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Abstract

Teaching the fundamentals of Al and machine learning to K-
12 students presents unique challenges, as these concepts are
often too abstract, especially for younger students. While
various tools have been developed, explaining how neural
networks work in age-appropriate ways remains difficult.
The Neuron Sandbox was developed to address this issue,
allowing students to explore a singular neuron contextualized
through relatable tasks such as “making a peanut butter and
jelly sandwich.” Building on this inspiration, the paper
presents a hands-on activity using the AlphAl educational
software we developed, to make neural networks more
tangible through robotics. Students explore the neural
network's processing of LEGO sensor inputs. They can either
manually edit the network’s weights and thresholds or train
them through supervised learning. Live visualizations in 1D
and 2D graphs help them interpret how input influences
output. The activity provides a guided progression from
simple one-input decisions to complex functions requiring
hidden neurons, making neural networks both accessible and
meaningful for learners. This work was a collaboration
between educators from the AI4GA program and researchers.
The educators’ feedback guided iterative improvements to
AlphATI’s interface and its curriculum, making the platform
more engaging and developmentally appropriate for teaching
foundational Al concepts.

Introduction

Al education - not only teaching how to use Al, but how Al
works and how to build Al - is a major challenge to society’s
harnessing of this technology (Touretzky et al. 2019). Since
modern Als rely on Machine Learning, it is important then
to teach how an Al model learns from data. Several web
interfaces have been designed to teach these core concepts
to K-12 students. The Neuron Sandbox facilitates
understanding by allowing young students the opportunity
to play with the most iconic A/ model, neural networks.
Students engage the gamified neural network by setting the
weights and activation threshold of a very simple network
with 2 input neurons and 1 output neuron (“Neuron
Sandbox™ 2024; D. S. Touretzky, Chen, and Pawar 2024; D.
Touretzky et al. 2025). Several platforms sharing the same
principles let students focus on how the model learns from
data, by letting them train their own model for recognition
of images, sounds, and other data types (Lane 2017;
TeachableMachine 2017; Cognimates 2018; Vittascience
2021; Carney et al. 2020); but the model itself, more
complex, is kept as a black box. Tensorflow Playground

(Smilkov and Carter 2016) features a more complex neural
network, still with 2 inputs but hidden layers of neurons can
be added. To illuminate how it learns from data, it features
abstract visualizations of how the neural network succeeds
(or not) to generalize label assignments from the training
data to the full 2D space. We developed the AlphAl software
(Absalon and Deneux n.d.; Martin et al. 2023; Kong and
Yang 2023), which provides similar interfaces with
increased versatility, and natively integrates several robotic
platforms that the neural network can drive, taking the
robot’s sensor data as input and using its output to select its
actions.

Indeed, educational robotics tools, with their foundation
in constructionism, are known to support students’
acquisition of abstract concepts. Constructivist theory
suggests that knowledge is developed by actively being
constructed and reconstructed through one's experience and
direct interaction with the world (Ackermann 1996).
Educational robotics is a learning tool that provides hands-
on opportunities supporting students’ learning of abstract
concepts in tangible and interactive ways (Eguchi 2012,
2024; Karalekas, Vologiannidis, and Kalomiros 2023).
Thus, integrating educational robotics tools with Al-
enhanced tools can support student learning with hands-on
exploratory approaches to ensure their tangible knowledge
construction through their interactions with the robotics
tools.

Here, we present a new activity of 2 to 4 hours using the
AlphAl software together with LEGO Spike robotics set,
which was co-designed with educators from AI4GA. This
activity is strongly inspired by the Neuron Sandbox
interface and activities used in the AI4GA program. As in
Neuron Sandbox activities, students will manually edit
neural networks to solve challenges and in the most
advanced part of the activity, they will analyze 2D graphs of
the network input-ouput transfer function. AlphAl,
however, allows students to engage the neural network in a
“live” reacting robot. Instead of manual editing it will be
possible to use supervised learning to train the network
using user-collected data, and more complex networks will
be studied, including with a hidden layer.
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Resources and Activities

A food-detecting LEGO Spike robot

Students build a very simple robot (see Figure 1), using the
Spike Prime hub. A LEGO figure sits on top of the hub, and
two sensors will detect some “food” presented to the figure:
a touch sensor detects a “pizza” LEGO piece and a color
sensor detects a “vegetable” LEGO piece. The neural
network has one or two input neurons fed by these sensors
in an on-off manner (0 for absence, 1 for presence) and one
output that turns on a happy face on the hub. It is also
possible to adapt the activity for the Spike Essential kit
alone; the Spike Essential hub does not have an integrated
LED display, and the LED matrix included in the set cannot
be used because the 2 ports of the hub will already be used
by the 2 sensors; instead, it will be possible to use the status
LED of the hub, turn it green to replace the happy face
(unfortunately this won’t be as demonstrative), and off, or
red, when the output is off. For each scenario, we used a
different figure, but the Spike Prime set has only two LEGO
figures; also, the LEGO piece used to represent a vegetable
belongs to the Spike Essential kit. Thus, if one needs to stick
to the Spike Prime kit, the vegetable piece can be replaced
by a small yellow bar which will be called a “banana”, or a
red one which will be called a “pepper”, and the same figure
shall be used to represent different tastes (for example on
different days/moods of the same person).

Session 1: Manual edition of the Neural Network

1a Discovery of the Neural Network - logic gate “pizza”.
When starting the activity, users load a first pre-set
configuration, and the software interface shows a very
simple neural network with one input neuron and one output
neuron (Figure 1A). The input neuron will reflect the state
of the LEGO Spike touch sensor, playing here the role of a
pizza detector in a pizza rack: if no pizza is detected, the
input neuron’s value is 0; if a pizza is detected, the value is
1 (Figure 1B). The output neuron will trigger the state of the
Spike hub LED display: if activated, the hub will display a
happy face. Otherwise, the hub will not display anything.

A first LEGO figure, called “Joshua,” is placed atop the
hub: Joshua is hungry and would like to eat pizza (Figure
1C). Students are told to set the weight of the connection
between the input and output neuron (initially equal to zero)
to a value such that the hub will reflect Joshua’s mindset.
The solution is shown in Figure 1C: by setting a connection
weight of 1 (more generally, any weight value > 0.5 will
work), we have the hub smiling when there is a pizza in the
rack (top), and not smiling otherwise (bottom).
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Figure 1: Very first scenario “Joshua wants pizza” with
only 1 sensor. (NB: neural network displays from the
software interface have been edited to fit space constraints
inside figures; red marks do not appear on the software
interface).

The red marks alongside the neural network are not
shown in the software interface; rather, they show how the
teacher should comment on what is happening “inside” the
neural network. First, the value of the input neuron (0 or 1)
is multiplied by the weight (1), yielding the output neuron’s
pre-activation value (0 or 1). Second, the output neuron gets
activated (and the hub smiles) if and only if this pre-
activation value is higher than the output neuron’s threshold
(0.5). Here, the pre-activation and activation of the output
neuron are the same, but this won’t always be the case
thereafter.

1b Introducing the 2x2 table of logic gates - logic gate
“vegetable”. In the second scenario, “Isabel wants
vegetables,” students will use a second sensor, the Spike
color sensor, to detect the LEGO pieces representing
vegetables (Figure 2A). Now, there are two input neurons:
the “pizza” neuron x; from the previous scenario, and the
new “vegetable” neuron x». Students are tasked to edit the
network weights to make the hub smile only if a vegetable
is present, regardless of the status of pizza: they do it by
setting a connection between input X and output y, but
keeping zero connection between x; and y (Figure 2B). At
this stage, the teacher makes them realize that the neural
network achieves a function over its two inputs. Since each
input is 0 or 1, the function is represented by a 2x2 table
(Figure 2C; the table cell with thick borders represents the
input configuration shown in Figure 2B).
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Figure 2: Scenarios “Isabel wants vegetables” and “Jude
wants any food” (OR gate).

1c Logic gate “pizza OR vegetable”. With the knowledge
they accumulated, students can now set the network’s
weights to implement (in Machine Learning terminology, to
“model”) the logic gate OR, during the third scenario, “Jude
wants any food” (i.e., “pizza OR vegetable”). They need to
set positive connections (at least 0.5) between both input
neurons and output y (Figure 2D and E). At this point, the
teacher guides students to explain the logic of the chosen
weights in both the “Isabel wants vegetables” and the “Jude
wants any food” scenario. This ensures that there is
understanding of the values of the correct weights, even if
students relied on guessing and checking to solve.

1d Activation threshold - logic gate “pizza AND
vegetable”. After editing and understanding the weights,
students need to understand a threshold to solve the next
scenario, “Larry is very hungry (and wants both pizza and
vegetables)”. The smile should not be activated if only one
input is on, so if students connect inputs to output with
weight values of 1, they need to change the threshold value
from its default value of 0.5 to a value above 1 (for example,
1.5 as in Figure 3). Another solution, without changing the
default threshold value of 0.5, would be to set connection
weights below 0.5 (for example, 0.4). Whichever solution is
found, it necessitates a good understanding of the output
neuron’s activation mechanism.
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Figure 3: Scenario “Larry is very hungry” (AND gate)

Session 2: Discovery of supervised learning and of
state space graphs

2a Supervised learning. So far, students had to manually
set connection weights and activation threshold in order for
the neural network to model the desired logic function (i.e.,
the logic gate defined by the tables, such as in Figures 2, 3).
However, the power of neural networks resides in the fact
that the data scientist does not need to find the appropriate
parameters. Rather, parameters are /earnt from data using
Supervised Learning.

Therefore, students are now invited to revisit the previous
scenarios, and this time, let the supervised learning find the
appropriate weights. They switch from manual edition to
learning mode in the AlphAl main control panel (Figure
4A), and set the main display mode to show “Training data
and N eural
network”. This leads the software to show an additional
“training data” display (top part in Figure 4B and C) that is
similar to those of Teachable Machine and other interfaces.
Now, students can acquire data by pressing the “happy face”
or “no display” icons at the right side of either the training
data or the neural network. Each time they do so, a new data
point is added to the training data, consisting of the value of
the sensors at the time of the icon press, and the identity of
the pressed icon. This data point appears on screen as a new
entry inside the training data section of the selected action
(orange frame for the happy face, blue for no display).
Immediately, weights and activation threshold of the neural
network are automatically modified so as to model a transfer
function that matches the examples provided in the training
data. Students will be invited to repeat the 4 previous
scenarios in learning mode. In Figure 4B, the Al was trained
for Jude’s OR gate (“I want any food”), and in Figure 4C,
for Larry’s AND gate (“I am very hungry”). In the training
data display we see how the training differed for the cases
where only one food is provided and in the neural network
display we see how the connection weights were estimated
to similar values, whereas the main difference resides in the
activation threshold being set much higher in the case of the
AND gate, similar to what was experienced during the
manual edition.
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Figure 4: Using supervised learning to automatically train
the neural network (revisiting OR gate and AND gate).

2.2 2D graphs. For the sake of keeping the activity simple,
we used a robotic configuration where the two sensors are
binary: inputs x; and x> can only be 0 or 1 depending on the
detection of pizza and vegetables. However, to fully
understand the action of the neural network, it is pertinent to
study how its output varies for any real values of xjand x.
The state graph displays as an image the output y as function
of x; and x,, using two different colors for the two possible
values 0 and 1. It includes the output of the “logic gate” at
positions (0,0), (0,1), (1,0) and (1,1) (see Figure 5 top-left).
In AlphAl software, the state graph when shown is
positioned above the neural network, such that as soon as
network parameters are updated, the graph updates.
Students are invited to repeat the 4 previous scenarios and
observe how this moves the separation between the blue (no
activation) and orange (activation) regions. They will
observe that if x, makes no connection to output (scenario
“Joshua wants pizza”), output happiness depends only on x;
and the separation is vertical. Similarly the separation is
horizontal in “Isabel wants vegetable” case, and becomes
diagonal in Jude’s OR gate and Larry’s AND gate cases.
And when transforming and OR gate into an AND gate by
increasing the activation threshold, the separation moves
upper-right. They will also observe how, when using
supervised learning to train the network, the separation lines
move during the course of training, until reaching positions
close to those obtained when manually editing.
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Figure 5: Visualizing the neural network generalization in

the 2D state graph

Session 3: Understanding non-linearity and the
need for hidden neurons - logic gate “pizza XOR
vegetable”

3.1 Discovering negative weights - Logic gates “pizza
AND NOT vegetable” and “NOT pizza AND NOT
vegetable”

Now, students will benefit from the help of the state graph
to solve the next scenarios’ challenges. They are asked to
always start by trying to set the appropriate connections and
threshold manually, and only after they find a solution, do
they check what kind of solution supervised learning finds.
The first one is “Reggie can’t stand veggies.” (Only
accepted food is pizza without vegetables, Figure 6A): this
requires the pizza neuron to form a positive connection to
output, but the vegetable neuron must form a negative
connection, such that when both are activated, the vegetable
cancels the effect of the pizza! (see bottom of Figure 6A).
And the second is “Kevin is fasting”: now both foods should
make negative connections since they both remove Kevin’s
happiness from fasting. However, what is more difficult to
find out might be how to get this happiness activated when
there is no food. Teachers guide students to consider that
when there is no food, the pre-activation value is zero, so in
order for this pre-activation to be greater than the activation
threshold, the activation threshold must be negative!
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Figure 6: Scenarios “Reggie can’t stand veggies,” and
“Kevin is fasting” (using automatic learning mode).

3.2 The limits of linear neural network - Logic gate XOR
The next and last scenario “Alice does not mix” is a large
step of difficulty above: Alice will be happy with either
vegetables or pizza, but doesn’t want both together. For a
predetermined time, teachers should allow students to
explore possible weights, thresholds, and experiment with
the inputs here, using their knowledge from the previous
scenarios to inform their attempts both using manual editing
and supervised learning: However, they will never find a
solution with the previous methods because it is not
possible. Here the teacher can challenge students to express
why the neural network fails. Indeed, from what has been
learned so far, students can reason that if the pizza neuron
connects positively to the output neuron, the presence of
pizza can only increase the output activation. Conversely, if
it connects negatively, the presence of pizza can only
decrease the output activation. So, there exists no
configuration which allows pizza to have a “positive” effect
on the outcome (switch from unhappy to happy) when there
is no vegetable, and at the same time have a “negative”
effect (switch from happy to unhappy) when there is already
a vegetable present. In more technical terms, the pre-
activation value is a linear function of the inputs, and the
activation value is a monotonous increasing function of the
inputs, so any function which is not monotonous (going
“sometimes up, sometimes down’’) cannot be modelled with
such a neural network.

3.3 Solving by adding a hidden layer

It will be possible however to model Alice’s XOR gate by
adding a layer of intermediary neurons that will break these
linear and monotonous behaviours, by letting inputs form
both positive and negative “paths” to the output. Students
are told how to add a layer of two neurons in the Al
configuration tab and asked to make the appropriate
connections to have the first of them implement “pizza and
not vegetable”, the second “vegetable and not pizza”, and
the output neuron to make an OR between the two
intermediary neurons. This results in the state graph and
neural network as in Figure 7A and C, implementing the
desired XOR behavior!
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Figure 7: Solving the XOR gate “Alice does not mix” in
manual edit (A,C) and in automatic learning modes (B,D).



Now if students try to repeat the network setting in learning
mode, they will experience failure. This is because (1) the
threshold activation mechanism does not let the learning
procedure “feel” whether it is better to increase or decrease
the connections on the left of the threshold (in technical
words, it does not let the gradients retro-propagate), and (2)
to give more chances for both positive and negative “paths”
between input and output to form during learning, it is better
to have more intermediary neurons, which will each be
initialized differently. To fix this, in the Al configuration tab
they change (1) the activation method from “Sharp
threshold” to “Sigmoid threshold” and (2) the number of
hidden neurons from 2 to at least 6. Now learning should
succeed (Figure 7B and D), and we get some understanding
of what is this “Sigmoid threshold”: neuron activations in
the hidden layers are not clearcut 0 or 1 (Figure 7D), they
are rather “close to 0”, or “close to 17, or even can be in the
middle between 0 and 1 if pre-activation is close to 0.
Consequently, the separation in the state graph is smooth
(Figure 7B) contrary to the straight lines in the case of the
previous manual editing (Figure 7A).

These final scenarios introduce students to advanced
features that they may enjoy exploring further!

Going further

The AlphAI neural network interface and integration of
machine learning and robotics allows for fun and interesting
extensions to the activities, such as:

* Visualizing the pre-activation function in the 1D graph.
When there is only one input, the 2D graph becomes a 1D
graph, i.e., there is only one input x, which varies along the
x-axis of the graph. In such a case, the AlphAl software puts
more information inside the graph, namely, the y-axis is
used to display the output neuron’s pre-activation (X x
weight) as a function of input x. This is a straight line
passing through the graph origin (0,0). When this line is
above the activation threshold (represented by a horizontal
line), the neuron is activated (orange background).
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Figure 8: Visualizing the neural network generalization in
the 1D state graph

* Use a motor instead of the hub display for more
“animated” scenarios. For example, a motor could move the
LEGO figure forward when he is willing to eat the presented
food, and backward otherwise.

« Use the touch and color sensors in continuous mode, such
that the input neurons will have continuous values between
0 and 1 depending on the pressure applied and on the
quantity of light reflection. This will make all values in the
state graph reachable by actual sensor states. The
contextualizing story must be adapted then: for example a
different pizza rack should be built that can accommodate
more than 1 pizza, and the photosensor should also be
positioned in a way that measures the precise quantity of
vegetables. Then, new challenges can be defined regarding
the ideal menu of different LEGO figures. The more
complex the pattern of accepted menus, the more hidden
neurons will be needed!

+ Teachers might be interested in completely bridging these
activities with student experiences in platforms such as
Teachable Machine. The main difference is that the activity
proposed here uses only 2 single-value sensors, whereas
Teachable Machine applies more complex models on rich
data such as images and sounds. It is possible in the Sensors
configuration tab of the AlphAl to replace the simple
sensors with the PC webcam, then configure a more
complex neural network in the AI configuration tab
(including using the pre-trained Resnetl18 model) and train
this model to turn the hub happy when the camera sees
images of pizzas or vegetables!

Discussion

Thanks to a tangible approach, we make many concepts of
Al and Machine Learning accessible at the K12 level:

* The calculations inside a small neural network.

* The concept that the same neural architecture can be tuned
to model very different functions (here, “logic gates”). This
is the essence of an Al model: a function that can be tuned
by settings appropriate parameters values.

* How an Al can drive a physical robot relying on sensors
(providing input to AI) and actuators (activated by Al
output).

* How to train an Al model using data consisting of example
input/output pairs, and how this training consists precisely
in setting the weights they had to struggle before setting
manually.

* Visualization of the model generalization in a graph (if the
number of inputs is one or two, as, of course, visualizing an
ND space gets much more difficult when there are more
inputs!). It is also very instructive to visualize how this
graph evolves during learning (as in the Tensorflow
Playground interface).

* Why layers of hidden neurons are necessary, and an
understanding of the difference between a linear and a
nonlinear function (in a linear setting, the same piece of food



will always have the same effect, either positive or negative,
on output happiness; in a nonlinear setting, the same piece
of food can have both positive and negative effects
depending on the context. Of course, real-world problems
are essentially nonlinear and require very large multilayer
neural nets!).

* The existence of more complex factors for successful
training is revealed, such as choosing the appropriate
activation function or learning rate. Without going into more
details, this gives them a glimpse of how modeling complex
functions requires know-how that can be acquired by
studying and experiencing.

These concepts might seem complex for the K-12 level.
However grasping them will really help them developing an
engineering mindset, giving them confidence they can
harness the technology, instead of considering it as an out-
of-reach mystical object.

And grasping these concepts is in fact at reachable
distance thanks to our efforts to make them very concrete:

* Use of a fun LEGO robot: students manipulate with their
hands the neural network sensor inputs and see its output
physically.

 Contextualization with the “Which food do you like?”
story, inspired by the Neural Sandbox “peanut butter and
jelly” and other activities. Assigning a different LEGO
figure per food preference also contributes to build the story
and make the abstract concepts of “models”, or “logic gates”
appealing.

* Tinkering of the neural models, going back and forth
between manual edition and supervised learning, and seeing
the effects of parameter changes on the model generalization
as it appears in the state graph (displacement of the
separation border, etc.).

* Furthermore, the interaction with AI4GA educators led to
thorough improvements in AlphAI’s visualization of the
neural network. All steps of the calculations now appear on
screen, with appropriate colors, font size, and labels. A
strong coherence with the Neural Sandbox interface was
sought as well, to allow using both tools with the same
students.

The interaction with AI4GA educators led to two major
improvements in the AlphAl interface that are interesting to
discuss here. First, we followed the choice of Neural
Sandbox to show the nonlinear neural activation in the form
of an activation threshold rather than as a classic nonlinear
activation function. This simplifies understanding, and also
allows not using neuron biases. It is interesting indeed to
note that activating the output neuron when pre-activation is
greater than a threshold (for example, 0.5) is equivalent to,
but much easier to explain, adding a bias value of -0.5 then
applying a Heaviside activation function. The AlphAl
interface has been adapted to be capable of displaying either
classic neural biases and activation functions, or simpler
activation thresholds. Second, it appeared very important
that every detail of an artificial neuron calculation appears
on screen, including: individual inputs received from pre-

synaptic neurons, pre-activation value, neural bias or
activation threshold parameters, activation value, weight
parameters of the connections to post-synaptic neurons.
Displaying so much information on screen required
designing carefully how to position elements, use
appropriate color or gray shades, font types and sizes, boxes
or not.
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