 
a pedestrian. For these tests, the car is allowed to brake by itself on the obstacle. I reassure you, 
the targets used are made of plastic.

In addition, we drive 800,000 km to verify that on this performance, we will not brake, untimely, 
for nothing. But most of this massive driving is done without ground truth. This being said, artificial 
intelligence plays a role in the processing chain of our data.

In order to carry out our services (obstacle avoidance, centering in the lane and regulation,  
in distance from the vehicle in front of us, etc.), we have a certain number of sensors: cameras, 
radars, LIDAR. We buy smart-sensors from equipment manufacturers that preprocess acquired 
raw data and give back in return lists of obstacles and lines, with kinematic (position, speed)  
and static (class, size) attributes. These sensors are far from perfect.
For example, a radar is very bad at classifying an object, unlike a camera. A radar is very 
good at estimating radial velocity, something a camera does quite badly. Afterwards, we use  
the imperfections of the different sensors to have overlaps and imperfections that are not  
of the same nature each time on the different kinds of sensors. We do more things like tracking 
with Kalman filters. In short, on the whole processing chain, some components are clearly IA 
(detection of objects by a camera), others are less IA typed (fusion by Kalman filter).

As is often the case for industrial projects, the efficiency of the processing chain in its entirety 
is is essential. We develop certain components ourselves, possibly intelligent ones, but our role 
is above all to master the process from start to finish. We don’t need big theories, but rather  
to implement a lot of simple and mastered ideas We don’t need big theories, but rather  
to implement many simple and mastered things.

Stéphane HERBIN 

I will go back to the relationship between modeler and computer scientist. I think that what 
we’re experiencing now is that we’re running systems that we don’t understand. Typically, what  
we put into systems that come from learning, which is what Bruno was talking about,  
are cameras that provide direct object detection. They provide things, but why did they provide them,  
and how? We don’t really know. First of all, because there are intellectual property issues,  
and even, fundamentally, all those who have tried a bit of deep learning, we manage to get 
results, but we often don’t understand why. And the question, more epistemological or societal, 
is also: are we ready to pay the price of not understanding something, but of using it anyway?  
Are we capable of accepting the fact that we won’t be able to go through with the modelling? 
On the contrary, we are going to be able to develop systems that could really be used, derived 
from data in general, knowing that the data cost is important. I think we’re seeing a paradigm 
shift here. It’s a real epistemological shift. This is perhaps what we are currently experiencing.  
Ten years ago, in vision and image processing, we were trying to find the characteristics 

and the best filter that would provide the right result. In vision, almost nobody does that 
anymore. We extract characteristics and get by with them. If we look back, we find that it’s not 
very interesting. We’re going to lose efficiency and what do we gain? That’s a bit like that too.  
Are we ready to lose efficiency in order to gain understanding? That’s a real question. 

Nicolas VAYATIS

I have a quick question. Given your experience, your position and your knowledge of the research 
world, how do you perceive expectations that companies have today regarding laboratories?  
Are there things that are changing? How do you view these relationships? Do scientists need  
to work in a certain way to support the transfer of knowledge and technology towards companies? 
The feedback we get is that there is a certain difficulty in grasping the state of the art as  
it is presented today, because there is really a lot of work. It’s quite difficult for people who don’t 
have the right codes to find their way around. How do you view this issue?

Bruno DURAND

As far as Renault is concerned, in parallel with the short-term work carried out for vehicles that are 
due to come out in two or three years, we have five CIFRE PhD students who continue to connect 
with different state of the art research to understand what will happen on the engineering market 
in the upcoming years. It stays a very normal functioning where the company, in order to learn, 
continues to collaborate with labs.

Anne-Sophie TAILLANDIER

Of course there is the classic model, with theses. It will continue to exist. It is in line with what  
you were saying, Charles-Albert, about continuing education. We can see that all this is evolving 
very quickly. There is a need for feedback from research done in labs that we can start to 
integrate into companies. Data scientists in these companies need to interact with researchers 
in labs. They need to be confronted with inspiring ideas and projects. Of course, companies need  
to get back intellectual property. They need to be able to implement what researchers are doing  
in labs. The Chairs model, for instance, is a model that industries continue to appreciate even 
if they are sometimes a little frustrated at not getting immediate return in terms of intellectual 
property. This Chair model may need to evolve. Chairs enable company’s engineers and 
researchers to work together on common problems and data sharing. Being able to experiment 
on company data is a very important point. As AI-related technologies evolve very quickly,  
and there is a very strong competitive aspect between companies for applications, everyone 
would like to be the first to implement this type of AI or new algorithm. Companies continue  
to fund chairs, but are frustrated by not being able to directly implement the results internally.

Charles-Albert  LEHALLE

Thanks to my position at the Institut Louis Bachelier, I am indeed seeing a change of model.

Industrial partners are asking for more than just research papers from academics with whom 
they collaborate. They want actionable research. It is interesting to note that there is also  
a similar demand within the academic community around the concept of reproducible research. 
When you are an editor of an academic journal, how do you set up articles, some of which  
are essentially proposals for algorithms? We must find a way to have a living and runnable version 
of an article when we publish, so that it can be really checked against real alternative datasets 
than those of the academic team that submits the article for publication. The journal’s editors 
must ensure that they do not publish an algorithm that only works with the data of a particular 
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article. This is somewhat similar industrial’s concern: they require that the results of a chair  
or the results of a collaboration are also operable. I think this is a need that emerges in a totally 
cross-cutting way. In my opinion, we must try to provide the same type of response for scientific 
journals and industries.
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