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Abstract 

Teaching the fundamentals of AI and machine learning to K-
12 students presents unique challenges, as these concepts are 
often too abstract, especially for younger students. While 
various tools have been developed, explaining how neural 
networks work in age-appropriate ways remains difficult. 
The Neuron Sandbox was developed to address this issue, 
allowing students to explore a singular neuron contextualized 
through relatable tasks such as “making a peanut butter and 
jelly sandwich.” Building on this inspiration, the paper 
presents a hands-on activity using the AlphAI educational 
software we developed, to make neural networks more 
tangible through robotics. Students explore the neural 
network's processing of LEGO sensor inputs. They can either 
manually edit the network’s weights and thresholds or train 
them through supervised learning. Live visualizations in 1D 
and 2D graphs help them interpret how input influences 
output. The activity provides a guided progression from 
simple one-input decisions to complex functions requiring 
hidden neurons, making neural networks both accessible and 
meaningful for learners. This work was a collaboration 
between educators from the AI4GA program and researchers. 
The educators’ feedback guided iterative improvements to 
AlphAI’s interface and its curriculum, making the platform 
more engaging and developmentally appropriate for teaching 
foundational AI concepts. 

Introduction 

AI education - not only teaching how to use AI, but how AI 

works and how to build AI - is a major challenge to society’s 

harnessing of this technology (Touretzky et al. 2019). Since 

modern AIs rely on Machine Learning, it is important then 

to teach how an AI model learns from data. Several web 

interfaces have been designed to teach these core concepts 

to K-12 students. The Neuron Sandbox facilitates 

understanding by allowing young students the opportunity 

to play with the most iconic AI model, neural networks. 

Students engage the gamified neural network by setting the 

weights and activation threshold of a very simple network 

with 2 input neurons and 1 output neuron (“Neuron 

Sandbox” 2024; D. S. Touretzky, Chen, and Pawar 2024; D. 

Touretzky et al. 2025). Several platforms sharing the same 

principles let students focus on how the model learns from 

data, by letting them train their own model for recognition 

of images, sounds, and other data types (Lane 2017; 

TeachableMachine 2017; Cognimates 2018; Vittascience 

2021; Carney et al. 2020); but the model itself, more 

complex, is kept as a black box. Tensorflow Playground 

(Smilkov and Carter 2016) features a more complex neural 

network, still with 2 inputs but hidden layers of neurons can 

be added. To illuminate how it learns from data, it features 

abstract visualizations of how the neural network succeeds 

(or not) to generalize label assignments from the training 

data to the full 2D space. We developed the AlphAI software 

(Absalon and Deneux n.d.; Martin et al. 2023; Kong and 

Yang 2023), which provides similar interfaces with 

increased versatility, and natively integrates several robotic 

platforms that the neural network can drive, taking the 

robot’s sensor data as input and using its output to select its 

actions. 

 Indeed, educational robotics tools, with their foundation 

in constructionism, are known to support students’ 

acquisition of abstract concepts. Constructivist theory 

suggests that knowledge is developed by actively being 

constructed and reconstructed through one's experience and 

direct interaction with the world (Ackermann 1996). 

Educational robotics is a learning tool that provides hands-

on opportunities supporting students’ learning of abstract 

concepts in tangible and interactive ways (Eguchi 2012, 

2024; Karalekas, Vologiannidis, and Kalomiros 2023). 

Thus, integrating educational robotics tools with AI-

enhanced tools can support student learning with hands-on 

exploratory approaches to ensure their tangible knowledge 

construction through their interactions with the robotics 

tools. 

 Here, we present a new activity of 2 to 4 hours using the 

AlphAI software together with LEGO Spike robotics set, 

which was co-designed with educators from AI4GA. This 

activity is strongly inspired by the Neuron Sandbox 

interface and activities used in the AI4GA program. As in 

Neuron Sandbox activities, students will manually edit 

neural networks to solve challenges and in the most 

advanced part of the activity, they will analyze 2D graphs of 

the network input-ouput transfer function. AlphAI, 

however, allows students to engage the neural network in a 

“live” reacting robot. Instead of manual editing it will be 

possible to use supervised learning to train the network 

using user-collected data, and more complex networks will 

be studied, including with a hidden layer.  
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Resources and Activities 

A food-detecting LEGO Spike robot 

Students build a very simple robot (see Figure 1), using the 

Spike Prime hub. A LEGO figure sits on top of the hub, and 

two sensors will detect some “food” presented to the figure: 

a touch sensor detects a “pizza” LEGO piece and a color 

sensor detects a “vegetable” LEGO piece. The neural 

network has one or two input neurons fed by these sensors 

in an on-off manner (0 for absence, 1 for presence) and one 

output that turns on a happy face on the hub. It is also 

possible to adapt the activity for the Spike Essential kit 

alone; the Spike Essential hub does not have an integrated 

LED display, and the LED matrix included in the set cannot 

be used because the 2 ports of the hub will already be used 

by the 2 sensors; instead, it will be possible to use the status 

LED of the hub, turn it green to replace the happy face 

(unfortunately this won’t be as demonstrative), and off, or 

red, when the output is off. For each scenario, we used a 

different figure, but the Spike Prime set has only two LEGO 

figures; also, the LEGO piece used to represent a vegetable 

belongs to the Spike Essential kit. Thus, if one needs to stick 

to the Spike Prime kit, the vegetable piece can be replaced 

by a small yellow bar which will be called a “banana”, or a 

red one which will be called a “pepper”, and the same figure 

shall be used to represent different tastes (for example on 

different days/moods of the same person). 

Session 1: Manual edition of the Neural Network 

1a Discovery of the Neural Network - logic gate “pizza”. 

When starting the activity, users load a first pre-set 

configuration, and the software interface shows a very 

simple neural network with one input neuron and one output 

neuron (Figure 1A). The input neuron will reflect the state 

of the LEGO Spike touch sensor, playing here the role of a 

pizza detector in a pizza rack: if no pizza is detected, the 

input neuron’s value is 0; if a pizza is detected, the value is 

1 (Figure 1B). The output neuron will trigger the state of the 

Spike hub LED display: if activated, the hub will display a 

happy face. Otherwise, the hub will not display anything. 

 A first LEGO figure, called “Joshua,” is placed atop the 

hub: Joshua is hungry and would like to eat pizza (Figure 

1C). Students are told to set the weight of the connection 

between the input and output neuron (initially equal to zero) 

to a value such that the hub will reflect Joshua’s mindset. 

The solution is shown in Figure 1C: by setting a connection 

weight of 1 (more generally, any weight value > 0.5 will 

work), we have the hub smiling when there is a pizza in the 

rack (top), and not smiling otherwise (bottom). 

 

 
Figure 1: Very first scenario “Joshua wants pizza” with 

only 1 sensor. (NB: neural network displays from the 

software interface have been edited to fit space constraints 

inside figures; red marks do not appear on the software 

interface). 

 

 The red marks alongside the neural network are not 

shown in the software interface; rather, they show how the 

teacher should comment on what is happening “inside” the 

neural network. First, the value of the input neuron (0 or 1) 

is multiplied by the weight (1), yielding the output neuron’s 

pre-activation value (0 or 1). Second, the output neuron gets 

activated (and the hub smiles) if and only if this pre-

activation value is higher than the output neuron’s threshold 

(0.5). Here, the pre-activation and activation of the output 

neuron are the same, but this won’t always be the case 

thereafter. 

 

1b Introducing the 2x2 table of logic gates - logic gate 

“vegetable”. In the second scenario, “Isabel wants 

vegetables,” students will use a second sensor, the Spike 

color sensor, to detect the LEGO pieces representing 

vegetables (Figure 2A).  Now, there are two input neurons: 

the “pizza” neuron x1 from the previous scenario, and the 

new “vegetable” neuron x2. Students are tasked to edit the 

network weights to make the hub smile only if a vegetable 

is present, regardless of the status of pizza: they do it by 

setting a connection between input x2 and output y, but 

keeping zero connection between x1 and y (Figure 2B). At 

this stage, the teacher makes them realize that the neural 

network achieves a function over its two inputs. Since each 

input is 0 or 1, the function is represented by a 2x2 table 

(Figure 2C; the table cell with thick borders represents the 

input configuration shown in Figure 2B).  



 
Figure 2: Scenarios “Isabel wants vegetables” and “Jude 

wants any food” (OR gate). 

 

1c Logic gate “pizza OR vegetable”. With the knowledge 

they accumulated, students can now set the network’s 

weights to implement (in Machine Learning terminology, to 

“model”) the logic gate OR, during the third scenario, “Jude 

wants any food” (i.e., “pizza OR vegetable”). They need to 

set positive connections (at least 0.5) between both input 

neurons and output y (Figure 2D and E). At this point, the 

teacher guides students to explain the logic of the chosen 

weights in both the “Isabel wants vegetables” and the “Jude 

wants any food” scenario. This ensures that there is 

understanding of the values of the correct weights, even if 

students relied on guessing and checking to solve.  

 

 

1d Activation threshold - logic gate “pizza AND 

vegetable”. After editing and understanding the weights, 

students need to understand a threshold to solve the next 

scenario, “Larry is very hungry (and wants both pizza and 

vegetables)”. The smile should not be activated if only one 

input is on, so if students connect inputs to output with 

weight values of 1, they need to change the threshold value 

from its default value of 0.5 to a value above 1 (for example, 

1.5 as in Figure 3). Another solution, without changing the 

default threshold value of 0.5, would be to set connection 

weights below 0.5 (for example, 0.4). Whichever solution is 

found, it necessitates a good understanding of the output 

neuron’s activation mechanism. 

 

 
Figure 3: Scenario “Larry is very hungry” (AND gate) 

 

Session 2: Discovery of supervised learning and of 

state space graphs 

2a Supervised learning. So far, students had to manually 

set connection weights and activation threshold in order for 

the neural network to model the desired logic function (i.e., 

the logic gate defined by the tables, such as in Figures 2, 3). 

However, the power of neural networks resides in the fact 

that the data scientist does not need to find the appropriate 

parameters. Rather, parameters are learnt from data using 

Supervised Learning. 

 Therefore, students are now invited to revisit the previous 

scenarios, and this time, let the supervised learning find the 

appropriate weights. They switch from manual edition to 

learning mode in the AlphAI main control panel (Figure 

4A), and set the main display mode to show “Training data 

and N                                                                                   eural 

network”. This leads the software to show an additional 

“training data” display (top part in Figure 4B and C) that is 

similar to those of Teachable Machine and other interfaces. 

Now, students can acquire data by pressing the “happy face” 

or “no display” icons at the right side of either the training 

data or the neural network. Each time they do so, a new data 

point is added to the training data, consisting of the value of 

the sensors at the time of the icon press, and the identity of 

the pressed icon. This data point appears on screen as a new 

entry inside the training data section of the selected action 

(orange frame for the happy face, blue for no display). 

Immediately, weights and activation threshold of the neural 

network are automatically modified so as to model a transfer 

function that matches the examples provided in the training 

data. Students will be invited to repeat the 4 previous 

scenarios in learning mode. In Figure 4B, the AI was trained 

for Jude’s OR gate (“I want any food”), and in Figure 4C, 

for Larry’s AND gate (“I am very hungry”). In the training 

data display we see how the training differed for the cases 

where only one food is provided and in the neural network 

display we see how the connection weights were estimated 

to similar values, whereas the main difference resides in the 

activation threshold being set much higher in the case of the 

AND gate, similar to what was experienced during the 

manual edition. 



 
Figure 4: Using supervised learning to automatically train 

the neural network (revisiting OR gate and AND gate). 

  

2.2 2D graphs. For the sake of keeping the activity simple, 

we used a robotic configuration where the two sensors are 

binary: inputs x1 and x2 can only be 0 or 1 depending on the 

detection of pizza and vegetables. However, to fully 

understand the action of the neural network, it is pertinent to 

study how its output varies for any real values of x1and x2. 

The state graph displays as an image the output y as function 

of x1 and x2, using two different colors for the two possible 

values 0 and 1. It includes the output of the “logic gate” at 

positions (0,0), (0,1), (1,0) and (1,1) (see Figure 5 top-left). 

In AlphAI software, the state graph when shown is 

positioned above the neural network, such that as soon as 

network parameters are updated, the graph updates. 

Students are invited to repeat the 4 previous scenarios and 

observe how this moves the separation between the blue (no 

activation) and orange (activation) regions. They will 

observe that if x2 makes no connection to output (scenario 

“Joshua wants pizza”), output happiness depends only on x1 

and the separation is vertical. Similarly the separation is 

horizontal in “Isabel wants vegetable” case, and becomes 

diagonal in Jude’s OR gate and Larry’s AND gate cases. 

And when transforming and OR gate into an AND gate by 

increasing the activation threshold, the separation moves 

upper-right. They will also observe how, when using 

supervised learning to train the network, the separation lines 

move during the course of training, until reaching positions 

close to those obtained when manually editing. 

 

 

 
Figure 5: Visualizing the neural network generalization in 

the 2D state graph 

 

Session 3: Understanding non-linearity and the 

need for hidden neurons - logic gate “pizza XOR 

vegetable” 

3.1 Discovering negative weights - Logic gates “pizza 

AND NOT vegetable” and “NOT pizza AND NOT 

vegetable” 

Now, students will benefit from the help of the state graph 

to solve the next scenarios’ challenges. They are asked to 

always start by trying to set the appropriate connections and 

threshold manually, and only after they find a solution, do 

they check what kind of solution supervised learning finds. 

The first one is “Reggie can’t stand veggies.” (Only 

accepted food is pizza without vegetables, Figure 6A): this 

requires the pizza neuron to form a positive connection to 

output, but the vegetable neuron must form a negative 

connection, such that when both are activated, the vegetable 

cancels the effect of the pizza! (see bottom of Figure 6A). 

And the second is “Kevin is fasting”: now both foods should 

make negative connections since they both remove Kevin’s 

happiness from fasting. However, what is more difficult to 

find out might be how to get this happiness activated when 

there is no food. Teachers guide students to consider that 

when there is no food, the pre-activation value is zero, so in 

order for this pre-activation to be greater than the activation 

threshold, the activation threshold must be negative!  



 
Figure 6: Scenarios “Reggie can’t stand veggies,” and 

“Kevin is fasting” (using automatic learning mode). 

 

3.2 The limits of linear neural network - Logic gate XOR  

The next and last scenario “Alice does not mix” is a large 

step of difficulty above: Alice will be happy with either 

vegetables or pizza, but doesn’t want both together. For a 

predetermined time, teachers should allow students to 

explore possible weights, thresholds, and experiment with 

the inputs here, using their knowledge from the previous 

scenarios to inform their attempts both using manual editing 

and supervised learning: However, they will never find a 

solution with the previous methods because it is not 

possible. Here the teacher can challenge students to express 

why the neural network fails. Indeed, from what has been 

learned so far, students can reason that if the pizza neuron 

connects positively to the output neuron, the presence of 

pizza can only increase the output activation. Conversely, if 

it connects negatively, the presence of pizza can only 

decrease the output activation. So, there exists no 

configuration which allows pizza to have a “positive” effect 

on the outcome (switch from unhappy to happy) when there 

is no vegetable, and at the same time have a “negative” 

effect (switch from happy to unhappy) when there is already 

a vegetable present. In more technical terms, the pre-

activation value is a linear function of the inputs, and the 

activation value is a monotonous increasing function of the 

inputs, so any function which is not monotonous (going 

“sometimes up, sometimes down”) cannot be modelled with 

such a neural network. 

 

3.3 Solving by adding a hidden layer 

It will be possible however to model Alice’s XOR gate by 

adding a layer of intermediary neurons that will break these 

linear and monotonous behaviours, by letting inputs form 

both positive and negative “paths” to the output. Students 

are told how to add a layer of two neurons in the AI 

configuration tab and asked to make the appropriate 

connections to have the first of them implement “pizza and 

not vegetable”, the second “vegetable and not pizza”, and 

the output neuron to make an OR between the two 

intermediary neurons. This results in the state graph and 

neural network as in Figure 7A and C, implementing the 

desired XOR behavior! 

 
Figure 7: Solving the XOR gate “Alice does not mix” in 

manual edit (A,C) and in automatic learning modes (B,D). 



 

Now if students try to repeat the network setting in learning 

mode, they will experience failure. This is because (1) the 

threshold activation mechanism does not let the learning 

procedure “feel” whether it is better to increase or decrease 

the connections on the left of the threshold (in technical 

words, it does not let the gradients retro-propagate), and (2) 

to give more chances for both positive and negative “paths” 

between input and output to form during learning, it is better 

to have more intermediary neurons, which will each be 

initialized differently. To fix this, in the AI configuration tab 

they change (1) the activation method from “Sharp 

threshold” to “Sigmoid threshold” and (2) the number of 

hidden neurons from 2 to at least 6. Now learning should 

succeed (Figure 7B and D), and we get some understanding 

of what is this “Sigmoid threshold”: neuron activations in 

the hidden layers are not clearcut 0 or 1 (Figure 7D), they 

are rather “close to 0”, or “close to 1”, or even can be in the 

middle between 0 and 1 if pre-activation is close to 0. 

Consequently, the separation in the state graph is smooth 

(Figure 7B) contrary to the straight lines in the case of the 

previous manual editing (Figure 7A). 

 These final scenarios introduce students to advanced 

features that they may enjoy exploring further! 

Going further 

The AlphAI neural network interface and integration of 

machine learning and robotics allows for fun and interesting 

extensions to the activities, such as: 

• Visualizing the pre-activation function in the 1D graph. 

When there is only one input, the 2D graph becomes a 1D 

graph, i.e., there is only one input x, which varies along the 

x-axis of the graph. In such a case, the AlphAI software puts 

more information inside the graph, namely, the y-axis is 

used to display the output neuron’s pre-activation (x  

weight) as a function of input x. This is a straight line 

passing through the graph origin (0,0). When this line is 

above the activation threshold (represented by a horizontal 

line), the neuron is activated (orange background). 

  

 
Figure 8: Visualizing the neural network generalization in 

the 1D state graph 

 

• Use a motor instead of the hub display for more 

“animated” scenarios. For example, a motor could move the 

LEGO figure forward when he is willing to eat the presented 

food, and backward otherwise. 

• Use the touch and color sensors in continuous mode, such 

that the input neurons will have continuous values between 

0 and 1 depending on the pressure applied and on the 

quantity of light reflection. This will make all values in the 

state graph reachable by actual sensor states. The 

contextualizing story must be adapted then: for example a 

different pizza rack should be built that can accommodate 

more than 1 pizza, and the photosensor should also be 

positioned in a way that measures the precise quantity of 

vegetables. Then, new challenges can be defined regarding 

the ideal menu of different LEGO figures. The more 

complex the pattern of accepted menus, the more hidden 

neurons will be needed! 

• Teachers might be interested in completely bridging these 

activities with student experiences in platforms such as 

Teachable Machine. The main difference is that the activity 

proposed here uses only 2 single-value sensors, whereas 

Teachable Machine applies more complex models on rich 

data such as images and sounds. It is possible in the Sensors 

configuration tab of the AlphAI to replace the simple 

sensors with the PC webcam, then configure a more 

complex neural network in the AI configuration tab 

(including using the pre-trained Resnet18 model) and train 

this model to turn the hub happy when the camera sees 

images of pizzas or vegetables! 

Discussion 

Thanks to a tangible approach, we make many concepts of 

AI and Machine Learning accessible at the K12 level: 

• The calculations inside a small neural network. 

• The concept that the same neural architecture can be tuned 

to model very different functions (here, “logic gates”). This 

is the essence of an AI model: a function that can be tuned 

by settings appropriate parameters values. 

• How an AI can drive a physical robot relying on sensors 

(providing input to AI) and actuators (activated by AI 

output). 

• How to train an AI model using data consisting of example 

input/output pairs, and how this training consists precisely 

in setting the weights they had to struggle before setting 

manually. 

• Visualization of the model generalization in a graph (if the 

number of inputs is one or two, as, of course, visualizing an 

ND space gets much more difficult when there are more 

inputs!). It is also very instructive to visualize how this 

graph evolves during learning (as in the Tensorflow 

Playground interface). 

• Why layers of hidden neurons are necessary, and an 

understanding of the difference between a linear and a 

nonlinear function (in a linear setting, the same piece of food 



will always have the same effect, either positive or negative, 

on output happiness; in a nonlinear setting, the same piece 

of food can have both positive and negative effects 

depending on the context. Of course, real-world problems 

are essentially nonlinear and require very large multilayer 

neural nets!). 

• The existence of more complex factors for successful 

training is revealed, such as choosing the appropriate 

activation function or learning rate. Without going into more 

details, this gives them a glimpse of how modeling complex 

functions requires know-how that can be acquired by 

studying and experiencing. 

 These concepts might seem complex for the K-12 level. 

However grasping them will really help them developing an 

engineering mindset, giving them confidence they can 

harness the technology, instead of considering it as an out-

of-reach mystical object. 

 And grasping these concepts is in fact at reachable 

distance thanks to our efforts to make them very concrete: 

• Use of a fun LEGO robot: students manipulate with their 

hands the neural network sensor inputs and see its output 

physically. 

• Contextualization with the “Which food do you like?” 

story, inspired by the Neural Sandbox “peanut butter and 

jelly” and other activities. Assigning a different LEGO 

figure per food preference also contributes to build the story 

and make the abstract concepts of “models”, or “logic gates” 

appealing. 

• Tinkering of the neural models, going back and forth 

between manual edition and supervised learning, and seeing 

the effects of parameter changes on the model generalization 

as it appears in the state graph (displacement of the 

separation border, etc.). 

• Furthermore, the interaction with AI4GA educators led to 

thorough improvements in AlphAI’s visualization of the 

neural network. All steps of the calculations now appear on 

screen, with appropriate colors, font size, and labels. A 

strong coherence with the Neural Sandbox interface was 

sought as well, to allow using both tools with the same 

students. 

 The interaction with AI4GA educators led to two major 

improvements in the AlphAI interface that are interesting to 

discuss here. First, we followed the choice of Neural 

Sandbox to show the nonlinear neural activation in the form 

of an activation threshold rather than as a classic nonlinear 

activation function. This simplifies understanding, and also 

allows not using neuron biases. It is interesting indeed to 

note that activating the output neuron when pre-activation is 

greater than a threshold (for example, 0.5) is equivalent to, 

but much easier to explain, adding a bias value of -0.5 then 

applying a Heaviside activation function. The AlphAI 

interface has been adapted to be capable of displaying either 

classic neural biases and activation functions, or simpler 

activation thresholds. Second, it appeared very important 

that every detail of an artificial neuron calculation appears 

on screen, including: individual inputs received from pre-

synaptic neurons, pre-activation value, neural bias or 

activation threshold parameters, activation value, weight 

parameters of the connections to post-synaptic neurons. 

Displaying so much information on screen required 

designing carefully how to position elements, use 

appropriate color or gray shades, font types and sizes, boxes 

or not. 
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