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Higher-order
networks

For studying complex systems
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[Benson et al. SIAM News 2021]



Networks Everywhere!?

[Schaub et. al, PloS Comp Bio 2015]
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[Schaub et. al, PLoS one 2012]

« Networks / Graphs have become prevalent abstractions across Engineering and Science

« Applications abound from biology to social systems to Engineering etc.

« Network models everywhere, but modeling paradigms potentially very different!



Model paradigm A - Networks to model relational data

Example 1 Model / data perspective A
» Observed Data: relations between people in social network data = network (edges/relations)

« Task: Find communities A
O L) (1 = wg ) 7=

(i5)

Example: clustering expression data

Example 2
P /infer a generat/ve network model

« Observed Data: Predator-Prey relations

« Task: Analyse foodweb for central entities

Generic Goal Mathematical tools

Analyse, model and understand connectivity patterns in complex Statistical Inference,
systems Machine Learning




Model paradigm A - Higher-order networks to model relational data

[ Relational Data
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Model paradigm B - Extract relations from (point-cloud) data to analyze systems

Example 1
« Observed Data: Point Cloud Data

« Task: Find manifold of data (dimensionality reduction)

Example 2
 Observed Data: Point Cloud Data,

« Task: Understand topological shape of point cloud, e.g.,
via persistent homology

“Generic Goal”

Leverage (geometrical) information to understand overall composition of
observed data

'Model / data perspective
learn data manifold with graphs

AN
raw data graph new data
(e.q., k-nn graph)  parametrization

Example: parametrizing single cell
RNA-seq data via graphs
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Mathematical tools 1
Manifold learning

Topological Data analysis




Model paradigm B - Extract higher-order relations from (point-cloud) data to analyze
systems

A Graph-based B Higher-order
(X, - ¢ - D (X, - ¥ - D
raw data graph data description raw data (simplicial) complex data description

Example: Isomap (dim. reduction) Example: persistent homology
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Model paradigm C - Understand data supported on top of network

Example 1 Model / data perspective
« Start: ODE model for opinion formation on graphs data / dynamics on 'fixed' network

« Task: understand long-term behavior of dynamics, pattern
formation

Example 2 . po et A oo
\ {}}:1. - ™ Wt 150 /
« Starting point: social network with node attributes I Jy PR ) = 100 M
ON | il h’“‘ 5
- Task: Predict unobserved attributes ko] [ks oo N
(K !
“Generic Goal” Mathematical tools

Dynamical Systems & Control Theory

Levera / lyze interpl, t “structure” : :
everage, model and analyze interplay between “structure” and Graph Signal Processing

data supported on “structure” to understand observed system \



Model paradigm C - Understand data supported on top of higher-order network

4 Network dynamical system ) 4 Example: first-order expansion
N around periodic orbit
iy = F A G, v . N
Ty, (zk) +; ikGr(Tr, z5) 6 = F(0) —I—zAjkawk,Hj)
j=1
M coordinate change M
- / 4
+ non-dyadic
interactions
. . a .
Higher-order dynamical network Example: second-order expansion
around periodic orbit
. N N « - . ~ N ~ ~ N ~ ~
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Today’s Menu

Signal on domain / covariate data

. | 0 Sa0 A\

of higher-order networks from 3 perspectives E 0 E. E \ /@\ B
« Basic Concepts and misconceptions E . = O 0 B/
« Models and methods for higher-order relational data . E
« Geometry/Topology with higher-order relations
« Data and Dynamics on top of higher-order networks

graph

Some useful references Domain / Topology / relational data .

Bick C, Gross E, Harrington HA, Schaub MT. What are higher-order networks?. SIAM review. 2023;65(3):686-731.

Battiston F, Cencetti G, lacopini |, Latora V, Lucas M, Patania A, Young JG, Petri G. Networks beyond pairwise interactions: Structure
and dynamics. Physics reports. 2020 Aug 25;874:1-92.

Torres L, Blevins AS, Bassett D, Eliassi-Rad T. The why, how, and when of representations for complex systems. SIAM Review.
2021;63(3):435-85.



Chapter 1: Basic concepts and misconceptions



Representations of relational data

DATA about interactions:
[a,b,c],[a,d],[d,cl.[c,e]

A
Building blocks:
B
link
G Building blocks:
1-simplex 2-simplex 3-simplex

1-hyperlink 2-hyperlink  3-hyperlink

= 5,

PAIRWISE REPRESENTATION

> BIPARTITE GRAPH
The top layer
describes groups

> NETWORK MOTIFS E

> CLIQUES
Special type of motifs

D

SIMPLICIAL
COMPLEX

HIGHER-ORDER REPRESENTATION

| 8 8
> Simplices allow to differentiate \,ﬁ\ 69VS [a,b,c]
[a,c]

> They require all subfaces:

K [a,b,c] [c.el
[a,d]
[c,d] @
K

Relaxing this condition

J

&

[a,b,c]
[a] [b] [c]
@ & o




Data structures for SCs

[a,b,c]

SIMPLICIAL HASSE DIAGRAM
COMPLEX ¢ (multipartite representation)
b B

[a,b] [b,cl

FACET representation
[a,b,c] [a,d] [c,d] [c.el]

[a,d]




SCs vs Hypergraphs
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SCs vs Hypergraphs li

Hypergraph

Simplicial

complex
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Confusion: isn’t everything representable as a graph?

Graph Hypergraph Cell complex

oo

1-cells

Vertices
N RN
Edges
Vertices
(@) ] AN w N -
Hyperedges
Vertices
(@) ] LN w N -

2-celle
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Chapter 3:
Geometry and
Topology of
Data with
Higher-order
networks



SCs, Hodge Laplacians etc.

Laplacians
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g Persistence diagram

. %
L e 141 selected features
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Figure 2: ph sketch and topf pipel ine applied to nalcn channel osome, a mem-
brane protein [47]. Left: Bars represent life times of features [36]. Centreleft: Steps
1&2a, when computing persistent 1-homology, three classes are more prominent than
the rest. Centreright: Step 2Za The selected homology generators. Right: Step 3 The
projections of the generators into harmonic space are now each supported on one of

the rings.



The Hodge decomposition for Flows

RY = im(B, ) ®im(B3) @ ker(L;)

> ©

Gradient Flow Curl Flow Harmonic Flow

curl harmonic

\/ \ / \6;

L,
pd
N
g
N

-8 c_g_ \Q/ \Q/ Q \Q/ \Q/ \O/ Q \O/
I CU ) L 9] Q) U @) L 9
—l | \'%1 A\ V3 V4 V5 Vg ' V7 y Vs |

im(B ) gradient flows im(Bs) ker(Lq)






Chapter 4: Dynamics

nd Data on top of
igher-order networks
" o




Example: linear diffusion dynamics on hypergraphs

« Consider a dynamics defined on a 3-uniform hypergraph of the form

N
. k
X; = Z Aijkfi(J )(Xi,xj,xk)
k=1

 The function fijk describes how the states of nodesj and k affect node /.

- The hypergraph adjacency tensor 4; i is 1if there is a connection and O if not.

Observation

« If the function is f(x) is linear in x, then we can always write this is a “network dynamical system”

fiii: E .Aijflfj
J



Example continued

Let’s set interaction function to:

Then

where

(Lt)ij = (Dr — Wr);; (Dr)ii = ZAijk (Wr)i;
kj

fi{jk}(xiaxja xi) = c((x; — x;) + (xx — x3))

X = ZAijkC((xj —x;) + (X% — x;))

Jjk

= 2c ZAijk(xj — X;) = —2c Z(LT)inj,

Jk J



What have we learned?

* A “network dynamics” with linear interaction function can always be written in terms of a
dynamical system on a graph.

* Nonlinear behavior necessary for “true” higher-order effects

* Nonlinearity enough? No!

Example
Kuramoto like dynamics on hypergraph with vertex set VandedgesE, SV

sin(x; — BTB )iisin(x; — x;)
Y ) sin(x; Z jsin(x;

GZEEO( ]GE(X :



Confusion lI: The Koopman operator / lifting argument

« Any nonlinear system can be represented via a lifted linear system on an extended (infinite
dimensional) state space via the Koopman operator

« Hence, everything can be represented as a network dynamics??!

Example
ilz/.LQCl,
Y1 | T1 p Y1 | w0 0] [y
:1':2:)\(:132—:13%). Y2 | = | L2 :>% Y| — 0O A —A Y2
ys| |z ys] 10 0 2u] [ys.
K

« However, in general the state space is infinite dimensional and new state variables are typically not
localized!



Why are localized state variables important for network interpretation?

Example

Consider a linear dynamics on an undirected graph
L, — E AZ j X j
J

This can always be diagonalized using spectral coordinates, in which we have:

Ui = NV

But _ T
Y; — fUi X

depends on all node states!
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