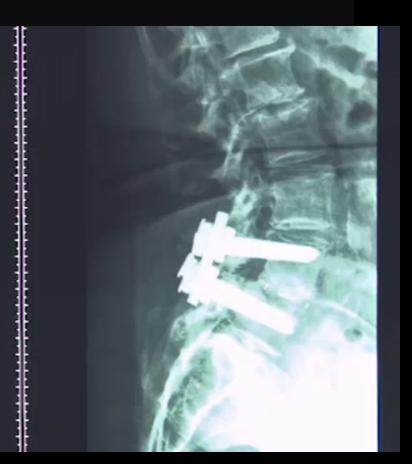
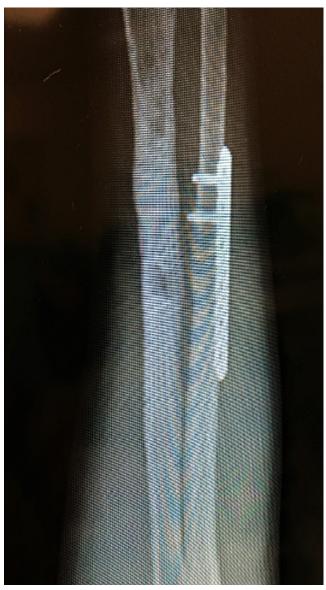


INJECTABLE DEMINERALIZED **BONE MATRIX**





LEADERS IN TISSUE ENGINEERING

X-rays comparing a non-union 1 year post revision after GSW and 3 months after treatment with injectable DBM-BMP complex

NovaDBMX

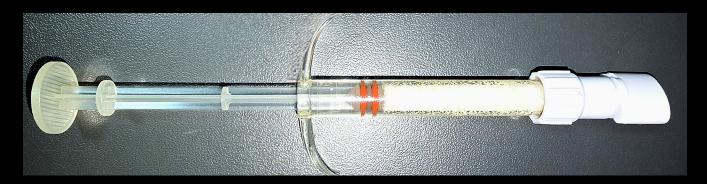
CAT NO:

NovaDBMX1

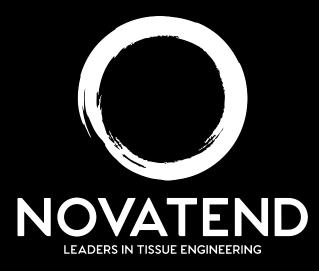
NovaDBMX2

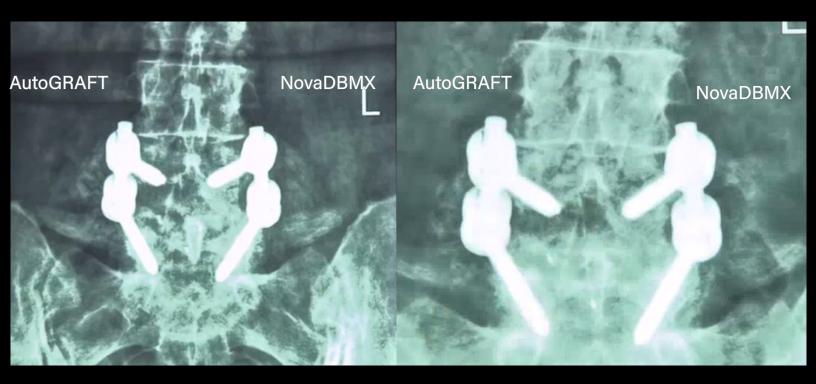
NovaDBMX5

PRICE (Incl. VAT)


R4201.29

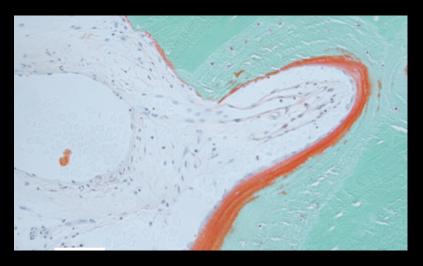
R7198.80


R13804.29


NovaDBMX is a ready-to-use Demineralized Bone Matrix combined with Bone Morphogenetic Protein (BMP) Complex. This innovative product serves as a substitute for bone grafts, promoting osteoinductive skeletal regeneration in humans. With an excellent safety profile spanning over a decade and 3500+ patients across both Private and Public hospitals, there have been no reported device-related adverse events. By using NovaDBMX, the need for autograft harvesting and the associated patient morbidity is effectively eliminated.

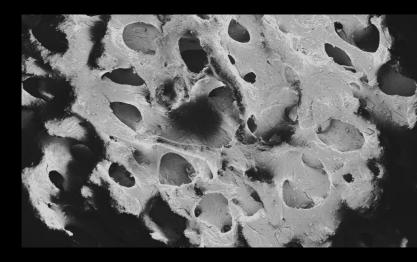
Surgeons also have the option to use NovaDBMX as a graft extender when opting for autograft, reducing the amount that needs to be harvested. The consistent levels of BMP/TGF-b in each batch ensure a predictable and reliable clinical outcome, mitigating the effects of donor variability. NovaDBMX is pre-filled, gamma sterilized, and boasts a validated shelf-life of 18 months, without the necessity of a cold chain. Can be injected via minimally invasive or open bore openings for versatility.

Comparison of AutoGRAFT (R) to NovaDBMX (L) in L4-L5 Fusion (C) Novatend 2025


6 Months 12 Months

A bilateral solid bony fusion mass is evident at both 6 and 12 months in an intra-patient study where the patients own bone, considered the gold standard, was implanted on the right (left on X-Ray) and NovaDBMX implanted on the Left (Right on X-ray. This study showed that the use of NovaDBMX is comparable to autograft posterolateral lumbar fusion procedures.

NovaDBMX FEATURES


NovaDBMX consists of type 1 atelopeptide depleted demineralized bone matrix with standardized levels of BMP-2 to ensure a predictable and reliable clinical result. Designed for ease of use by surgeons.

The syringe comes pre-filled and is supplied ready to use fitting seamlessly into existing theater workflows and saving the time required for a harvesting procedure. NovaDBMX can be used as extender with autograft.

The device is available in 1, 2 and 5 cc variations according to surgical requirement. They are terminally sterilized via gamma irradiation and have a validated shelf life of 18 months. The device requires no cold storage.

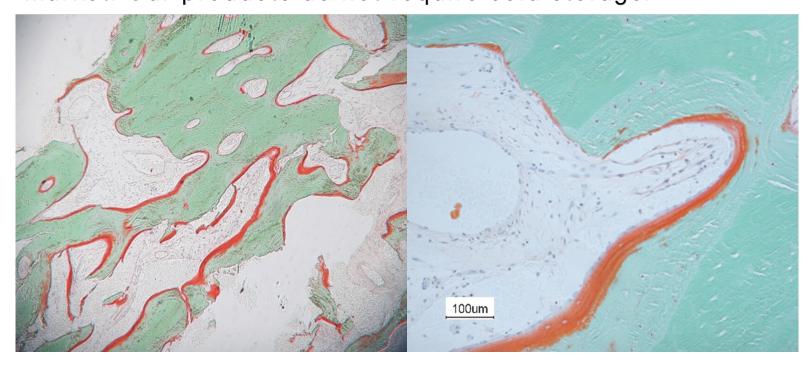
INDICATIONS

NovaDBMX is indicated for a wide range of clinical applications, including:

- Filling bone voids and defects in orthopedic surgeries.
- Bone graft substitute/Graft extender in spinal fusion procedures.
- Support in periodontal and maxillofacial reconstructive surgeries.
- Enhancing bone healing in traumatic fractures [Gustilo-Anderson IIa+]

<u>ADVANTAGES</u>

- 1. Enhanced Osteogenesis: Reliable stimulation of new bone growth due to optimized BMP-2 levels.
- 2. Versatile Application: Injectable form allows use in minimally invasive and open surgeries.
- 3. Reduced Operating Time: Prepackaged and ready for immediate use, minimizing surgical preparation.
- 4. Affordable: We take every batch from raw material to final product which means we can supply our devices at a much lower cost than imported devices. All Novatend devices are fully reimbursed by major medical aids and hospital groups.



OUR MISSION STATEMENT

Novatend devices offer a solution to the lack of availability of imported devices, as their high cost is often not covered by most medical aid schemes. Our devices are fully approved and covered by major medical aids. Our membranes and grafting products have been utilized in South African private hospitals for more than ten years, demonstrating an outstanding safety record. All our products are manufactured in an advanced ISO 13485 accredited cleanroom facility and undergo terminal sterilization. Each batch undergoes 15 advanced molecular tests before being released to the market. Our products do not require cold storage.

HE Stain of Biopsy showing new bone formation at 20x and 100x. Light Green - New Bone, Red- Osteoid, Dark Geen - Implanted DBM

For orders contact sales@novatend .com.

SAHPRA:00003409MD

UKAS:00025955

All Rights Reserved@Novatend 2025

NOVATEND (Pty) Ltd 2022/686389/07 The Innovation Hub, Persequor. 0087. sales@novatend.com +27825662194

Murdoch, M., Wittstock, C., Psaras, G., Widgerow, A., Lukhele, M., Ramokgopa, M.T., Snyman, J., Hutchings, J., Marcos, E., Biscardi, A.G. and Cromarty, D., 2025. Use of osteogenic bone matrix in patients with traumatic long bone defects: An open label, single center study. Journal of Orthopaedics, 60, pp.159-166.

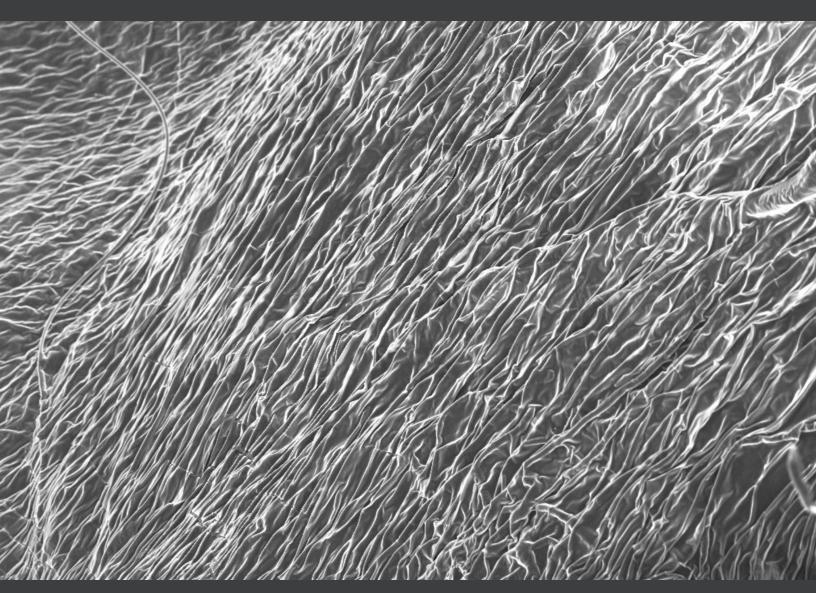
Lee, S., Ham, D.W., Kwon, O., Park, J.H., Yoon, Y. and Kim, H.J., 2024. Comparison of Fusion Rates among Various Demineralized Bone Matrices in Posterior Lumbar Interbody Fusion. Medicina, 60(2), p.265.

Sandler, A.B., Scanaliato, J.P., Raiciulescu, S., Nesti, L. and Dunn, J.C., 2023. Bone morphogenic protein for upper extremity fractures: a systematic review. Hand, 18(1), pp.80-88.

Shepard, N.A., Rush, A.J., Scarborough, N.L., Carter, A.J. and Phillips, F.M., 2021. Demineralized bone matrix in spine surgery: a review of current applications and future trends. International Journal of Spine Surgery, 15(s1), pp.113-119.

Downing, M., Niedzielak, T., De La Rosa, C., Ting, A., Berko, J., Lampasona, N. and Cross, B., 2021. A literature review of commercially available demineralized bone matrix products and their clinical evidence in acute fractures, nonunions, and fusion procedures. Current Orthopaedic Practice, 32(2), pp.197-203.

Hartman, H., Butler, J.J., Calton, M., Lin, C.C., Rettig, S., Tishelman, J.C., Krebsbach, S., Randall, G.W. and Kennedy, J.G., 2025. Limited evidence to support demineralized bone matrix in foot and ankle surgical procedures: A systematic review. World Journal of Orthopedics, 16(1), p.97848.


van der Stok, J., Hartholt, K.A., Schoenmakers, D.A.L. and Arts, J.J.C., 2017. The available evidence on demineralised bone matrix in trauma and orthopaedic surgery: a systematic review. Bone & joint research, 6(7), pp.423-432.

Olivera, L. and Antoniac, I., 2019. Bone substitutes in orthopedic and trauma surgery. Bioceramics and Biocomposites: From Research to Clinical Practice, pp.341-366.

Busch, A., Wegner, A., Haversath, M. and Jäger, M., 2021. Bone substitutes in orthopaedic surgery: current status and future perspectives. Zeitschrift für Orthopädie und Unfallchirurgie, 159(03), pp.304-313.

LEADERS IN TISSUE ENGINEERING

Laminar Collagen Fibrils as viewed through a Zeiss SEM at 8300 x (C) Novatend 2024

