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• Networks / Graphs have become prevalent abstractions across Engineering and Science

• Applications abound from biology to social systems to Engineering etc.

• Network models everywhere, but modeling paradigms potentially very different!

Networks Everywhere!?

[Schaub et. al, PloS Comp Bio 2015] [Schaub et. al, PLoS one 2012]



Example 1

• Observed Data: relations between people in social network

• Task: Find communities

Example 2

• Observed Data: Predator-Prey relations

• Task: Analyse foodweb for central entities

“Generic Goal”

Analyse, model and understand connectivity patterns in complex 
systems

Model paradigm A – Networks to model relational data

Dynamical Systems & Control Theory
Graph Signal Processing

Statistical Inference,
Machine Learning

Manifold learning
Topological Data analysis

Model / data perspective C
data = network (edges/relations)

Model / data perspective A 

Example: clustering expression data
/ infer a generative network model

Figure 1: Data Science for networks and dynamical systems.

Example: parametrizing single cell 
RNA-seq data via graphs

learn data manifold with graphs
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Model paradigm A – Higher-order networks to model relational data



Example 1

• Observed Data: Point Cloud Data

• Task: Find manifold of data (dimensionality reduction)

Example 2

• Observed Data: Point Cloud Data, 

• Task: Understand topological shape of point cloud, e.g., 
via persistent homology

“Generic Goal”

Leverage (geometrical) information to understand overall composition of 
observed data

Model paradigm B – Extract relations from (point-cloud) data to analyze systems

Dynamical Systems & Control Theory
Graph Signal Processing

Statistical Inference,
Machine Learning

Manifold learning
Topological Data analysis

Model / data perspective C
data = network (edges/relations)

Model / data perspective A 

Example: clustering expression data
/ infer a generative network model

Figure 1: Data Science for networks and dynamical systems.

Example: parametrizing single cell 
RNA-seq data via graphs

learn data manifold with graphs
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Model paradigm B – Extract higher-order relations from (point-cloud) data to analyze 
systems 



Example 1

• Start: ODE model for opinion formation on graphs

• Task: understand long-term behavior of dynamics, pattern 

formation

Example 2

• Starting point: social network with node attributes

• Task: Predict unobserved attributes

“Generic Goal”

Leverage, model and analyze interplay between “structure” and 

data supported on ”structure” to understand observed system

Model paradigm C – Understand data supported on top of network 

Dynamical Systems & Control Theory
Graph Signal Processing

Statistical Inference,
Machine Learning

Manifold learning
Topological Data analysis

Model / data perspective C
data = network (edges/relations)

Model / data perspective A 

Example: clustering expression data
/ infer a generative network model

Figure 1: Data Science for networks and dynamical systems.

Example: parametrizing single cell 
RNA-seq data via graphs

learn data manifold with graphs
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Model paradigm C – Understand data supported on top of higher-order network 



Today’s Menu

Overview of higher-order networks from 3 perspectives

• Basic Concepts and misconceptions

• Models and methods for higher-order relational data

• Geometry/Topology with higher-order relations

• Data and Dynamics on top of higher-order networks

Some useful references

• Bick C, Gross E, Harrington HA, Schaub MT. What are higher-order networks?. SIAM review. 2023;65(3):686-731.

• Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young JG, Petri G. Networks beyond pairwise interactions: Structure 

and dynamics. Physics reports. 2020 Aug 25;874:1-92.

• Torres L, Blevins AS, Bassett D, Eliassi-Rad T. The why, how, and when of representations for complex systems. SIAM Review. 

2021;63(3):435-85.

Domain / Topology / relational data

Signal on domain / covariate data

graph

cell complex



Chapter 1: Basic concepts and misconceptions



Representations of relational data



Data structures for SCs



SCs vs Hypergraphs



SCs vs Hypergraphs II



Confusion: isn’t everything representable as a graph?
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Chapter 2: 
Higher-order 
relational data



Chapter 3: 
Geometry and 
Topology of 
Data with 
Higher-order 
networks



SCs, Hodge Laplacians etc.



Figure 2: ph sket ch and t opf pipel ine appl ied t o nal cn channel osome, a mem-

br ane pr ot ein [47]. Left: Bars represent life times of features [36]. Centre left: Steps

1&2a, when computing persistent 1-homology, three classes are more prominent than

the rest. Centre right: Step 2b: The selected homology generators. Right: Step 3: The

projections of the generators into harmonic space are now each supported on one of

the rings.

Boundar y mat r ices So far, we have discussed a discretised version of topological

spaces in the form of scs and a way to turn point clouds into a sequence of scs indexed

by a scale parameter. However, we still need an algebraic representation of simplicial

complexes that is capable of encoding the structure of the sc and enables extraction of

the topological features: The boundary matrices Bk associated to an sc S store all structural

information of the sc. The rows of Bk are indexed by the k-simplices of S and the

columns are indexed by the (k + 1)-simplices.

Definition2.3(Boundary matrices). Let S be a simplicial complex and →a total order

on its vertices V . Then, the i-th face map in dimension n f n
i : Sn ↑ Sn↓1 is given by

f n
i : { v0, v1, . . . , vn} ↔↑ { v0, v1, . . . , vi , . . . , vn}

with v0 →v1 → · · ·→vn and vi denoting the omission of vi . Now, the n-th boundary

operator Bn : R [Sn+ 1] ↑ R [Sn] with R [Sn] being the real vector space over the basis Sn

is given by

Bn : σ↔↑
n+ 1

∑
i= 0

(↓1) i f n+ 1
i (σ).

When lexicographically ordering the simplex basis, we can view Bn as a matrix. We

call R [Sn] the space of n-chains. B0 is the vertex-edge incidence matrix of the associated

graph consisting of the 0- and 1-simplices of S and B1 is the edge-triangle incidence

matrix of S

Bet t i Number s and Per sist ent Homol ogy We now turn to the notion of topological

features and how to extract them. Homology is one of the main algebraic invariants

to capture the shape of topological spaces and sc. The k-th homology module Hk(S)

of an sc S with boundary operators Bk is defined as Hk(S) := ker Bk↓1/ Im Bk. The

6



The Hodge decomposition for Flows





Chapter 4: Dynamics 
and Data on top of 
higher-order networks



• Consider a dynamics defined on a 3-uniform hypergraph of the form

• The function 𝑓𝑖
𝑗𝑘

 describes how the states of nodes j and k affect node i.

• The hypergraph adjacency tensor 𝐴𝑖𝑗𝑘 is 1 if there is a connection and 0 if not.

Observation

• If the function is f(x) is linear in x, then we can always write this is a “network dynamical system”

Example: linear diffusion dynamics on hypergraphs



Let’s set interaction function to:

Then

where

Example continued



• A “network dynamics” with linear interaction function can always be written in terms of a 

dynamical system on a graph.

• Nonlinear behavior necessary for “true” higher-order effects

• Nonlinearity enough? No! 

Example

Kuramoto like dynamics on hypergraph with vertex set V and edges 𝐸𝑎 ⊆ 𝑉

What have we learned?



• Any nonlinear system can be represented via a lifted linear system on an extended (infinite 
dimensional) state space via the Koopman operator

• Hence, everything can be represented as a network dynamics??!

Example

• However, in general the state space is infinite dimensional and new state variables are typically not 
localized!

Confusion II: The Koopman operator / lifting argument



Example

Consider a linear dynamics on an undirected graph

This can always be diagonalized using spectral coordinates, in which we have:

But

depends on all node states!

Why are localized state variables important for network interpretation?
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