
SPARK42 Penetration Test Report (SAMPLE)
EXAMPLECLIENT LTD. | VERSION 1.0 | UPDATED: 2025-07-15

Contents
Report 2

DISCLAIMER . 2
Executive summary . 2
Findings Index . 2
Rules of engagements . 2

Targets and deliverables . 2
Scope of testing . 2
Time-frame . 3
Methodology . 3
Communication . 3

Findings detail . 4
ID01 - Brute-Force Vulnerability in Login Functionality . 4
ID02 - SQL Injection . 6
ID03 - Cross-Site Scripting (XSS) Reflected . 9

Tools used . 10

1

SPARK42 Penetration Test Report (SAMPLE)

Report

DISCLAIMER

This report contains sensitive information related to the security posture of the tested systems and should be
handled accordingly. It is intended solely for the use of the client organization and SPARK42. Unauthorized
distribution, disclosure, or reproduction of any part of this document is strictly prohibited. The findings and
recommendations presented herein are based on the information available and systems provided during the
assessment window. SPARK42 cannot guarantee the discovery of all vulnerabilities or weaknesses in the tested
environment.

Executive summary

SPARK42 was engaged to conduct a penetration test of selected assets belonging to the client organization.
The primary objective was to identify potential vulnerabilities and assess the effectiveness of existing security
controls through simulated attacks, while adhering to the defined scope and rules of engagement.

During the assessment, three critical vulnerabilities were identified:

• A brute-force vulnerability in the login mechanism, allowing for automated password guessing.
• A SQL Injection flaw enabling full backend database access.
• A reflected Cross-Site Scripting (XSS) vulnerability that could lead to session hijacking and user data theft.

The vulnerabilities vary in impact and exploitability but together represent a significant risk to the confidentiality,
integrity, and availability of the system.

SPARK42 recommends prioritizing remediation of the SQL Injection flaw, followed by the implementation of
brute-force mitigation controls and secure input handling to address the XSS issue.

Findings Index

ID Title Severity OWASP Top 10 References

ID01 Brute-Force Vulnerability in Login Functionality High A07:2021 – Identification and
Authentication Failures

ID02 SQL Injection Critical A01:2021 – Broken Access Control,
A03:2021 – Injection, A07:2021 –
Identification and Authentication
Failures

ID03 Cross-Site Scripting (XSS) Reflected Medium A03:2021 – Injection

Rules of engagements

Targets and deliverables

The testing engagement covered a web application hosted at http://localhost/ and its associated
endpoints as defined by the client. Deliverables include:

• A comprehensive report detailing identified vulnerabilities, their impact, and recommended mitigations.
• Supporting evidence (screenshots, tool output) for each finding.
• A debrief session to walk through results and remediation priorities.

Scope of testing

Tested Assets Web Application: http://localhost/

• /login.php
• /vulnerabilities/sqli/
• /vulnerabilities/xss_r/

Exampleclient Ltd. | Version 1.0 | Updated: 2025-07-15 2

SPARK42 Penetration Test Report (SAMPLE)

Testing Types

• Black-box and authenticated testing (user-level access)
• Manual and automated testing techniques
• Focus on application-layer vulnerabilities (OWASP Top 10)

Access Test credentials:

• Username: admin, Password: password

Time-frame

• Testing Start: 2025-07-01
• Testing End: 2025-07-05
• Report Delivery: 2025-07-08
• Debrief Meeting: 2025-07-10

Methodology

SPARK42 followed industry-standard penetration testing methodology based on:

• OWASP Testing Guide v4
• NIST SP 800-115
• PTES (Penetration Testing Execution Standard)

The test was conducted in the following phases:

1. Reconnaissance: Passive information gathering
2. Scanning & Enumeration: Identifying live endpoints and services
3. Vulnerability Analysis: Detection of weaknesses via manual and automated tools
4. Exploitation: Safe exploitation of identified flaws
5. Post-Exploitation: Assessing risk and potential impact
6. Reporting: Compilation of findings and recommendations

All activities were conducted with minimal disruption to the production environment.

Communication

Agreed

• Primary communication: Email/IM
• Escalation in case of critical or blocking issues: Phone call

Client Contact and Staff

Role Name Email Phone

Project Manager Jane Doe jane.doe@exampleclient.com +421 915 123 456
Escalation Point John Smith john.smith@exampleclient.com +421 944 987 321

Provider Contact and Staff

Role Name Email Phone

Pentester Alice Novak alice@spark42.io +421 902 345 678
Pentester Tom Kral tom@spark42.io +421 911 654 321
Project Manager Petra Valek petra@spark42.io +421 948 112 334

Exampleclient Ltd. | Version 1.0 | Updated: 2025-07-15 3

SPARK42 Penetration Test Report (SAMPLE)

Findings detail

ID01 - Brute-Force Vulnerability in Login Functionality

Severity: High

CVSSv3.1: 9.4

CVSSv3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:L

Affected Asset(s):

• /login.php

Description:

The login functionality at /login.php is vulnerable to brute-force attacks despite the presence of dynamic
CSRF token protection. While the application correctly implements a CSRF token to prevent request forgery, it
does not implement any rate-limiting, IP throttling, or account lockout mechanisms to mitigate repeated login
attempts.

An attacker with a valid session can systematically automate login attempts against multiple username and
password combinations. During testing, a custom script was used to:

• Obtain a fresh CSRF token per attempt.
• Send properly formatted login POST requests using a valid session cookie.
• Detect successful logins based on response content.

This demonstrates that the CSRF token is not coupled with any server-side mechanisms to throttle or block
repeated failed login attempts. As a result, attackers can enumerate credentials at high speed without being
detected or blocked, making the system highly susceptible to automated password-guessing attacks.

Impact:

This vulnerability significantly increases the risk of unauthorized access to user accounts, including administrative
accounts, through credential stuffing or password guessing. In the absence of mitigations like rate-limiting or
account lockout, even basic tools or simple scripts can successfully break into user accounts using commonly
leaked or weak credentials.

If exploited, an attacker may:

• Gain access to user or administrator accounts.
• Escalate privileges and move laterally across the application.
• Exfiltrate sensitive user data or manipulate application content.
• Maintain persistent access through session hijacking or backdoors.

The impact is amplified in environments where users commonly reuse passwords or where administrator
credentials are poorly protected. Without additional controls such as multi-factor authentication, this issue poses
a high risk to the confidentiality and integrity of the system.

Evidence:

The login form was analyzed to identify the required fields and CSRF token behavior.

Exampleclient Ltd. | Version 1.0 | Updated: 2025-07-15 4

https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:L

SPARK42 Penetration Test Report (SAMPLE)

Figure 1: Captured Cookie and CSRF token information

After capturing a valid session cookie, a custom Python script was used to perform a brute-force attack. The
script performs the following actions for each username/password combination:

• Fetches a fresh CSRF token from the login page
• Submits a POST request with credentials, token, and session cookie
• Analyzes the response to detect login success or failure

Example output:

python3 csfr-brute.py http://localhost:80/login.php spnurkb5qac379mi6jv2468bb7 users.txt

passwords.txt "Login failed"↪→

Running brute force attack...

[FAILED] Username: user | Password: 123456

[FAILED] Username: user | Password: 12345678

[FAILED] Username: user | Password: qwerty

...

[FAILED] Username: admin | Password: 1234567

[FAILED] Username: admin | Password: abc123

[SUCCESS] Username: admin | Password: password

#

Recommendation(s):

• Rate Limiting and Account Lockout

Block authentication attempts from a single IP address after 20 consecutive failed login attempts (10-minute
cooldown). Lock user accounts for 10 minutes after 5 failed login attempts.

• Multi-Factor Authentication (MFA)

Implement MFA to reduce the risk of account compromise even if valid credentials are obtained.

Further Guidance:

• https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
• https://cwe.mitre.org/data/definitions/307.html
• https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
• https://cheatsheetseries.owasp.org/cheatsheets/Brute_Force_Protection_Cheat_Sheet.html
• https://pages.nist.gov/800-63-3/sp800-63b.html

Exampleclient Ltd. | Version 1.0 | Updated: 2025-07-15 5

https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://cwe.mitre.org/data/definitions/307.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Brute_Force_Protection_Cheat_Sheet.html
https://pages.nist.gov/800-63-3/sp800-63b.html

SPARK42 Penetration Test Report (SAMPLE)

ID02 - SQL Injection

Severity: Critical

CVSSv3.1: 9.8

CVSSv3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Affected Asset(s):

• /vulnerabilities/sqli/index.php

Description:

The web application endpoint /vulnerabilities/sqli/index.php is vulnerable to SQL Injection (SQLi) via
the id GET parameter. During testing, it was confirmed that input is not properly sanitized or parameterized,
allowing raw SQL statements to be injected and executed directly by the backend database.

Automated testing using sqlmap identified multiple exploitable SQLi vectors, including:

• Boolean-based blind
• Error-based
• Time-based blind
• UNION-based injection

The vulnerable parameter was capable of executing SQL expressions that manipulate query logic, extract data
from arbitrary tables, and even delay responses via SLEEP() , confirming full backend database control.

This issue exists despite the presence of a CSRF token elsewhere in the application, and no web application
firewall or query-layer protection mechanisms were observed to be in place.

Impact:

This vulnerability enables a remote, unauthenticated attacker to gain unrestricted access to the application’s
database. Specifically, an attacker could:

• Bypass authentication and impersonate users (e.g., via payloads like 1' OR '1'='1).
• Extract sensitive data, including usernames, hashed passwords, personal details, or business-critical

records.
• Enumerate all database schema components, including databases, tables, and column structures.
• Retrieve password hashes and use them in offline cracking attacks or for credential reuse.
• Alter, delete, or insert data, depending on the permissions granted to the application’s database user.
• Escalate privileges within the application if administrative account credentials are obtained.
• Leverage the database access as a pivot point to further compromise the underlying server or connected

systems.

Given that this attack does not require prior authentication and grants direct interaction with the underlying
database engine, this vulnerability presents a critical risk to the confidentiality, integrity, and availability of the
entire system.

Evidence:

SQL injection vulnerability was identified using sqlmap :

sqlmap --fresh-queries --url="http://localhost/vulnerabilities/sqli/?id=1&Submit=Submit#"

--cookie="security=low; PHPSESSID=lrncld2q29s5ddvb1bno2k41o5"↪→

...

web server operating system: Linux Debian 9 (stretch)

web application technology: Apache 2.4.25

back-end DBMS: MySQL >= 5.0 (MariaDB fork)

...

It was possible to retrieve the list of databases in the application backend:

available databases [2]:

[*] dvwa

[*] information_schema

List of tables in dvwa database:

Exampleclient Ltd. | Version 1.0 | Updated: 2025-07-15 6

https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

SPARK42 Penetration Test Report (SAMPLE)

Database: dvwa

[2 tables]

+-----------+

| guestbook |

| users |

+-----------+

Columns of table users in dvwa database:

Database: dvwa

Table: users

[8 columns]

+--------------+-------------+

| Column | Type |

+--------------+-------------+

| user | varchar(15) |

| avatar | varchar(70) |

| failed_login | int(3) |

| first_name | varchar(15) |

| last_login | timestamp |

| last_name | varchar(15) |

| password | varchar(32) |

| user_id | int(6) |

+--------------+-------------+

The hashed passwords:

Database: dvwa

Table: users

[5 entries]

+---------+---------+----------------------------------+

| user_id | user | password |

+---------+---------+----------------------------------+

| 1 | admin | 5f4dcc3b5aa765d61d8327deb882cf99 |

| 2 | gordonb | e99a18c428cb38d5f260853678922e03 |

| 3 | 1337 | 8d3533d75ae2c3966d7e0d4fcc69216b |

| 4 | pablo | 0d107d09f5bbe40cade3de5c71e9e9b7 |

| 5 | smithy | 5f4dcc3b5aa765d61d8327deb882cf99 |

+---------+---------+----------------------------------+

To confirm the SQLi in processing the id manually, either to navigate the browser to the url
https://localhost/vulnerabilities/sqli/ , type 1' OR 1=1# in the User ID form field and click Submit

or just visit the crafted url: https://localhost/vulnerabilities/sqli/?id=1%27+OR+1%3D1%23&Submit=Submit#

Exampleclient Ltd. | Version 1.0 | Updated: 2025-07-15 7

SPARK42 Penetration Test Report (SAMPLE)

Figure 2: Pyaload execution led to listing all users

Recomendation(s):

To remediate the SQL Injection vulnerability identified in /vulnerabilities/sqli/index.php, the following technical
and procedural controls are recommended:

• Use Parameterized Queries (Prepared Statements):

Avoid building SQL queries by concatenating user input. Use parameterized queries to ensure input is treated
as data only.

• Validate Input Types:

Accept only expected input formats (e.g., numeric values for IDs). Reject anything else early.

• Limit Database Permissions:

Use a dedicated database user with the minimum required privileges (e.g., read-only access where possible).

• Deploy a Web Application Firewall (WAF):

Use a WAF (e.g., ModSecurity) to help detect and block common SQL injection patterns.

Further Guidance:

• https://owasp.org/Top10/A01_2021-Broken_Access_Control/
• https://owasp.org/Top10/A03_2021-Injection/
• https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
• https://cwe.mitre.org/data/definitions/89.html
• https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
• https://capec.mitre.org/data/definitions/66.html

Exampleclient Ltd. | Version 1.0 | Updated: 2025-07-15 8

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://cwe.mitre.org/data/definitions/89.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://capec.mitre.org/data/definitions/66.html

SPARK42 Penetration Test Report (SAMPLE)

ID03 - Cross-Site Scripting (XSS) Reflected

Severity: Medium

CVSSv3.1: 5.4

CVSSv3.1 Vector: AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N

Affected asset(s)::

• /vulnerabilities/sqli/session-input.php (ID)

Description:

A Reflected Cross-Site Scripting (XSS) vulnerability was identified in the name parameter of the
/vulnerabilities/xss_r/ endpoint. At the time of testing, the application failed to adequately sanitize or

encode user-supplied input before reflecting it in the HTML response.

This allows an authenticated attacker to craft malicious links or inputs that execute arbitrary JavaScript in the
context of the victim’s browser session when they interact with the vulnerable page.

The vulnerability was confirmed using the XSStrike tool and manually verified by injecting payloads such as
"> , which successfully triggered JavaScript execution.

Impact:

Successful exploitation of this reflected XSS vulnerability enables an attacker to:

• Hijack user sessions, if cookies are not marked HttpOnly.
• Perform phishing attacks by injecting malicious UI elements.
• Deface content by modifying client-side HTML/DOM.
• Redirect users to malicious websites.
• Exfiltrate sensitive information displayed on the page.

As the vulnerability exists even at the “High” security level of DVWA, it demonstrates that insufficient input
validation and output encoding are present, even when protections are expected to be more robust. Although
attacker authentication is required in this lab context, in real-world applications, similar vulnerabilities could be
more broadly exploitable depending on access control and exposure.

Evidence:

The XSS vulnerability was identified by running the XSStrike against the variable name on URL
/vulnerabilities/xss_r/ :

python3 xsstrike.py -u "http://localhost/vulnerabilities/xss_r/?name=user" --headers

"Cookie: PHPSESSID=ml5cu6vgfbc14fkdq75amqh8g6; security=high" --console-log-level INFO↪→

Figure 3: Example of XSStrike run

Exampleclient Ltd. | Version 1.0 | Updated: 2025-07-15 9

https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N

SPARK42 Penetration Test Report (SAMPLE)

XSStrike identified that the name parameter reflects unsanitized input and executed a payload that triggers
JavaScript code execution.

To validate manually, navigate the web browser to http://localhost/vulnerabilities/xss_r/ and enter
the following payload in the “name” field: in to feld name type:

">

and Submit the form.

Figure 4: Example of the manual validation using the web broser

The browser executed the JavaScript in the context of the current user, confirming that input is not properly
sanitized or encoded before being reflected.

Recommendation(s):

• Sanitize and encode all user input before reflecting it in the response.
• Use frameworks or libraries that automatically escape content (e.g., using htmlspecialchars() in PHP).
• Implement Content Security Policy (CSP) headers to mitigate the impact of XSS.

Further Guidance:

• https://owasp.org/Top10/A03_2021-Injection/
• https://cwe.mitre.org/data/definitions/79.html
• https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
• https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
• https://portswigger.net/web-security/cross-site-scripting

Tools used

• Burp
• ZAP
• Nikto
• sqlmap
• XSStrike

Exampleclient Ltd. | Version 1.0 | Updated: 2025-07-15 10

https://owasp.org/Top10/A03_2021-Injection/
https://cwe.mitre.org/data/definitions/79.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://portswigger.net/web-security/cross-site-scripting

	Report
	DISCLAIMER
	Executive summary
	Findings Index
	Rules of engagements
	Targets and deliverables
	Scope of testing
	Time-frame
	Methodology
	Communication

	Findings detail
	ID01 - Brute-Force Vulnerability in Login Functionality
	ID02 - SQL Injection
	ID03 - Cross-Site Scripting (XSS) Reflected

	Tools used

