
“Which food do you like?” Tinkering with Neural Networks using AlphAI

software and LEGO Spike

Thomas Deneux, Amber Jones and Amy Eguchi

Abstract

Teaching the fundamentals of AI and machine learning to K-
12 students presents unique challenges, as these concepts are
often too abstract, especially for younger students. While
various tools have been developed, explaining how neural
networks work in age-appropriate ways remains difficult.
The Neuron Sandbox was developed to address this issue,
allowing students to explore a singular neuron contextualized
through relatable tasks such as “making a peanut butter and
jelly sandwich.” Building on this inspiration, the paper
presents a hands-on activity using the AlphAI educational
software we developed, to make neural networks more
tangible through robotics. Students explore the neural
network's processing of LEGO sensor inputs. They can either
manually edit the network’s weights and thresholds or train
them through supervised learning. Live visualizations in 1D
and 2D graphs help them interpret how input influences
output. The activity provides a guided progression from
simple one-input decisions to complex functions requiring
hidden neurons, making neural networks both accessible and
meaningful for learners. This work was a collaboration
between educators from the AI4GA program and researchers.
The educators’ feedback guided iterative improvements to
AlphAI’s interface and its curriculum, making the platform
more engaging and developmentally appropriate for teaching
foundational AI concepts.

Introduction

AI education - not only teaching how to use AI, but how AI

works and how to build AI - is a major challenge to society’s

harnessing of this technology (Touretzky et al. 2019). Since

modern AIs rely on Machine Learning, it is important then

to teach how an AI model learns from data. Several web

interfaces have been designed to teach these core concepts

to K-12 students. The Neuron Sandbox facilitates

understanding by allowing young students the opportunity

to play with the most iconic AI model, neural networks.

Students engage the gamified neural network by setting the

weights and activation threshold of a very simple network

with 2 input neurons and 1 output neuron (“Neuron

Sandbox” 2024; D. S. Touretzky, Chen, and Pawar 2024; D.

Touretzky et al. 2025). Several platforms sharing the same

principles let students focus on how the model learns from

data, by letting them train their own model for recognition

of images, sounds, and other data types (Lane 2017;

TeachableMachine 2017; Cognimates 2018; Vittascience

2021; Carney et al. 2020); but the model itself, more

complex, is kept as a black box. Tensorflow Playground

(Smilkov and Carter 2016) features a more complex neural

network, still with 2 inputs but hidden layers of neurons can

be added. To illuminate how it learns from data, it features

abstract visualizations of how the neural network succeeds

(or not) to generalize label assignments from the training

data to the full 2D space. We developed the AlphAI software

(Absalon and Deneux n.d.; Martin et al. 2023; Kong and

Yang 2023), which provides similar interfaces with

increased versatility, and natively integrates several robotic

platforms that the neural network can drive, taking the

robot’s sensor data as input and using its output to select its

actions.

 Indeed, educational robotics tools, with their foundation

in constructionism, are known to support students’

acquisition of abstract concepts. Constructivist theory

suggests that knowledge is developed by actively being

constructed and reconstructed through one's experience and

direct interaction with the world (Ackermann 1996).

Educational robotics is a learning tool that provides hands-

on opportunities supporting students’ learning of abstract

concepts in tangible and interactive ways (Eguchi 2012,

2024; Karalekas, Vologiannidis, and Kalomiros 2023).

Thus, integrating educational robotics tools with AI-

enhanced tools can support student learning with hands-on

exploratory approaches to ensure their tangible knowledge

construction through their interactions with the robotics

tools.

 Here, we present a new activity of 2 to 4 hours using the

AlphAI software together with LEGO Spike robotics set,

which was co-designed with educators from AI4GA. This

activity is strongly inspired by the Neuron Sandbox

interface and activities used in the AI4GA program. As in

Neuron Sandbox activities, students will manually edit

neural networks to solve challenges and in the most

advanced part of the activity, they will analyze 2D graphs of

the network input-ouput transfer function. AlphAI,

however, allows students to engage the neural network in a

“live” reacting robot. Instead of manual editing it will be

possible to use supervised learning to train the network

using user-collected data, and more complex networks will

be studied, including with a hidden layer.

https://paperpile.com/c/fBsgCd/6YwS+5XV4+yHkb
https://paperpile.com/c/fBsgCd/6YwS+5XV4+yHkb
https://paperpile.com/c/fBsgCd/6YwS+5XV4+yHkb
https://paperpile.com/c/fBsgCd/XxWk+ZlOk+mt6Q+IUYn+pBCe
https://paperpile.com/c/fBsgCd/XxWk+ZlOk+mt6Q+IUYn+pBCe
https://paperpile.com/c/fBsgCd/XxWk+ZlOk+mt6Q+IUYn+pBCe
https://paperpile.com/c/fBsgCd/XxWk+ZlOk+mt6Q+IUYn+pBCe
https://paperpile.com/c/fBsgCd/XxWk+ZlOk+mt6Q+IUYn+pBCe
https://paperpile.com/c/fBsgCd/H3oJ
https://paperpile.com/c/fBsgCd/Guqy+ZWo8+ekdl
https://paperpile.com/c/fBsgCd/Guqy+ZWo8+ekdl

Resources and Activities

A food-detecting LEGO Spike robot

Students build a very simple robot (see Figure 1), using the

Spike Prime hub. A LEGO figure sits on top of the hub, and

two sensors will detect some “food” presented to the figure:

a touch sensor detects a “pizza” LEGO piece and a color

sensor detects a “vegetable” LEGO piece. The neural

network has one or two input neurons fed by these sensors

in an on-off manner (0 for absence, 1 for presence) and one

output that turns on a happy face on the hub. It is also

possible to adapt the activity for the Spike Essential kit

alone; the Spike Essential hub does not have an integrated

LED display, and the LED matrix included in the set cannot

be used because the 2 ports of the hub will already be used

by the 2 sensors; instead, it will be possible to use the status

LED of the hub, turn it green to replace the happy face

(unfortunately this won’t be as demonstrative), and off, or

red, when the output is off. For each scenario, we used a

different figure, but the Spike Prime set has only two LEGO

figures; also, the LEGO piece used to represent a vegetable

belongs to the Spike Essential kit. Thus, if one needs to stick

to the Spike Prime kit, the vegetable piece can be replaced

by a small yellow bar which will be called a “banana”, or a

red one which will be called a “pepper”, and the same figure

shall be used to represent different tastes (for example on

different days/moods of the same person).

Session 1: Manual edition of the Neural Network

1a Discovery of the Neural Network - logic gate “pizza”.

When starting the activity, users load a first pre-set

configuration, and the software interface shows a very

simple neural network with one input neuron and one output

neuron (Figure 1A). The input neuron will reflect the state

of the LEGO Spike touch sensor, playing here the role of a

pizza detector in a pizza rack: if no pizza is detected, the

input neuron’s value is 0; if a pizza is detected, the value is

1 (Figure 1B). The output neuron will trigger the state of the

Spike hub LED display: if activated, the hub will display a

happy face. Otherwise, the hub will not display anything.

 A first LEGO figure, called “Joshua,” is placed atop the

hub: Joshua is hungry and would like to eat pizza (Figure

1C). Students are told to set the weight of the connection

between the input and output neuron (initially equal to zero)

to a value such that the hub will reflect Joshua’s mindset.

The solution is shown in Figure 1C: by setting a connection

weight of 1 (more generally, any weight value > 0.5 will

work), we have the hub smiling when there is a pizza in the

rack (top), and not smiling otherwise (bottom).

Figure 1: Very first scenario “Joshua wants pizza” with

only 1 sensor. (NB: neural network displays from the

software interface have been edited to fit space constraints

inside figures; red marks do not appear on the software

interface).

 The red marks alongside the neural network are not

shown in the software interface; rather, they show how the

teacher should comment on what is happening “inside” the

neural network. First, the value of the input neuron (0 or 1)

is multiplied by the weight (1), yielding the output neuron’s

pre-activation value (0 or 1). Second, the output neuron gets

activated (and the hub smiles) if and only if this pre-

activation value is higher than the output neuron’s threshold

(0.5). Here, the pre-activation and activation of the output

neuron are the same, but this won’t always be the case

thereafter.

1b Introducing the 2x2 table of logic gates - logic gate

“vegetable”. In the second scenario, “Isabel wants

vegetables,” students will use a second sensor, the Spike

color sensor, to detect the LEGO pieces representing

vegetables (Figure 2A). Now, there are two input neurons:

the “pizza” neuron x1 from the previous scenario, and the

new “vegetable” neuron x2. Students are tasked to edit the

network weights to make the hub smile only if a vegetable

is present, regardless of the status of pizza: they do it by

setting a connection between input x2 and output y, but

keeping zero connection between x1 and y (Figure 2B). At

this stage, the teacher makes them realize that the neural

network achieves a function over its two inputs. Since each

input is 0 or 1, the function is represented by a 2x2 table

(Figure 2C; the table cell with thick borders represents the

input configuration shown in Figure 2B).

Figure 2: Scenarios “Isabel wants vegetables” and “Jude

wants any food” (OR gate).

1c Logic gate “pizza OR vegetable”. With the knowledge

they accumulated, students can now set the network’s

weights to implement (in Machine Learning terminology, to

“model”) the logic gate OR, during the third scenario, “Jude

wants any food” (i.e., “pizza OR vegetable”). They need to

set positive connections (at least 0.5) between both input

neurons and output y (Figure 2D and E). At this point, the

teacher guides students to explain the logic of the chosen

weights in both the “Isabel wants vegetables” and the “Jude

wants any food” scenario. This ensures that there is

understanding of the values of the correct weights, even if

students relied on guessing and checking to solve.

1d Activation threshold - logic gate “pizza AND

vegetable”. After editing and understanding the weights,

students need to understand a threshold to solve the next

scenario, “Larry is very hungry (and wants both pizza and

vegetables)”. The smile should not be activated if only one

input is on, so if students connect inputs to output with

weight values of 1, they need to change the threshold value

from its default value of 0.5 to a value above 1 (for example,

1.5 as in Figure 3). Another solution, without changing the

default threshold value of 0.5, would be to set connection

weights below 0.5 (for example, 0.4). Whichever solution is

found, it necessitates a good understanding of the output

neuron’s activation mechanism.

Figure 3: Scenario “Larry is very hungry” (AND gate)

Session 2: Discovery of supervised learning and of

state space graphs

2a Supervised learning. So far, students had to manually

set connection weights and activation threshold in order for

the neural network to model the desired logic function (i.e.,

the logic gate defined by the tables, such as in Figures 2, 3).

However, the power of neural networks resides in the fact

that the data scientist does not need to find the appropriate

parameters. Rather, parameters are learnt from data using

Supervised Learning.

 Therefore, students are now invited to revisit the previous

scenarios, and this time, let the supervised learning find the

appropriate weights. They switch from manual edition to

learning mode in the AlphAI main control panel (Figure

4A), and set the main display mode to show “Training data

and N eural

network”. This leads the software to show an additional

“training data” display (top part in Figure 4B and C) that is

similar to those of Teachable Machine and other interfaces.

Now, students can acquire data by pressing the “happy face”

or “no display” icons at the right side of either the training

data or the neural network. Each time they do so, a new data

point is added to the training data, consisting of the value of

the sensors at the time of the icon press, and the identity of

the pressed icon. This data point appears on screen as a new

entry inside the training data section of the selected action

(orange frame for the happy face, blue for no display).

Immediately, weights and activation threshold of the neural

network are automatically modified so as to model a transfer

function that matches the examples provided in the training

data. Students will be invited to repeat the 4 previous

scenarios in learning mode. In Figure 4B, the AI was trained

for Jude’s OR gate (“I want any food”), and in Figure 4C,

for Larry’s AND gate (“I am very hungry”). In the training

data display we see how the training differed for the cases

where only one food is provided and in the neural network

display we see how the connection weights were estimated

to similar values, whereas the main difference resides in the

activation threshold being set much higher in the case of the

AND gate, similar to what was experienced during the

manual edition.

Figure 4: Using supervised learning to automatically train

the neural network (revisiting OR gate and AND gate).

2.2 2D graphs. For the sake of keeping the activity simple,

we used a robotic configuration where the two sensors are

binary: inputs x1 and x2 can only be 0 or 1 depending on the

detection of pizza and vegetables. However, to fully

understand the action of the neural network, it is pertinent to

study how its output varies for any real values of x1and x2.

The state graph displays as an image the output y as function

of x1 and x2, using two different colors for the two possible

values 0 and 1. It includes the output of the “logic gate” at

positions (0,0), (0,1), (1,0) and (1,1) (see Figure 5 top-left).

In AlphAI software, the state graph when shown is

positioned above the neural network, such that as soon as

network parameters are updated, the graph updates.

Students are invited to repeat the 4 previous scenarios and

observe how this moves the separation between the blue (no

activation) and orange (activation) regions. They will

observe that if x2 makes no connection to output (scenario

“Joshua wants pizza”), output happiness depends only on x1

and the separation is vertical. Similarly the separation is

horizontal in “Isabel wants vegetable” case, and becomes

diagonal in Jude’s OR gate and Larry’s AND gate cases.

And when transforming and OR gate into an AND gate by

increasing the activation threshold, the separation moves

upper-right. They will also observe how, when using

supervised learning to train the network, the separation lines

move during the course of training, until reaching positions

close to those obtained when manually editing.

Figure 5: Visualizing the neural network generalization in

the 2D state graph

Session 3: Understanding non-linearity and the

need for hidden neurons - logic gate “pizza XOR

vegetable”

3.1 Discovering negative weights - Logic gates “pizza

AND NOT vegetable” and “NOT pizza AND NOT

vegetable”

Now, students will benefit from the help of the state graph

to solve the next scenarios’ challenges. They are asked to

always start by trying to set the appropriate connections and

threshold manually, and only after they find a solution, do

they check what kind of solution supervised learning finds.

The first one is “Reggie can’t stand veggies.” (Only

accepted food is pizza without vegetables, Figure 6A): this

requires the pizza neuron to form a positive connection to

output, but the vegetable neuron must form a negative

connection, such that when both are activated, the vegetable

cancels the effect of the pizza! (see bottom of Figure 6A).

And the second is “Kevin is fasting”: now both foods should

make negative connections since they both remove Kevin’s

happiness from fasting. However, what is more difficult to

find out might be how to get this happiness activated when

there is no food. Teachers guide students to consider that

when there is no food, the pre-activation value is zero, so in

order for this pre-activation to be greater than the activation

threshold, the activation threshold must be negative!

Figure 6: Scenarios “Reggie can’t stand veggies,” and

“Kevin is fasting” (using automatic learning mode).

3.2 The limits of linear neural network - Logic gate XOR

The next and last scenario “Alice does not mix” is a large

step of difficulty above: Alice will be happy with either

vegetables or pizza, but doesn’t want both together. For a

predetermined time, teachers should allow students to

explore possible weights, thresholds, and experiment with

the inputs here, using their knowledge from the previous

scenarios to inform their attempts both using manual editing

and supervised learning: However, they will never find a

solution with the previous methods because it is not

possible. Here the teacher can challenge students to express

why the neural network fails. Indeed, from what has been

learned so far, students can reason that if the pizza neuron

connects positively to the output neuron, the presence of

pizza can only increase the output activation. Conversely, if

it connects negatively, the presence of pizza can only

decrease the output activation. So, there exists no

configuration which allows pizza to have a “positive” effect

on the outcome (switch from unhappy to happy) when there

is no vegetable, and at the same time have a “negative”

effect (switch from happy to unhappy) when there is already

a vegetable present. In more technical terms, the pre-

activation value is a linear function of the inputs, and the

activation value is a monotonous increasing function of the

inputs, so any function which is not monotonous (going

“sometimes up, sometimes down”) cannot be modelled with

such a neural network.

3.3 Solving by adding a hidden layer

It will be possible however to model Alice’s XOR gate by

adding a layer of intermediary neurons that will break these

linear and monotonous behaviours, by letting inputs form

both positive and negative “paths” to the output. Students

are told how to add a layer of two neurons in the AI

configuration tab and asked to make the appropriate

connections to have the first of them implement “pizza and

not vegetable”, the second “vegetable and not pizza”, and

the output neuron to make an OR between the two

intermediary neurons. This results in the state graph and

neural network as in Figure 7A and C, implementing the

desired XOR behavior!

Figure 7: Solving the XOR gate “Alice does not mix” in

manual edit (A,C) and in automatic learning modes (B,D).

Now if students try to repeat the network setting in learning

mode, they will experience failure. This is because (1) the

threshold activation mechanism does not let the learning

procedure “feel” whether it is better to increase or decrease

the connections on the left of the threshold (in technical

words, it does not let the gradients retro-propagate), and (2)

to give more chances for both positive and negative “paths”

between input and output to form during learning, it is better

to have more intermediary neurons, which will each be

initialized differently. To fix this, in the AI configuration tab

they change (1) the activation method from “Sharp

threshold” to “Sigmoid threshold” and (2) the number of

hidden neurons from 2 to at least 6. Now learning should

succeed (Figure 7B and D), and we get some understanding

of what is this “Sigmoid threshold”: neuron activations in

the hidden layers are not clearcut 0 or 1 (Figure 7D), they

are rather “close to 0”, or “close to 1”, or even can be in the

middle between 0 and 1 if pre-activation is close to 0.

Consequently, the separation in the state graph is smooth

(Figure 7B) contrary to the straight lines in the case of the

previous manual editing (Figure 7A).

 These final scenarios introduce students to advanced

features that they may enjoy exploring further!

Going further

The AlphAI neural network interface and integration of

machine learning and robotics allows for fun and interesting

extensions to the activities, such as:

• Visualizing the pre-activation function in the 1D graph.

When there is only one input, the 2D graph becomes a 1D

graph, i.e., there is only one input x, which varies along the

x-axis of the graph. In such a case, the AlphAI software puts

more information inside the graph, namely, the y-axis is

used to display the output neuron’s pre-activation (x 

weight) as a function of input x. This is a straight line

passing through the graph origin (0,0). When this line is

above the activation threshold (represented by a horizontal

line), the neuron is activated (orange background).

Figure 8: Visualizing the neural network generalization in

the 1D state graph

• Use a motor instead of the hub display for more

“animated” scenarios. For example, a motor could move the

LEGO figure forward when he is willing to eat the presented

food, and backward otherwise.

• Use the touch and color sensors in continuous mode, such

that the input neurons will have continuous values between

0 and 1 depending on the pressure applied and on the

quantity of light reflection. This will make all values in the

state graph reachable by actual sensor states. The

contextualizing story must be adapted then: for example a

different pizza rack should be built that can accommodate

more than 1 pizza, and the photosensor should also be

positioned in a way that measures the precise quantity of

vegetables. Then, new challenges can be defined regarding

the ideal menu of different LEGO figures. The more

complex the pattern of accepted menus, the more hidden

neurons will be needed!

• Teachers might be interested in completely bridging these

activities with student experiences in platforms such as

Teachable Machine. The main difference is that the activity

proposed here uses only 2 single-value sensors, whereas

Teachable Machine applies more complex models on rich

data such as images and sounds. It is possible in the Sensors

configuration tab of the AlphAI to replace the simple

sensors with the PC webcam, then configure a more

complex neural network in the AI configuration tab

(including using the pre-trained Resnet18 model) and train

this model to turn the hub happy when the camera sees

images of pizzas or vegetables!

Discussion

Thanks to a tangible approach, we make many concepts of

AI and Machine Learning accessible at the K12 level:

• The calculations inside a small neural network.

• The concept that the same neural architecture can be tuned

to model very different functions (here, “logic gates”). This

is the essence of an AI model: a function that can be tuned

by settings appropriate parameters values.

• How an AI can drive a physical robot relying on sensors

(providing input to AI) and actuators (activated by AI

output).

• How to train an AI model using data consisting of example

input/output pairs, and how this training consists precisely

in setting the weights they had to struggle before setting

manually.

• Visualization of the model generalization in a graph (if the

number of inputs is one or two, as, of course, visualizing an

ND space gets much more difficult when there are more

inputs!). It is also very instructive to visualize how this

graph evolves during learning (as in the Tensorflow

Playground interface).

• Why layers of hidden neurons are necessary, and an

understanding of the difference between a linear and a

nonlinear function (in a linear setting, the same piece of food

will always have the same effect, either positive or negative,

on output happiness; in a nonlinear setting, the same piece

of food can have both positive and negative effects

depending on the context. Of course, real-world problems

are essentially nonlinear and require very large multilayer

neural nets!).

• The existence of more complex factors for successful

training is revealed, such as choosing the appropriate

activation function or learning rate. Without going into more

details, this gives them a glimpse of how modeling complex

functions requires know-how that can be acquired by

studying and experiencing.

 These concepts might seem complex for the K-12 level.

However grasping them will really help them developing an

engineering mindset, giving them confidence they can

harness the technology, instead of considering it as an out-

of-reach mystical object.

 And grasping these concepts is in fact at reachable

distance thanks to our efforts to make them very concrete:

• Use of a fun LEGO robot: students manipulate with their

hands the neural network sensor inputs and see its output

physically.

• Contextualization with the “Which food do you like?”

story, inspired by the Neural Sandbox “peanut butter and

jelly” and other activities. Assigning a different LEGO

figure per food preference also contributes to build the story

and make the abstract concepts of “models”, or “logic gates”

appealing.

• Tinkering of the neural models, going back and forth

between manual edition and supervised learning, and seeing

the effects of parameter changes on the model generalization

as it appears in the state graph (displacement of the

separation border, etc.).

• Furthermore, the interaction with AI4GA educators led to

thorough improvements in AlphAI’s visualization of the

neural network. All steps of the calculations now appear on

screen, with appropriate colors, font size, and labels. A

strong coherence with the Neural Sandbox interface was

sought as well, to allow using both tools with the same

students.

 The interaction with AI4GA educators led to two major

improvements in the AlphAI interface that are interesting to

discuss here. First, we followed the choice of Neural

Sandbox to show the nonlinear neural activation in the form

of an activation threshold rather than as a classic nonlinear

activation function. This simplifies understanding, and also

allows not using neuron biases. It is interesting indeed to

note that activating the output neuron when pre-activation is

greater than a threshold (for example, 0.5) is equivalent to,

but much easier to explain, adding a bias value of -0.5 then

applying a Heaviside activation function. The AlphAI

interface has been adapted to be capable of displaying either

classic neural biases and activation functions, or simpler

activation thresholds. Second, it appeared very important

that every detail of an artificial neuron calculation appears

on screen, including: individual inputs received from pre-

synaptic neurons, pre-activation value, neural bias or

activation threshold parameters, activation value, weight

parameters of the connections to post-synaptic neurons.

Displaying so much information on screen required

designing carefully how to position elements, use

appropriate color or gray shades, font types and sizes, boxes

or not.

References

Absalon, Marie, and Thomas Deneux. n.d. AlphAI: Teaching AI

Algorithms to K12 in a Concrete MannerWith a Graphic Software

and Learning Robots. In Proceedings of the AAAI Symposium on

Educational Advances in Artificial Intelligence, Philadelphia, 2025

Ackermann, E. K. 1996. Perspective-Taking and Object

Construction: Two Keys to Learning. In Constructionism in

Practice: Designing, Thinking, and Learning in a Digital World,

edited by Y. Kafai and M. Resnick, 25–37. Lawrence Erlbaum

Associates.

Carney, Michelle, Barron Webster, Irene Alvarado, Kyle Phillips,

Noura Howell, Jordan Griffith, Jonas Jongejan, Amit Pitaru, and

Alexander Chen. 2020. Teachable Machine: Approachable Web-

Based Tool for Exploring Machine Learning Classification. In

Extended Abstracts of the 2020 CHI Conference on Human

Factors in Computing Systems, 1–8. New York, NY, USA: ACM.

Cognimates. 2018. http://cognimates.me/home/.

Eguchi, A. 2012. Educational Robotics Theories and Practice: Tips

for How to Do It Right. In Robotics in K-12 Education: A New

Technology for Learning, edited by B. S. Barker, G. Nugent, N.

Grandgenett, and V. L. Adamchuk, 1–30.

Eguchi, A. 2024. Revisiting the Pedagogy of Educational Robotics.

In Lecture Notes in Networks and Systems, 81–92. 747.

Karalekas, Georgios, Stavros Vologiannidis, and John Kalomiros.

2023. Teaching Machine Learning in K–12 Using Robotics.

Education Sciences 13 (1): 67.

Kong, S. C., and Y. Yang. 2023. Designing and Evaluating an

Attention-Engagement-Error-Reflection (AEER) Approach to

Enhance Primary School Students’ Artificial Intelligence Literacy

and Learning-to-Learn Skills: A Pilot Study. In Proceedings of the

31st International Conference on Computers in Education,

December 4-8, 2023, Matsue, Shimane, Japan.

Lane, D. Machine Learning For Kids. 2017.

https://machinelearningforkids.co.uk.

Martin, Marie, Morgane Chevalier, Stéphanie Burton, Guillaume

Bonvin, Maud Besançon, and Thomas Deneux. 2023. Effects of

Introducing a Learning Robot on the Metacognitive Knowledge of

Students Aged 8--11. In International Conference on Robotics in

Education (RiE), 169–83. Springer.

Chen, A., Pawar, N., and Touretzky, D.S. Neuron Sandbox. 2024.

https://www.cs.cmu.edu/~dst/NeuronSandbox/.

TeachableMachine. 2017. https://teachablemachine.withgoogle.com/.

Smilkov, D. and Carter, S. 2016. Tensorflow Playground.

https://playground.tensorflow.org/.

Touretzky, David, Christina Gardner-McCune, William Hanna,

Angela Chen, and Neel Pawar. 2025. Thinking Like A Neuron in

Middle School. In Proceedings of the AAAI Symposium on

http://paperpile.com/b/fBsgCd/WfkN
http://paperpile.com/b/fBsgCd/WfkN
http://paperpile.com/b/fBsgCd/WfkN
http://paperpile.com/b/fBsgCd/WfkN
http://paperpile.com/b/fBsgCd/WfkN
http://paperpile.com/b/fBsgCd/H3oJ
http://paperpile.com/b/fBsgCd/H3oJ
http://paperpile.com/b/fBsgCd/H3oJ
http://paperpile.com/b/fBsgCd/H3oJ
http://paperpile.com/b/fBsgCd/H3oJ
http://paperpile.com/b/fBsgCd/H3oJ
http://paperpile.com/b/fBsgCd/H3oJ
http://paperpile.com/b/fBsgCd/pBCe
http://paperpile.com/b/fBsgCd/pBCe
http://paperpile.com/b/fBsgCd/pBCe
http://paperpile.com/b/fBsgCd/pBCe
http://paperpile.com/b/fBsgCd/pBCe
http://paperpile.com/b/fBsgCd/pBCe
http://paperpile.com/b/fBsgCd/pBCe
http://paperpile.com/b/fBsgCd/mt6Q
http://cognimates.me/home/
http://paperpile.com/b/fBsgCd/mt6Q
http://paperpile.com/b/fBsgCd/Guqy
http://paperpile.com/b/fBsgCd/Guqy
http://paperpile.com/b/fBsgCd/Guqy
http://paperpile.com/b/fBsgCd/Guqy
http://paperpile.com/b/fBsgCd/Guqy
http://paperpile.com/b/fBsgCd/Guqy
http://paperpile.com/b/fBsgCd/Guqy
http://paperpile.com/b/fBsgCd/ZWo8
http://paperpile.com/b/fBsgCd/ZWo8
http://paperpile.com/b/fBsgCd/ZWo8
http://paperpile.com/b/fBsgCd/ZWo8
http://paperpile.com/b/fBsgCd/ekdl
http://paperpile.com/b/fBsgCd/ekdl
http://paperpile.com/b/fBsgCd/ekdl
http://paperpile.com/b/fBsgCd/ekdl
http://paperpile.com/b/fBsgCd/jl7W
http://paperpile.com/b/fBsgCd/jl7W
http://paperpile.com/b/fBsgCd/jl7W
http://paperpile.com/b/fBsgCd/jl7W
http://paperpile.com/b/fBsgCd/jl7W
http://paperpile.com/b/fBsgCd/jl7W
http://paperpile.com/b/fBsgCd/jl7W
http://paperpile.com/b/fBsgCd/jl7W
http://paperpile.com/b/fBsgCd/XxWk
http://paperpile.com/b/fBsgCd/XxWk
https://machinelearningforkids.co.uk/
http://paperpile.com/b/fBsgCd/XxWk
http://paperpile.com/b/fBsgCd/M5pJ
http://paperpile.com/b/fBsgCd/M5pJ
http://paperpile.com/b/fBsgCd/M5pJ
http://paperpile.com/b/fBsgCd/M5pJ
http://paperpile.com/b/fBsgCd/M5pJ
http://paperpile.com/b/fBsgCd/M5pJ
http://paperpile.com/b/fBsgCd/M5pJ
http://paperpile.com/b/fBsgCd/6YwS
http://paperpile.com/b/fBsgCd/6YwS
https://www.cs.cmu.edu/~dst/NeuronSandbox/
http://paperpile.com/b/fBsgCd/6YwS
http://paperpile.com/b/fBsgCd/ZlOk
https://teachablemachine.withgoogle.com/
http://paperpile.com/b/fBsgCd/ZlOk
http://paperpile.com/b/fBsgCd/zv3z
http://paperpile.com/b/fBsgCd/zv3z
http://paperpile.com/b/fBsgCd/zv3z
http://paperpile.com/b/fBsgCd/zv3z
http://paperpile.com/b/fBsgCd/zv3z
http://paperpile.com/b/fBsgCd/zv3z
https://playground.tensorflow.org/
http://paperpile.com/b/fBsgCd/zv3z
http://paperpile.com/b/fBsgCd/yHkb
http://paperpile.com/b/fBsgCd/yHkb
http://paperpile.com/b/fBsgCd/yHkb
http://paperpile.com/b/fBsgCd/yHkb
http://paperpile.com/b/fBsgCd/WfkN

Educational Advances in Artificial Intelligence, Philadelphia,

2025.

Touretzky, David S., Angela Chen, and Neel Pawar. 2024. Neural

Networks in Middle School. ACM Inroads 15 (3): 24–28.

Vittascience. 2021. https://en.vittascience.com/ia/.

http://paperpile.com/b/fBsgCd/yHkb
http://paperpile.com/b/fBsgCd/5XV4
http://paperpile.com/b/fBsgCd/5XV4
http://paperpile.com/b/fBsgCd/5XV4
http://paperpile.com/b/fBsgCd/5XV4
http://paperpile.com/b/fBsgCd/IUYn
https://en.vittascience.com/ia/
http://paperpile.com/b/fBsgCd/IUYn

