
Analyzing and Lifting Legacy Software To Aid Rewriting
(ALLSTAR)

Galois, Inc.

421 SW 6th Avenue, Suite 300

Portland, Oregon 97204

Immunant, Inc.

3333 Michelson Dr., Suite 300

Irvine, CA 92612

December, 13th 2024

FINAL TECHNICAL REPORT FOR PERIOD December 21, 2021 –
December 17, 2024

Prime Contract Number HR0011-22-C-0020

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited).

Summary​ 3
Task Objectives​ 3
Technical Problems​ 3
General Methodology​ 4
Technical Results​ 4

Static Analysis​ 4
Dynamic analysis​ 6
Code Rewriter​ 10
Code Amalgamation​ 10
Transpiler Improvements​ 11
LLM experiments​ 12

Important Findings and Conclusions​ 13
Significant hardware/software development​ 16
Special comments​ 16
Implications for further research​ 17
​ ​ ​ ​ ​ ​
​ ​ ​
​ ​ ​ ​

Summary
The ALLSTAR project, a part of the DARPA LiLaC-SL program, builds on the existing C2Rust
toolchain (https://c2rust.com). The baseline C2Rust tool, c2rust-transpile, converts almost any C
application into structurally-equivalent Rust code. However, the resulting code is not safe, ie.
statically guaranteed to be free of undefined behaviors by the Rust type-checker. In ALLSTAR,
we have developed c2rust-analyze, a tool that uses a mix of techniques to improve the safety of
code generated by c2rust-transpile.

This report describes the results of the ALLSTAR project. To summarize, we have developed
three linked capabilities: (1) static type inference; (2) dynamic runtime analysis; and (3) code
rewriting support for Rust. We have integrated these capabilities into the c2rust-analyze
prototype and tested them on the lighttpd benchmark, as well as other benchmarks selected by
DARPA. We have also made improvements to the c2rust-transpile partially in response to
issues and requests filed by the community. Finally, we have evaluated LLM-based AI tools as a
potentially complementary technology for use in transpilation tasks.

Task Objectives
The ALLSTAR project is structured into four tasks:

1.​ Development of a static type inference component that infers safe Rust types for the
pointers in an unsafe Rust program. This static process takes hints from the dynamic
analysis (see 2).

2.​ Development of a dynamic analysis that instruments unsafe Rust programs so as to
collect information about how pointers flow through the program.

3.​ Development of a source code rewriting system that takes the result of type inference
component (see 1) and uses it to transform unsafe raw pointers into safe Rust types.

4.​ Evaluation of LLMs as a component of the C2Rust pipeline.
We explain the technical work on each of these tasks in the section Technical Results, below.

Technical Problems
Problem 1: implicit code properties. Converting C code to safe Rust is a difficult task. It requires
that many properties that are implicit in the C code be determined, then encoded explicitly in the
Rust type system. For example, a function that takes a pointer argument might access the
pointed-to allocation only temporarily, or it might take ownership of the allocation and eventually
deallocate it. In C, these functions would have the same signature, but in Rust, the distinction
between borrowing and ownership is encoded in the argument type. Selecting an appropriate
pointer type for the translation to safe Rust thus requires inferring these implicit properties
through interprocedural program analysis.

https://c2rust.com

Problem 2: gap between C and Rust idioms. Additionally, although the C and Rust languages
operate at similar levels of abstraction, many code patterns that are idiomatic in C are
unidiomatic and difficult to express in Rust due to Rust's extensive static checking. For example,
C code may track reference counts or array lengths implicitly to avoid memory overhead; in
Rust, these counters are used for essential run-time safety checks, and it may be impossible to
omit them without using unsafe code.

Problem 3: lack of suitable tools for supporting transpilation to Rust. Currently, few tools are
available for analyzing and manipulating Rust code. Obtaining a complete and precise
representation of the program typically requires integrating with the internal APIs of the Rust
compiler. Instrumenting code for dynamic analysis also requires compiler integration. The
integration itself is difficult because many of the APIs involved are not designed for external use
and frequently change without notice as part of ongoing development of the Rust compiler.

General Methodology

Our methodology on the ALLSTAR project was an iterative prototype development process that
worked as follows:

●​ We designed and built prototype capabilities as part of the c2rust-analyze tool.
●​ We tested those capabilities on our test suite, including our ‘model organisms’, the

lighttpd1 and cFS2 libraries. This typically revealed bugs or novel code patterns that the
new prototype could not handle.

●​ We evaluated these outcomes, and used the resulting insights to drive the next iteration
of design and prototyping.

Labor on the project was shared between Immuant and Galois, with Immunant leading the
dynamic analysis and LLM experiments, and Galois leading the static analysis and rewriting
support.

Technical Results

Static Analysis
The static analysis component of c2rust-analyze comprises four discrete analyses, which
together provide the information required to rewrite pointers to safe reference types.

Analysis 1: interprocedural dataflow analysis. First, the interprocedural dataflow analysis
computes a set of "permissions" for each pointer, which represent operations that may be
performed on the pointer. These permissions constrain the choice of rewritten type for each
pointer. For example, if pointer p is used to write to the pointee in a statement like *p = x;,

2 https://github.com/immunant/cfs-rust/pull/1
1 https://git.lighttpd.net/lighttpd

https://github.com/immunant/cfs-rust/pull/1
https://git.lighttpd.net/lighttpd

then p must have the WRITE permission, and it would be invalid to rewrite p to a non-writable
pointer type like &T.

The permissions computed by the interprocedural dataflow analysis include:

●​ READ: The pointer can be used to read the pointee. This includes the ability to borrow the
pointee immutably, as in &(*p).field.

●​ WRITE: The pointer can be used to write the pointee. This includes the ability to borrow
the pointee mutably.

●​ OFFSET_ADD and OFFSET_SUB: The pointer can be used in pointer arithmetic to advance
it the forward and backward directions respectively.

●​ FREE: The pointer can be passed to free. This implies that the pointer either is null or
points to a heap allocation. The pointer must be rewritten into an owned, heap-allocated
type such as Box<T>.

●​ UNIQUE: The pointer is used in a manner consistent with Rust's borrow checking rules,
avoiding mutable aliasing. This allows the pointer to be rewritten into &mut T;
non-UNIQUE writable pointers must instead be rewritten into &Cell<T>.

●​ NON_NULL: The pointer is never null. Pointers without this permission must be rewritten
into a type wrapped in Option to handle the null case.

The READ, WRITE, OFFSET_ADD, OFFSET_SUB, and FREE permissions are all propagated
backward. For example, if pointer q has the FREE permission, and there is an assignment q =
p, then p must also have the FREE permission; the assignment will transfer ownership of the
heap allocation. The UNIQUE and NON_NULL permissions are instead propagated forward: if p is
nullable (lacks the NON_NULL permission), then the assignment q = p means that q must also
be nullable.

Analysis 2: Polonius. Second, the Polonius borrow checker is used in conjunction with the
dataflow analysis to determine which pointers can have the UNIQUE permission. When invoking
Polonius, c2rust-analyze treats raw pointers as if they were references. If this results in an error,
then some of the pointers involved are mutably aliased, and c2rust-analyze must remove the
UNIQUE permission from those pointers. The dataflow analysis then propagates this change to
other pointers, including pointers in other functions.

Analysis 3: pointee type analysis. Third, the pointee type analysis tries to determine the
concrete type of data pointed to by each pointer, which may be different from the pointer's
declared type. This is particularly necessary for C code that uses void* or char* pointers to
erase the concrete type of data being manipulated. This analysis infers the concrete type based
on the type used at dereferences. For example, given the statement *(p as *mut i32) =
123;, the analysis will recognize this as writing a value of type i32 into p (regardless of p's
declared type) and record i32 as a possible pointee type for p. Pointee types are propagated
backward through pointer assignments: if p must point to an i32 value to satisfy a later
dereference, and there is an earlier assignment p = q, then q must also point to an i32 value.

During rewriting, if a pointer p has exactly one inferred pointee type, then it will be rewritten into
a pointer to that type, such as &mut [i32]. (A pointer may have more than one pointee type if
the data it points to is interpreted in different ways at different dereference sites; this behavior is
legal in C and Rust but is currently unsupported by our analysis.)

Some operations, notably memcpy, interact with pointee values without specifying a concrete
type for the access. For example, memcpy(q, p, size) copies some number of values from *p
to *q, but unlike the assignment statement *q = *p, the concrete type of value being copied is
not known at the site of the call. We handle this through unification. At the site of the memcpy,
the pointee type analysis introduces a new inference variable T0 and treats the memcpy as if it
dereferenced both *p and *q at type T0. The type T0 is propagated through assignments as
normal; however, once propagation is complete, the analysis attempts to unify each pointer's set
of pointee types down to a single type, potentially resolving inference variables in the process. If
p's set of pointee types contains both i32 and T0, then unifying these produces i32 and resolves
T0 = i32; if T0 also appears in q's pointee type set, then this unification allows information to
propagate from p to q, even if neither pointer is assigned to the other.

Analysis 4: last-use analysis. Fourth, the last use analysis determines which expressions
represent the last use of the value in a variable, meaning that either the variable is unused
afterward or its value is overwritten before a subsequent access. During rewriting, the last use
of a value is given special treatment: the value can be moved or consumed instead of being
borrowed. This is necessary to satisfy the borrow checker in certain cases. For example, given
p: Option<&mut T>, the inner reference can be accessed either as
p.as_deref_mut().unwrap(), which borrows p, or as p.unwrap(), which moves p; the two
expressions have the same type &mut T, but the borrowing version produces a reference with a
shorter lifetime, tied to the local variable p.

Dynamic analysis
Static analysis must be conservatively correct when assigning permissions to pointers. To get
the ground truth of each application and improve the scalability of our rewrites, we extended the
static analyzer with a run-time dynamic instrumentation and analysis step. We first instrument
the target program with handlers that catch and record a series of events involving pointers:

AddrOfLocal(x) Take the address of a local variable x

AddrOfSized(x) Take the address of a sized pointee x

Alloc(ptr, size) A new memory allocation that produces a pointer, e.g.,
malloc

BeginFuncBody Record function entry

Free(ptr) A free of a previously allocated pointer

FromInt(x) Create pointer out of integer x

Copy(ptr) The copy of a pointer into another local, e.g., q = p

Done Record end of program execution

Offset(ptr, idx) Compute a new pointer at a given offset from a base
address

LoadAddr(ptr) Load the memory at the given address

StoreAddr(ptr) Store at the given memory address

StoreAddrTaken(ptr) Store at the memory address of ptr. Unlike
StoreAddr(ptr), this does not imply that ptr needs write
permissions.

LoadValue(ptr) Load a pointer value from memory

StoreValue(ptr) Store a pointer value to memory

Project(ptr, ptr, key) Compute new pointer via field projection. Key is used to
disambiguate when different projections can produce the
same pointer3.

Realloc(old, sz, new) Reallocate old pointer to new with size sz

Ret(ptr) Record function return to ptr

ToInt(ptr) Create integer out of pointer ptr

Each event encodes the relevant pointer by its memory address. The address therefore
becomes a sort of temporary identity for each object, from the moment it is allocated to the
corresponding free call. For now, we only perform this tracking for heap allocations; tracking
stack variables is left for future work. Newly allocated objects with equal addresses but
non-overlapping lifetimes are considered distinct. There are separate events for using a pointer
as an address or as a value, e.g., *q = p is both a StoreAddr event for the q pointer and also a
StoreValue event for the p pointer. This lets us track pointers across stores and loads from
memory.

Running the instrumented program on a representative input (or several) produces a linear
stream of pointer events in chronological order (even in the multi-threaded case, where our
runtime serializes the events coming from multiple threads using a concurrent queue4). We then
convert this stream into a Pointer Derivation Graph (PDG). The PDG is a collection of directed
subgraphs, where each subgraph traces the lifetime of that pointer throughout the execution of

4 Introduced in https://github.com/immunant/c2rust/pull/1091
3 https://github.com/immunant/c2rust/blob/master/analysis/runtime/src/events.rs#L36

https://github.com/immunant/c2rust/pull/1091
https://github.com/immunant/c2rust/blob/master/analysis/runtime/src/events.rs#L36

the program. Each node corresponds to an event from the stream, and each edge represents a
“direct use” relationship at the MIR level. The figure below illustrates the PDG for a simple
function.

Both the static and dynamic analysis implementations operate on Rust MIR. The PDG
preserves the MIR operation associated with each event and consequently each node. This lets
us map all PDG subgraphs to their corresponding MIR locations and pointers in the MIR used
by the static analyzer. Our dynamic analysis implementation builds the PDG and feeds it into the
analyzer, with the goal of improving its results based on run-time observations. We extended the
static analyzer to allow the PDG to override its findings by adding a “forbidden updates set” of
permissions for each pointer. Whenever the data-flow algorithm would try to propagate a
member of this set, the algorithm instead uses the override from the PDG.

We have also extended the dynamic analysis with support for NON_NULL. The implementation
turned out fairly simple: since the PDG identifies each pointer by its address, all null pointers are
consolidated into a single graph with pointer address 0x0. For any given pointer in the static
analysis, we only had to extend the dynamic analyzer to support one simple query: “is this
pointer in the singleton 0x0 graph?” This is the opposite of the NON_NULL permission, so we
negate the answer and pass it to the analyzer.

The additional information that the PDG currently provides to the analyzer consists of:

●​ An is_null flag for every graph marking whether the pointer for that graph is null. As
stated earlier, this flag is negated and fed directly into the NON_NULL permission.

●​ An additional NodeInfo structure for every graph node with the following information:
○​ A unique boolean flag that marks whether the current node can be used as a

mutable reference. This flag is used to remove the UNIQUE permission from a
static analysis pointer.

○​ Optional “flows-to” edges for every node, used to add additional permissions to
MIR pointers. A node A is said to “flow into” B if it is the transitive “source” of B,
and B is one of the following operations (one separate edge per operation):

■​ load for both LoadAddr and LoadValue; maps directly to the READ
permission in the static analyzer

■​ store for both StoreAddr and StoreValue; maps to WRITE
■​ pos_offset for Offset(x) with positive x; maps to OFFSET_ADD
■​ neg_offset for Offset(x) with negative x; maps to OFFSET_SUB

For debugging purposes, we have added an output mode that dumps the PDG in a linearized
text format. The listing below shows the PDG for a small test function:

g is_null=false {

 n[0]: alloc _ => _2 @ bb1[2]: fn simple_analysis; _2 = malloc(move _3);

 n[1]: copy n[0] => _1 @ bb2[1]: fn simple_analysis; _1 = move _2 as *mut pointers::S (Misc);

 n[2]: project[0]@0 n[1] => _ @ bb2[5]: fn simple_analysis; ((*_1).0: i32) = const 10_i32;

 n[3]: addr.store n[1] => _ @ bb2[5]: fn simple_analysis; ((*_1).0: i32) = const 10_i32;

 n[4]: project[0]@0 n[1] => _ @ bb2[18]: fn simple_analysis; _10 = ((*_1).0: i32);

 n[5]: addr.load n[1] => _ @ bb2[18]: fn simple_analysis; _10 = ((*_1).0: i32);

 n[6]: copy n[1] => _13 @ bb3[7]: fn simple_analysis; _13 = _1;

 n[7]: copy n[6] => _12 @ bb3[8]: fn simple_analysis; _12 = move _13 as *mut libc::c_void (Misc);

 n[8]: free n[7] => _11 @ bb3[10]: fn simple_analysis; _11 = free(move _12);

}

nodes_that_need_write = [3, 1, 0]

The last line starting with nodes_that_need_write shows another piece of information that the
PDG provides.

We have to be mindful of soundness issues when combining results from a static and dynamic
analysis. Just because the dynamic analysis never observed a pointer having a null address
does not mean that a pointer can never be null. Forcing NON_NULL on such a pointer can cause
undefined behavior if this assumption is ever false at run time. For this reason, we support two
modes of operation:

●​ The first is a test mode where we remove the NON_NULL permission if it is present, but do
not add it by default. This tests the correctness of our system since there is either a
problem with the static analysis or a problem with the integration of dynamic and static
results if a pointer marked NON_NULL is observed with a null address.

●​ To explicitly enable using the results of the dynamic analysis to add the NON_NULL
permission, we added an extra PDG_ALLOW_UNSOUND parameter to the analyzer which
needs to be manually set. The reason is that the rewriter does not always perform a
checked conversion of a raw pointer into a Rust reference. For instance, unchecked and
unsafe conversions happen on the FFI boundary. If we were not successful in analyzing
or rewriting all functions to use a Rust reference, the rewriter inserts shims that also
perform unchecked conversions. These are limitations with our prototype, not with the
general approach, and could be lifted with additional engineering effort.

Code Rewriter
The rewriter allows us to modify the target Rust code based on the analysis phases. Based on
the results of the static and dynamic analyses, the rewriter first computes a new type for each
pointer and then inserts casts in places where the source and destination of an assignment (or
pseudo-assignment, such as passing an argument to a function) now have different types.

The rewriter supports several kinds of rewrites depending on the type of the original C code:

●​ &T / &mut T for ordinary references originating from non-nullable C pointers.
●​ Result<Box<T>, ()> for owned heap allocations.
●​ Option<_> wrapping any of the above to produce nullable reference types.

The rewriter builds in special cases for a number of common functions. We use these to replace
unsafe libc calls with equivalent safe Rust code. Supported functions include: malloc and
related memory allocation functions such as calloc and realloc, free, memcpy, memset, and
Rust's offset function (corresponding to C pointer arithmetic).

The rewriter operates on all the available code at once, with limited support for targeting it at
particular portions of the codebase. We support manually-written filter lists provided by the user,
which allow us to exclude code that should not be rewritten. However, this coarse-grained
support for rewriting does not allow us to target different sets of rewrites at different functions, or
sequence rewrites. We think these features may be useful in future versions of the tool.

Code Amalgamation
C and clang process distinct translation units with headers textually included in source files. As
a consequence, the C2Rust transpiler inherits this behavior and processes each translation unit
independently. This is different from Rust, which has modules whose items can be imported. As
a result, c2rust-transpile generates duplicate definitions for #included items in each source file.
This presents a problem during static analysis, as we cannot infer that these items are the
same. In future, we plan to fix this directly in the transpiler, but while fixing this in the common
case is easy, the general case is more difficult. There is no guarantee that different #includes
of the same file will expand to the same output, as prior definitions can affect the output.

For example, dav1d compiles many source files twice with different defines each as a way to be
generic over certain values. However, duplicated items presented a huge problem for static
analysis, so we decided on an alternative solution for our model organisms (lighttpd and cFS).
Essentially, we “amalgamated” all translation units into a single one and then transpiled this
single source file. Thus, there would only be a single definition of every item because there was
only a single translation unit, and no imports would be needed to link all the items to each other.
However, this did require some manual fixes, as some code was unable to be #included in a
single translation unit, such as static functions with the same name.

Transpiler Improvements
Our new c2rust-analyze tool depends on the existing c2rust-transpile tool. We made several
improvements to c2rust-transpile in the ALLSTAR project. The major transpiler improvement
was removing the transpiler’s dependence on rustc compiler internals. These tied the
transpiler to a specific unstable Rust compiler version and made upgrading very hard. Now the
transpiler uses the syn crate instead and is able to build on a stable toolchain. (#374)

Most of the other transpiler improvements were small fixes and translation improvements, such
as:

●​ (#374) Rust changed how inline assembly works. We updated our support for C inline
assembly, which is now translated to Rust inline asm! instead of the prior llvm_asm!.

●​ (#347, #385) Correctly preserving and translating more attributes, like packed into
#[repr(packed)].

●​ (#415) Preserving labeled blocks from C, which keeps the C and Rust more similar.
●​ (#612) Support for the variadic macro va_copy did not work in all cases, like when

passing a pointer to a struct field, so we made support more robust to handle these
cases.

●​ (#859) Some C builtin functions (e.g. strlen, strchr) were not handled, so we fixed
translation for all C builtin functions.

●​ (#880) Improved translation of else if chains. else if used to turn into nested else
{ if … } trees, so now we translate them to normal else ifs like in C.

●​ (#898) Unary operator expressions with side effects (e.x. -func()) were removed, so we
fixed things so the side effects are preserved.

●​ (#1076) Allowing any integral type in C initializer lists (e.x. unsigned int a[] = {1,
2, 3};), not just char and int.

●​ (#1037) Support for c2rust transpile src_files_*.c vs. requiring a
compile_commands.json. This was a commonly requested feature which makes it
easier to transpile a single C source file.

●​ (#1030) Support for bool to float casts by going through u8.
●​ (#1134) Support for bool to void* casts by going through size_t.
●​ (#1128, #1163) Rust 1.80 started panicking during sorting if the order was not total,

which uncovered a bug in the sorting of top-level items. We fixed the non-transitive
order, so now top-level items should be sorted correctly.

●​ (#1170) Emitting zeroed arrays as [0; N] instead of [0, 0, …, 0], more closely
matching how they were declared in C.

●​ (#1185) Support enum compound literals, such as (enum E) { A }.

The rest generally were updates to support new LLVM/Clang and OS versions and improve our
test workflows. The net effect is that the transpiler can now handle a far greater number of C
libraries and projects on most Unix-like host systems.

https://github.com/immunant/c2rust/pull/374/
https://github.com/immunant/c2rust/pull/374/
https://github.com/immunant/c2rust/pull/347
https://github.com/immunant/c2rust/pull/385
https://github.com/immunant/c2rust/pull/415
https://github.com/immunant/c2rust/pull/612
https://github.com/immunant/c2rust/pull/859
https://github.com/immunant/c2rust/pull/880
https://github.com/immunant/c2rust/pull/898
https://github.com/immunant/c2rust/pull/1076
https://github.com/immunant/c2rust/pull/1037
https://github.com/immunant/c2rust/pull/1030
https://github.com/immunant/c2rust/pull/1134
https://github.com/immunant/c2rust/pull/1128
https://github.com/immunant/c2rust/pull/1163
https://github.com/immunant/c2rust/pull/1170
https://github.com/immunant/c2rust/pull/1185

LLM experiments

During the ALLSTAR period of performance, Immunant was working on a separate effort to
migrate a high-performance AV1 video decoder library called dav1d5 from C to Rust. This effort
used the existing c2rust transpiler to generate the initial Rust code of the port (called rav1d6).
Although using c2rust provided a major productivity boost because we were able to test each
subsequent change against all available test vectors, the transpiler output was also much less
compact and readable than the input C code due to a variety of reasons including extensive use
of the C preprocessor in dav1d as well as limitations in c2rust-transpile that would require
substantial engineering effort to overcome.

Specifically, the existing transpiler can handle all possible control flows in C (except control
flows that can span activation frames such as setjmp /longjmp) but it is not always possible to
map C control flows onto corresponding Rust as the latter does not support C-style for-loops or
gotos for example. In cases where the C control flow cannot be mapped cleanly to Rust control
flow constructs, the transpiler emits a state machine where a variable with the prefix
current_block_ is set to a numerical value and later used in a match statement containing a
sequence of basic blocks. This code is difficult for humans to read and far from the desired end
result of idiomatic Rust code. At the same time, the code that translates C control flows into
Rust equivalents is quite complex; updating it without introducing errors is quite difficult and time
consuming.

We therefore wanted to test whether it would be possible to use a large language model to
rewrite the code in a way that is more readable and idiomatic. We used Google’s Gemini 1.5 Pro
model due to its large context window. We focused on a single non-trivial function:
insert_tasks in the thread_task module (C version, Rust version before cleanup, Rust
version after cleanup). We put the C sources and headers for the thread_task translation unit
in the model’s context and prompted the model to rewrite the transpiled Rust version to get rid of
the state machine.

The output7 was substantially more readable and included original comments which accurately
described the logic of the rewritten code. Moreover, the code compiled, passed all tests, and did
not regress performance. Encouraged by this initial finding, we carefully reviewed the code and
found that it ultimately was not functionally correct. We had previously cleaned up the code by
hand and during the review of the manually generated code change also surfaced a translation
error. In other words, the Gemini 1.5 LLM performed about as well as a human programmer on
this particular translation task. We ultimately ended up keeping the human translation because it
was closer to the structure of the original C code and thus easier to check the correctness of.
The machine translation produced more readable and compact code which we might have kept
instead had similarity with the C code not been a priority.

7 https://github.com/memorysafety/rav1d/commit/368d911e143d39b7618018e9f817b268817979e1
6 https://github.com/memorysafety/rav1d
5 https://www.videolan.org/projects/dav1d.html

https://github.com/memorysafety/rav1d/blob/cceb01d266de96af0e7fbd51a2658f425f8bf627/src/thread_task.c#L115
https://github.com/memorysafety/rav1d/blob/cceb01d266de96af0e7fbd51a2658f425f8bf627/src/thread_task.rs#L184
https://github.com/memorysafety/rav1d/blob/8e1a34eca2b92c9b76c0d2123a098d8f8a183024/src/thread_task.rs#L199
https://github.com/memorysafety/rav1d/blob/8e1a34eca2b92c9b76c0d2123a098d8f8a183024/src/thread_task.rs#L199
https://github.com/memorysafety/rav1d/commit/368d911e143d39b7618018e9f817b268817979e1
https://github.com/memorysafety/rav1d
https://www.videolan.org/projects/dav1d.html

The Gemini experiment was performed in early May of 2024. We re-ran the experiment in early
December when OpenAI released their o1 reasoning model. Interestingly, we found that the o1
model did the smallest possible rewrite that satisfied our request (“Please rewrite the following
Rust function to remove the current_block_34 variable and make the code more idiomatic.”)
and left comments describing the rewrite8. The code compiled and passed all tests. More
importantly, the fact that the o1 model took a smaller step and inserted explanatory comments
made it easier for a human to review the output. We take this as evidence that LLM capabilities
are improving in ways that will make AI-driven transpilation more viable in future.

Important Findings and Conclusions
We have applied c2rust-analyze to lighttpd and other benchmarks. At a high level, these results
show that:

1.​ A small but significant number of C functions can be translated directly into safe Rust by
our static / dynamic strategy. These functions are generally ‘naturally safe’ in Rust,
meaning that they have a structurally equivalent Rust function. In this case, we need
only change the types of the pointers, and the code becomes statically safe, meeting our
goal.

2.​ Some C functions present difficulties that are shallow in nature, and could be resolved by
extending the tool. For example, if a function’s control-flow is too complex, our inference
may not be able to determine the correct type. However, given a more powerful static or
dynamic analysis or more rewriting strategies, such functions could be supported.

3.​ Many C functions contain idioms that have no direct structural equivalent in Rust. In
order to migrate these functions to safe Rust, we would need to transform the structure
of the code. This might involve local or even global transformations. These functions
cannot be translated using the approach we have used on ALLSTAR and would need
some additional strategy to deal with them.

As a result of this pattern, we would expect that further investment of resources into ALLSTAR
would result in a moderate increase in the number of functions that are translated into
completely safe Rust. This would correspond to covering category (2) above. However, we
expect there would be a ‘long tail’ of patterns in category (2), and that we would not be able to
address category (3) by the ALLSTAR strategy.

c2rust-analyze shows promising results on two core modules of lighttpd.

Module Functions converted Lines of code

algo_md5 6/6 350

buffer 27/57 1400

8 https://github.com/memorysafety/rav1d/commit/dd01a111d392c1a592fdc988031d0e823c2bc159

https://github.com/memorysafety/rav1d/commit/dd01a111d392c1a592fdc988031d0e823c2bc159

The algo_md5 module implements the MD5 hash function. It provides functions to initialize a
hashing context, provide data to the hash function, and obtain the final hash value. This module
uses type-erased void* pointers, for which c2rust-analyze infers a concrete underlying type to
use in rewriting, and it also uses the memcpy and memset library functions, which c2rust-analyze
rewrites into safe operations on Rust slices. c2rust-analyze converts the entire module to safe
Rust code with no manual edits required.

The buffer module implements a heap-allocated, resizable byte array, which is used throughout
lighttpd to store strings (such as HTTP headers) and binary data. It performs memory
management using the malloc/free/realloc library functions, which c2rust-analyze translates
using Rust's standard Box and Vec types, and it allows some pointer arguments and fields to be
null, so c2rust-analyze translates these types into Option<T>. A small number of manual edits
are required before running c2rust-analyze to break up access patterns that are incompatible
with Rust's borrow checker and to simplify error-handling code. After applying these edits,
c2rust-analyze automatically converts 27 functions to safe Rust code; this includes the core
implementation of the buffer type in functions such as buffer_init, buffer_extend, and
buffer_free. Higher-level helper functions like buffer_append_strftime are not converted
to safe code as they rely on unsupported features or library functions.

To evaluate the effectiveness of c2rust-analyze on the entire lighttpd codebase, we measured
the results of "pointwise" rewriting of lighttpd, in which each function is rewritten in isolation
while all other functions remain in their original unsafe forms. This reduces the influence of
complex cross-function effects on the measurement, giving more consistent results as the
capabilities of c2rust-analyze improve over time.

The results of pointwise testing are computed as follows. For each function f, we create two
copies of the codebase. In the first copy, we run c2rust-analyze to rewrite only f (leaving other
functions unchanged), then remove the unsafe keyword from f, and finally try to compile the
result. If the compilation succeeds, then we say that f is safe after rewriting. In the second copy
of the codebase, we only remove the unsafe keyword from f and attempt to compile it. If this
compilation succeeds, then we say that f is trivially safe. We then count the number of functions
that are trivially safe and/or safe after rewriting.

●​ Safe after rewriting: 136/1620 functions (8.4%)
●​ Trivially safe: 222/1620 functions (13.7%)
●​ Improved by rewriting: 33/1398 non-trivially-safe functions (2.4%). These are cases

where c2rust-analyze converted an unsafe function into a safe one. Note that not all of
the algo_md5 and buffer functions succeed here due to limitations on cross-function
rewriting in this measurement setup.

●​ Regressed after rewriting: 119/222 trivially-safe functions (53.6%). These are functions
that manipulate raw pointers (but don't dereference them, which would be unsafe) where
c2rust-analyze failed to convert the raw pointers to safe reference types.

As well as evaluating our new tool in total, we also evaluated whether the addition of the
dynamic analysis resulted in improvements in the success of transpilation. To do this, we ran the

augmented static analysis (with PDG information) against a baseline analysis on one model
organism (the lighttpd web server). The PDG showed that the
connection_handle_close_state(mut con: Option<&Cell<connection>>) function is
never called with a None value (which is a reasonable conclusion since only valid connections
should be shut down). This lets us rewrite its parameter and those of its callees from an
Option<&Cell> to a simple &Cell, eliminating a series of is_none and unwrap checks. The
following table lists a small sample of the interesting changes caused by the additional dynamic
information:

fn connection_handle_close_state(mut con: Option<&Cell<connection>>) {
// 8813: mut con: g810 = READ | WRITE | FREE, CELL
fn connection_handle_close_state(mut con: &Cell<connection>) {
// 8813: mut con: g810 = READ | WRITE | FREE | NON_NULL, CELL9

connection_close((con).unwrap().as_ptr());
// 8816: con: l14 = READ | WRITE | FREE, CELL
connection_close((con).as_ptr());
// 8816: con: l14 = READ | WRITE | FREE | NON_NULL, CELL

connection_state_machine_loop((r).unwrap().as_ptr(), (con).unwrap().as_ptr());
// 10201: r: l34 = READ | WRITE | FREE, CELL
// 10201: con: l36 = READ | WRITE | FREE, CELL
connection_state_machine_loop((r).as_ptr(), (con).as_ptr());
// 10201: r: l34 = READ | WRITE | FREE | NON_NULL, CELL
// 10201: con: l36 = READ | WRITE | FREE | NON_NULL, CELL

// 10189: r: g813 = READ | WRITE | FREE, CELL
Option::Some(&*(((*(r).unwrap()).conf).get() as *const Cell<fdlog_st>)).unwrap().as_ptr(),
// 10189: r: g813 = READ | WRITE | FREE | NON_NULL, CELL
&*(((*r).conf).get() as *const Cell<fdlog_st>).as_ptr(),

// 10215: con: g815 = READ | WRITE | FREE, CELL
let r: Option<&Cell<request_st>> = Some(&mut *Some((&mut
(*(con).unwrap()).request)).unwrap());
// 10215: con: g815 = READ | WRITE | FREE | NON_NULL, CELL
let r: &Cell<request_st> = &mut *(&mut (*con).request);

// 15435: c: l6 = READ, CELL
offset = ((*(c).unwrap())).get();
toSend = ((*(c).unwrap()).file).get() - ((*(c).unwrap())).get();
// 15435: c: l6 = READ | NON_NULL, CELL
offset = ((*c)).get();
toSend = ((*c).file).get() - ((*c)).get();

To test how well rewriting based on static and dynamic analysis scales, we applied it to the
buffer module of lighttpd10. We picked this module because it is relatively simple (~1000 lines
of C) yet part of a non-trivial application. In total, we were able to rewrite a little under half of all
the functions (27 out of 57 total). This includes all “core” functions such as buffer_init,

10
https://github.com/immunant/lighttpd-rust/blob/385ca548101242cfb8f8bc61533f1073042b5036/src/buffer.
c

9 CELL here is a different kind of attribute: it is a flag which is computed by a separate algorithm from the
dataflow analysis that handles the other permissions

https://github.com/immunant/lighttpd-rust/blob/385ca548101242cfb8f8bc61533f1073042b5036/src/buffer.c
https://github.com/immunant/lighttpd-rust/blob/385ca548101242cfb8f8bc61533f1073042b5036/src/buffer.c

buffer_free, etc., but excludes helper functions such as buffer_append_strftime,
buffer_urldecode_path, etc. Additionally, a small number of edits before or after rewriting
were required to change lifetimes that would otherwise prevent our rewrites. All in all, we were
able to reduce the number of Option types in the buffer module from 50 to just 4. The example
below shows one function from the module before and after rewriting:

// buffer function without NON_NULL information

fn buffer_realloc<'h0: 'h1, 'h1>(

 b: Option<&'h0 mut buffer>,

 len: size_t,

) -> Option<&'h1 mut [i8]> {

 b.as_deref_mut().unwrap().ptr = Some(DynOwned::new(/* ... */));

 b.as_deref_mut().unwrap().size = /* ... */;

 // ...

}

// buffer function with extra NON_NULL information

fn buffer_realloc<'h0: 'h1, 'h1>(

 b: &'h0 mut buffer, // was: Option<&mut buffer>

 len: size_t,

) -> &'h1 mut [i8] { // was: Option<&mut [i8]>

 b.ptr = Some(DynOwned::new(/* ... */));

 b.size = /* ... */;

 // was: b.as_deref_mut().unwrap().size = ...

 // ...

}

Significant hardware/software development
Galois and Immunant’s work on ALLSTAR has primarily taken the form of developing the
c2rust-analyze tool and supporting infrastructure, and applying this tool to benchmarks. All code
developed on the ALLSTAR project has been released as open source and is available on the
C2Rust GitHub repository11. The C2Rust transpiler is available through a web interface at
https://c2rust.com.

In order to increase the visibility of our work on ALLSTAR, Immunant PI Per Larsen wrote a
paper “Migrating C to Rust for Memory Safety”12, which was published in the IEEE journal
Security & Privacy (Jul-Aug 2024, vol. 22).

Special comments
No special comments.

12 Permanent link: https://doi.org/10.1109/MSEC.2024.3385357
11 https://github.com/immunant/c2rust

https://c2rust.com
https://doi.org/10.1109/MSEC.2024.3385357
https://github.com/immunant/c2rust

Implications for further research
Our main conclusions from the ALLSTAR work are:

1.​ Static and dynamic based tools can be very effective in improving the safety of some
classes of C code—roughly the code that is already idiomatically similar to Rust.

2.​ Many C idioms are difficult or impossible to transpile into safe code using a purely
symbolic (i.e. rule-based static and dynamic) approach.

3.​ LLMs and other AI-based tools are a promising direction for building more capable
transpilers that can cover more classes of C code. The current generation of models
seem particularly promising (see our experiments with the o1 model above)

We make the following suggestions for further research:

●​ Many kinds of refactoring tasks can be accomplished by pure-symbolic methods.
However, it is arduous to build and debug refactorings by hand, and the process suffers
from diminishing returns as the number of refactorings grows. To solve this problem, we
believe what is needed is some kind of generic refactoring layer or language for Rust
which can be used as a target for developers.

●​ We found that it is difficult to understand whether a set of refactorings together are
correct, even when all the refactorings are relatively simple. We therefore recommend
more work on formally verified program transformation. The refactoring language we
propose in the previous point could be a target for this kind of work, which would help
developers build transpilers and other tools more quickly and confidently.

●​ As we have stated above, pure-symbolic techniques cannot accommodate the range of
C code idioms (and, beyond the scope of ALLSTAR, cannot impose human idiomaticity
on generated code). We recommend more research on combining symbolic and
AI-based methods, specifically focusing on LLMs as a strong candidate for better
transpilation.

●​ Our experiments showed a wide range of C code patterns, and it seems unlikely that any
tool will cover 100% of these in the near future. One alternative is to combine
transpilation to safe Rust with dynamic safety enforcement mechanisms, for example by
garbage collection. We recommend more investigation into hybrid static/dynamic safety
enforcement mechanisms for Rust.

	
	
	Summary
	Task Objectives
	Technical Problems
	General Methodology
	Technical Results
	Static Analysis
	Dynamic analysis
	Code Rewriter
	Code Amalgamation
	Transpiler Improvements
	LLM experiments

	Important Findings and Conclusions
	Significant hardware/software development
	Special comments
	Implications for further research

