
Level 24, One Canada Square Canary Wharf London E14 5AB www.mindgard.ai

How to Prevent Prompt
Injection Attacks:
Cheat Sheet

Low-Risk Systems

This cheat sheet translates prompt injection theory into practical controls teams can apply in real
systems. Instead of treating prevention as absolute, it frames detection, mitigation, and protection
based on deployment risk and system maturity.

Use it to quickly assess where your LLM workflows sit today, identify missing controls, and align
defenses with the real-world impact of failure.

Prompt Injection Defense by Risk Level
Prompt injection defenses are not one-size-fits-all. The right controls depend on what the system can
access, what actions it can take, and what failure would actually mean in production.

Examples Content generation Internal experimentation Marketing copy Draft summarization

Failure Impact Output quality issues Policy violations without real-world consequences

Required
Detection

Required
Mitigation

Required
Protection

Input logging with basic anomaly flags

Simple keyword and pattern detection for override attempts

Monitoring for repeated prompt manipulation attempts

Constrained prompt templates

Clear separation of system and user instructions

Output filters for restricted content

No tool access

No sensitive data access

No persistent memory

Level 24, One Canada Square Canary Wharf London E14 5AB www.mindgard.ai

2 of 3

Medium-Risk Systems

Required
Detection

Trust labeling for retrieved content

Detection of instruction-like language inside documents

Examples RAG over internal documents Support assistants Knowledge base search

Logging of retrieval context alongside prompts and outputs

Required
Mitigation

Sanitization of retrieved data before insertion into prompts

Explicit constraints on how retrieved text may be used

Output validation for sensitive data exposure

Required
Protection

Read-only access to internal data

No action-taking tools

Scoped context windows to limit instruction bleed

Failure Impact Data leakage Incorrect or misleading responses

Internal research tools

Compliance risk

High-Risk Systems

Real-time monitoring of tool calls and parameters

Behavioral anomaly detection across multi-step workflows

Examples Tool-calling agents Financial actions Infrastructure changes

Correlation between input source and action severity

Fixed-role enforcement outside the model

Strict allowlists for tool invocation

Pre-execution policy checks that cannot be bypassed by prompts

Least-privilege permissions for every tool

Human approval for irreversible or high-impact actions

Kill switches and automatic containment

Failure Impact Unauthorized transactions

Automated workflows with side effects

Infrastructure compromise

Required
Detection

Required
Mitigation

Required
Protection

Business-critical outages

Level 24, One Canada Square Canary Wharf London E14 5AB www.mindgard.ai

Prompt Injection Defense Checklist for Production Teams
Use this checklist to validate whether your system is ready for real-world deployment.

System
Design

Attack surface fully mapped across inputs, tools, memory, and retrieval

All inputs labeled by trust level

Trust boundaries explicitly defined outside the model

Detection

Inputs, outputs, tool calls, and retrieval context logged

Alerts configured for anomalous behavior

Indirect prompt injection monitored in RAG pipelines

Mitigation

Output validation enforced for sensitive content

Least privilege applied to every tool and API

Prompt templates constrained and version-controlled

Protection
High-risk actions gated by human review

No implicit trust in retrieved or uploaded content

Clear separation between instruction, data, and execution

Response
Incident response playbook documented

Containment steps defined for compromised workflows

Rollback and access revocation procedures tested

Ongoing
Assurance

Continuous testing in place for prompt injection attempts

Regular red-teaming against real workflows

Defenses reviewed as capabilities and permissions evolve

Prompt injection prevention only works when defenses match system risk.
Treat mitigation as contextual, enforce protection outside the model,

and assume attackers will test every trust boundary you leave undefined.

3 of 3

	Check Box 101: Off
	Check Box 102: Off
	Check Box 103: Off
	Check Box 104: Off
	Check Box 105: Off
	Check Box 106: Off
	Check Box 107: Off
	Check Box 108: Off
	Check Box 109: Off
	Check Box 1010: Off
	Check Box 1011: Off
	Check Box 1012: Off
	Check Box 1013: Off
	Check Box 1014: Off
	Check Box 1015: Off
	Check Box 1016: Off
	Check Box 1017: Off
	Check Box 1018: Off
	Check Box 1019: Off
	Check Box 1020: Off
	Check Box 1021: Off
	Check Box 1022: Off
	Check Box 1023: Off
	Check Box 1024: Off
	Check Box 1025: Off
	Check Box 1026: Off
	Check Box 1027: Off
	Check Box 1028: Off
	Check Box 1029: Off
	Check Box 1030: Off
	Check Box 1031: Off
	Check Box 1032: Off
	Check Box 1033: Off
	Check Box 1034: Off
	Check Box 1035: Off
	Check Box 1036: Off
	Check Box 1037: Off
	Check Box 1038: Off
	Check Box 1039: Off
	Check Box 1040: Off
	Check Box 1041: Off
	Check Box 1042: Off
	Check Box 1043: Off
	Check Box 1044: Off
	Check Box 1045: Off

