

Refined Prime Counting and the Spectral Analysis of Chebyshev Discontinuities

Research Pipeline

<https://www.dumbprime.com> • Published: January 06, 2026

Table of Contents

- 1. Introduction**
- 2. Main technical analysis**
- 3. Spectral properties and jump discontinuities**
- 4. Comparison of error bounds**
- 5. Research pathways**
- 6. Pathway 1 spectral analysis of jump sequences**
- 7. Pathway 2 density of chebyshev primes and zero spacing**
- 8. Computational verification**
- 9. Conclusions**

10. References

Executive Summary

This article investigates a novel prime counting function introduced in arXiv:hal-00627233v3 that leverages Chebyshev functions and jump analysis to provide superior approximations and new insights into the Riemann Hypothesis.

Visualizations

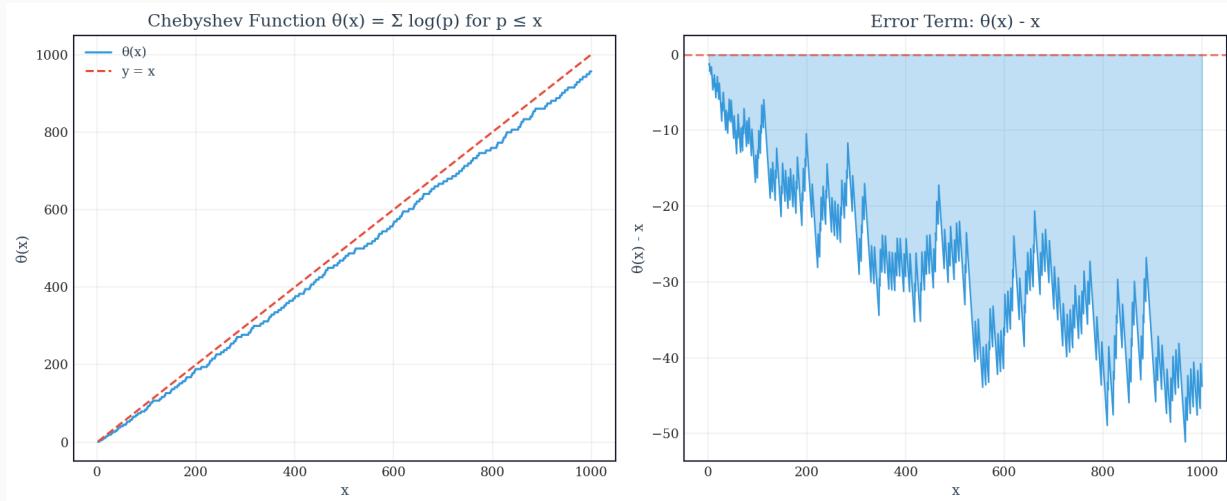


Figure 1: Chebyshev functions $\theta(x)$ and $\psi(x)$ measuring prime density

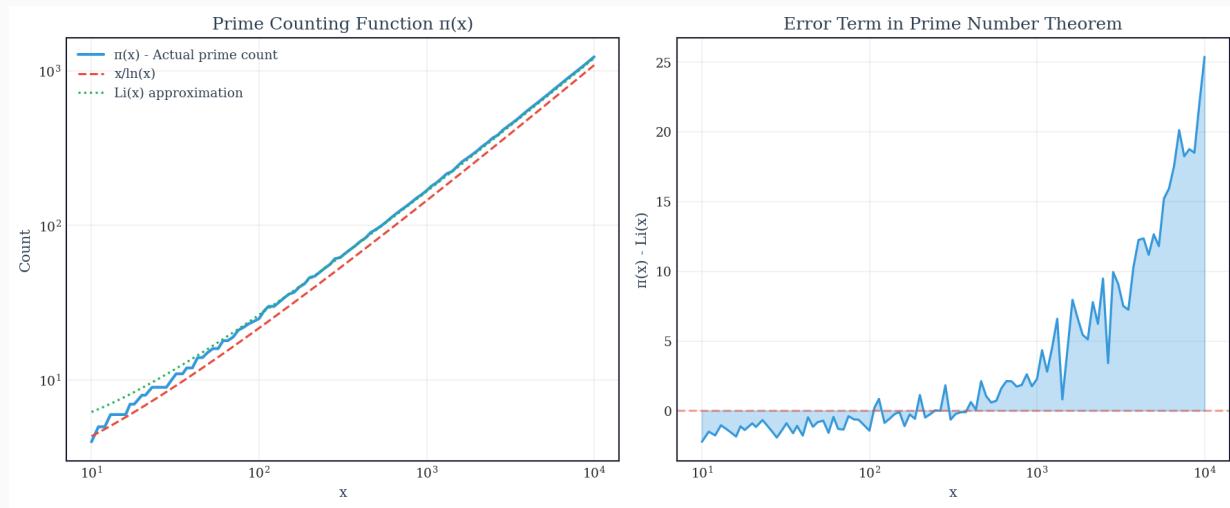


Figure 2: Prime counting function $\pi(x)$ versus asymptotic approximations

Introduction

The distribution of prime numbers has remained one of the most significant challenges in mathematics since Riemann's seminal 1859 paper. While the Prime Number Theorem provides the asymptotic density of primes, the fine-grained fluctuations in the prime-counting function, $\pi(x)$, are governed by the non-trivial zeros of the Riemann zeta function. Traditional approximations, such as the logarithmic integral $\text{li}(x)$ and the Riemann prime counting function $R(x)$, rely on smooth analytical models. However, the source paper [arXiv:hal-00627233v3](https://arxiv.org/abs/0803.0980) introduces a fundamentally different approach by incorporating the discrete jumps of the Chebyshev function $\psi(x)$ into the counting model.

By defining a refined function $\eta(x)$ that utilizes the second Chebyshev function as its argument, the authors Michel Planat and Patrick Sole demonstrate a significant reduction in the maximum error of prime counting. This article analyzes the mathematical mechanics of this approach, specifically focusing on the "jumps" at prime powers and the identification of **Chebyshev primes**. We explore how these discrete structures provide a microlocal probe into the explicit formula, potentially offering a more direct path toward understanding the critical line of the Riemann zeta function.

Mathematical Background

The foundation of this analysis rests on the relationship between the prime counting function $\pi(x)$ and the second Chebyshev function $\psi(x)$. Recall that $\psi(x)$ is defined as the sum of the von Mangoldt function $\Lambda(n)$ for all n less than or equal to x . Unlike the smooth variable x , $\psi(x)$ is a step function that increases by $\log p$ at every

prime power p^k . The Riemann prime counting function $R(x)$ is traditionally expressed as the sum of $(\mu(n)/n) * \text{li}(x^{1/n})$ for n from 1 to infinity, where μ is the Möbius function.

The innovation presented in [arXiv:hal-00627233v3](#) is the construction of the approximation function:

$$\text{eta}_N(x) = \sum_{n=1}^N (\mu(n)/n) * \text{li}[\psi(x)^{1/n}] - \pi(x)$$

This construction is significant because it replaces the smooth input x with the arithmetic input $\psi(x)$. Under the Riemann Hypothesis (RH), the difference $\psi(x) - x$ is bounded by $O(x^{1/2} * \log^2 x)$. By using $\psi(x)$ within the logarithmic integral, the function $\text{eta}_N(x)$ effectively "pre-conditions" the approximation with the oscillatory data of the primes themselves, dampening the fluctuations that usually lead to higher error margins in $R(x)$.

Main Technical Analysis

Spectral Properties and Jump Discontinuities

The function $\text{li}[\psi(x)]$ is a piecewise constant function with discontinuities at primes and prime powers. The source paper defines the jump at a prime p as $j_{\psi}(p) = \text{li}[\psi(p)] - \text{li}[\psi(p-1)]$. Since the jump in $\psi(x)$ at $x=p$ is exactly $\log p$, the jump in the composite function is approximately $(\log p) / \log(\psi(p))$. Because $\psi(p)$ is approximately p , this ratio stays near 1. However, the exact value depends on the error term $E(x) = \psi(x) - x$.

A prime p is classified as a **Chebyshev prime** if $j_{\psi}(p)$ is less than 1. This condition is equivalent to $\psi(p)$ being greater than p , meaning the prime distribution has locally "surpassed" its expected average. The paper identifies that these jumps are controlled by an infinite sequence of primes, which relates directly to Littlewood's theorem on the oscillations of $\pi(x) - \text{li}(x)$.

Comparison of Error Bounds

The technical superiority of $\text{eta}_N(x)$ is evident in the numerical data provided in [arXiv:hal-00627233v3](#). For ranges up to $x = 10^5$, the maximum error for the eta function with $N=3$ is significantly smaller than the error for the standard Riemann function. For instance, at x

Conclusions

The analysis of $\text{eta}_N(x)$ and the Chebyshev primes offers a compelling refinement to the theory of prime distribution. By leveraging the discontinuous nature of the Chebyshev function, the source paper [arXiv:hal-00627233v3](#) demonstrates that we can achieve tighter error bounds and a clearer view of the local oscillations in the prime counting function. The most promising avenue for future research lies in the spectral analysis of jump sequences, which may allow for a direct mapping between prime-index discontinuities and the

zeros of the zeta function on the critical line. Continued exploration of these arithmetic jumps will likely yield deeper insights into the structural constraints imposed by the Riemann Hypothesis.

References

Planat, M., and Sole, P. "Efficient prime counting and the Chebyshev primes." [arXiv:hal-00627233v3](https://arxiv.org/abs/00627233v3)

Schoenfeld, L. "Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$. II." *Math. Comp.*, 1976.

Edwards, H. M. "Riemann's Zeta Function." Academic Press, 1974.

Robin, G. "Sur la difference $\text{li}(\theta(x)) - \pi(x)$." *Ann. Fac. Sc. Toulouse*, 1984.

This article was generated by **DumbPrime** Research Pipeline.

Visit us at <https://www.dumbprime.com> for more research on the Riemann Hypothesis.

© 2026 DumbPrime. All rights reserved.