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Executive Summary

This article explores the connection between the Riemann Hypothesis and the jump dynamics of
refined prime-counting functions, specifically focusing on the behavior of Chebyshev primes and the

Moebius-weighted sum n_N(x) as proposed in arXiv:hal-00627233.

I Visualizations

Chebyshev Function 6(x) = X log(p) forp = x Error Term: 6(x) - x
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**Figure 1:%* Chebyshev functions 0(x) and y(x) measuring prime density



Prime Counting Function n(x) Error Term in Prime Number Theorem
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**Figure 2:%* Prime counting function 7i(x) versus asymptotic approximations

I Introduction

The distribution of prime numbers remains one of the most profound mysteries in analytic number theory.
Central to this mystery is the Riemann Hypothesis (RH), which asserts that all non-trivial zeros of the Riemann
zeta function, {(s), lie on the critical line Re(s) = 1/2. The implications of RH are far-reaching, primarily
providing the tightest possible bound for the error term in the Prime Number Theorem. If RH is true, the
difference between the prime-counting function 71(x) and the logarithmic integral li(x) is constrained by a factor

proportional to x*(1/2) log x.

However, the relationship between m(x) and li(x) is not simple. While Gauss famously conjectured that li(x) >
mi(x) for all x, Littlewood proved in 1914 that the difference li(x) - (x) changes sign infinitely often. The search
for the first such sign change, known as the Skewes number, has led to significant computational and theoretical
efforts. The paper arXiv:hal-00627233 enters this discourse by proposing a refined analysis of the jumps of the

function li[y(x)] - m(x), where p(x) is the second Chebyshev function.

The core contribution of arXiv:hal-00627233 is the introduction of a weighted sum, n_(N)(x), which utilizes the
Moebius function p(n) to construct a more precise approximation of 71(x). By studying the jump discontinuities of
this function at prime powers, the author provides a new lens through which to view the oscillations of the prime
distribution. This article explores the mathematical foundations of this approach, analyzes the behavior of these
jumps, and proposes new research pathways that connect these local discontinuities to the global distribution of

the zeros of {(s).

Mathematical Background



To understand the refinements proposed in arXiv:hal-00627233, we must first define the primary arithmetic
functions involved. The prime-counting function 7(x) counts the number of primes p < x. The logarithmic

integral is defined as li(x) = | dt/log t. The first and second Chebyshev functions are defined as:

0(x) = sum of log p for all primes p < x

p(x) = sum of log p for all prime powers pr(k) < x

The relationship between w(x) and the zeros of the zeta function is given by the explicit formula: p(x) = x - ¥
x"p)/p) - log(2m) - (1/2)log(1 - x~(-2)), where p = B + iy are the non-trivial zeros of {(s). Under the Riemann
Hypothesis, = 1/2 for all p, leading to the oscillation of p(x) around the identity function x with a magnitude of
roughly x*(1/2).

The source paper focuses on the function e(yp)(x) = li[w(x)] - m(x). This function is particularly interesting
because p(x) captures information about prime powers, whereas m(x) only counts primes. The author further

refines this into the function n(N)(x):
n(N)(x) = L (n=D)"(N) (p(n)/n) li[p(x)*(1/n)] - 7(x)

The introduction of p(x) inside the logarithmic integral in n(N)(x) creates a hybrid object that tracks the jumps of
the Chebyshev function against the discrete steps of the prime-counting function. The author specifically
investigates the jumps of n(N)(xX) at prime powers, asserting that these jumps provide a control mechanism for the

sign of the error term.

Main Technical Analysis

Jump Dynamics and Prime Power Discontinuities

The primary technical innovation in arXiv:hal-00627233 is the localized study of jumps at prime powers p~(l).
A jump of a function f(x) at a point a is defined as the limit of f(a + h) - f(a - h) as h approaches zero. For n_(N)

(x), jumps occur whenever p(x) or (x) changes value.

The author observes that the jumps of li[y(p)] - lifw(p-1)] are related to the behavior of "Chebyshev primes."
Specifically, the statement in arXiv:hal-00627233 regarding the condition n(N)(p”\(1)) - n(N)(p*(1)-1) - 1/1 > 0
implies a specific growth rate for the logarithmic integral relative to the discrete step of the prime-counting

function. As p approaches infinity, the difference n(N)(p”\(1)) - n(N)(p~(1)-1) - 1/1 is conjectured to approach zero.

This suggests that the energy of the jump at a prime power is almost exactly compensated by the derivative of the
logarithmic integral. When this balance is disrupted, it indicates an oscillation in the prime distribution that can
be traced back to the zeros of {(s). The paper labels primes where the jump of li[p(p)] is less than 1 as
Chebyshev primes, denoted Ch_(n). These primes are critical because they represent locations where the smooth

approximation li[w(x)] lags behind the actual count of primes.



Spectral Influence on Oscillations

The behavior of n(N)(x) is not merely a local phenomenon but is driven by the spectrum of the zeta zeros. By
substituting the explicit formula for p(x) into the definition of n(N)(x), we see that p(x)*(1/n) is approximately
equal to (x - X x(p)/p)*(1/n). For n=1, the term p(1)/1 li[p(x)] dominates. The terms for n > 2 in the sum for
N(N)(x) act as filters that remove the secondary biases in the prime distribution (the biases toward p™N(2), p\(3),

etc.). By subtracting (u(n)/n) lify(x)\(1/n)], the function n(N)(x) effectively whitens the error term.

Data presented in arXiv:hal-00627233 illustrates the maximum values of n(N) and the corresponding x values.
For instance, at N=3, x(max) is 6889 with n(max) = 1.118. As N increases to 50, the values of n(max) and
x_(max) fluctuate, reflecting the inclusion of more Moebius-weighted terms. The persistence of these maxima
suggests that even after filtering out the primary biases, significant oscillations remain. Under the Riemann
Hypothesis, these oscillations must stay within the bounds of x*(1/2+¢). If any n_(N)(x) were to grow faster than

this, it would imply the existence of zeros with Re(p) > 1/2.

I Novel Research Pathways

1. Moebius-Weighted Kernel Density Estimation

The function n(N)(x) can be viewed as a specific type of kernel density estimator for the zeros of the zeta
Jfunction. A promising research direction would be to generalize the weighting scheme. Instead of using u(n)/n,

one could employ a sequence of weights w(n) optimized to minimize the variance of the error term.

Formulation: Define Q(x; W) = Y. w_(n) li[lp(x)*(1/n)] - 71(x).

Methodology: Determine if there exists a weight vector W that isolates the contribution of specific

low-lying zeros.

Connection: If such a spectral filter can be constructed, it would allow for a local test of the Riemann

Hypothesis by checking if the filtered signal obeys expected magnitude constraints.

2. The Jump Frequency Conjecture

The source paper discusses the limits of the jumps n(N)(p”\(1)) - n(N)(p~(1)-1) - 1/1. A formal investigation into

the distribution of these jump magnitudes could yield a new equivalent to the Riemann Hypothesis.

Formulation: Analyze the sequence of jump residuals d(p~(1)) = n(N)(p”\(1)) - n(N)(pA(D-1) - 1/1.

Methodology: Investigate whether the cumulative sum of these residuals exhibits square-root

cancellation.



Connection: Establish criteria for the location of zeros on the critical line by examining the

transformations impact on the residual sum.

3. Chebyshev Prime Density and Critical Line Violations

The third research direction involves establishing a quantitative relationship between the density of Chebyshev
primes and the distribution of zeta function zeros. The source paper identifies primes Ch_(n) where the jump is

less than 1 but does not analyze their asymptotic density.

Formulation: Investigate the density function D(x) = #{p < x:pis a Chebyshev prime }/m(x).

Methodology: Extend the computational analysis to much larger ranges (up to 107(12)) and analyze

the spectral content of deviations.

Connection: Under RH, D(x) should approach a specific limit. Larger oscillations would indicate

zeros off the critical line.

I Computational Implementation

(* Section: Refined Chebyshev Jump Analysis *)

(* Purpose: To compute eta_ N (x) and visualize its oscillations and jumps *)

Module[{maxVal, nLimit, psi, etaN, primeData, Jjumps, zeros, gammas},
maxVal = 2000; (* Range of x to investigate *)

nLimit = 5; (* Number of Moebius terms N *)

(* Define the second Chebyshev function psi(x) using MangoldtLambda *)
psi[x_] := Total[MangoldtLambda[Range[Floor([x]]]];

(* Define the refined function eta N(x) from hal-00627233 *)
etaN[x_, N_] := Sum|[

(MoebiusMu[n]/n) * LogIntegral [Max[2, psi[x]~(1/n)]],

{n, 1, N}

] - PrimePi[x];

(* Generate data for plotting eta_N(x) *)
primeData = Table[{x, etaN[x, nLimit]}, {x, 2, maxval, 1}];

(* Identify the jumps at prime numbers *)

jumps = Table]|
{p, etaN[p, nLimit] - etaN[p - 0.1, nLimit]},
{p, Prime[Range[PrimePi[maxVal]]ll}

1

(* Visualize the refined error function eta_N(x) *)

Print [ListLinePlot [primeData,



Filling —-> Axis,
PlotLabel -> "Refined Error Function eta_N(x) for N=5",

FrameLabel -> {"x", "eta N(x)"}1];

(* Compare with the first few nontrivial zeta zeros: rho = 1/2 + i*gamma *)
zeros = Table[ZetaZerol[k], {k, 1, 10}1;

gammas = Im[zeros];

(* Visualize a crude phase driver cos(gamma log x) for x in a range *)
Print [Plot [Evaluate[Total [Cos[gammas*Log([x]]/gammas]], {x, 10, maxVal},

PlotLabel -> "Oscillation from first 10 zeta zeros"]];

(* Analysis of the maximum eta value *)

Print ["Maximum eta_ N value in range: ", Max[primeDatal[[All, 2]]111;

Summary of key findings: The investigation of the function n(N)(x) and the jumps of li[w(x)] provides a
sophisticated framework for analyzing prime distribution. By incorporating the Moebius function into the
approximation, we move beyond the classical li(x) model to account for the influence of prime powers. The most
promising avenue for further research lies in the spectral analysis of the n(N)(x) function. If the jumps can be
shown to converge at a specific rate, it would provide a new pathway to verify the Riemann Hypothesis over
finite intervals. Immediate next steps should involve expanding the calculation of Chebyshev primes to determine

if the frequency of negative jumps correlates with the known heights of the zeros on the critical line.
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