

Documentation

ENERGY PROFILER PROBE
- FIRMWARE -

DEVELOPER GUIDE

30. JUNE 2025

Open Energy Profiler Toolset
Drive innovations in the field of low-powered technologies

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

2

Revision History

Version Date Description

1.0.0 30.06.2025. Initial draft

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

3

CONTENT

1. INTRODUCTION .. 4

2. ARCHITECTURE ... 5

3. SOURCE CODE ORGANIZATION .. 6

4. FUNCTIONAL SOFTWARE BLOCKS .. 9

4.1. Drivers ... 9
4.1.1. Analog IN .. 9
4.1.2. Analog OUT .. 16
4.1.3. Network ... 17
4.1.4. GPIO .. 19
4.1.5. Interrupts .. 21
4.1.6. SPI ... 23
4.1.7. System ... 24
4.1.8. Timer.. 26
4.1.9. UART... 27

4.2. Services .. 29
4.2.1. Control ... 29
4.2.2. Stream .. 31
4.2.3. Energy Debugging ... 34
4.2.4. EEZ DIB .. 37
4.2.5. Logging .. 39
4.2.6. Network ... 41
4.2.7. System ... 42

4.3. Configuration .. 44

5. BUILD AND RUN INSTRUCTIONS ... 45

LIST OF FIGURES .. 50

REFERENCES ... 51

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

4

1. INTRODUCTION

This document serves as the official developer guide for the firmware running on the Energy Profiler

Probe (EPP), a critical embedded component within the broader Open Energy Profiler Toolset (OpenEPT)

ecosystem. It is specifically designed for embedded systems developers, system integrators, researchers,

and contributors who aim to understand, maintain, or extend the capabilities of this firmware.

The Energy Profiler Probe (EPP) is an essential tool for the development and optimization of modern

energy-aware systems, providing both high-speed voltage and current measurement capabilities, up to 1

MSPS sampling rate, and the ability to generate arbitrary current profiles. This combination of features

enables developers to perform precise, high-resolution monitoring of power consumption while also actively

stimulating and analyzing the behavior of battery-powered devices. Such capabilities are particularly

valuable for battery profiling, power efficiency tuning, and real-time energy diagnostics. By unifying data

acquisition and signal generation within a single, cohesive hardware platform, the EPP significantly

streamlines the process of designing, validating, and optimizing low-power embedded applications, making

it an indispensable asset in energy-focused development environments.

The firmware described in this guide is architected for reliability, modularity, and performance, and

is optimized to run on STM32 dual-core processors (Cortex-M7 and Cortex-M4). It utilizes FreeRTOS for

real-time scheduling and LWIP for lightweight IP stack support, in addition to the official STM32 HAL

libraries. This software stack ensures that the EPP meets the demands of both low-latency streaming and

high-throughput data processing.

A core advantage of the firmware lies in its layered and extensible architecture. It is logically divided

into functional layers that include device and platform drivers, middleware services, application logic, and

a central system management layer. This structure not only facilitates clear separation of concerns but also

makes the codebase easy to scale and adapt, whether for new hardware peripherals, emerging protocols, or

application-specific extensions.

Each software block, such as AnalogIN, AnalogOUT, Energy Debugging, Control Service, EEZ DIB

Interface, and Sample Stream, is implemented as a self-contained, thread-safe module with clearly defined

interfaces. These services operate independently yet cooperatively under FreeRTOS supervision, ensuring

robust performance in real-time scenarios. Whether the goal is to integrate a new external ADC, introduce

an advanced streaming format, or enable system-wide energy event tracking, this architecture provides a

clean starting point.

This guide offers in-depth coverage of the firmware system, including conceptual overviews,

architectural diagrams, peripheral configuration details, and real-world usage scenarios. It walks the reader

through essential topics such as stream synchronization, multi-buffered DMA management, sample packet

construction, network task coordination, and service initialization sequences. For each functional

component, associated source code locations and configuration parameters are clearly identified.

While this document presents a complete top-down explanation of the firmware’s operational

principles, it is recommended to complement your reading with the auto-generated Doxygen documentation

[xxx]. The Doxygen reference provides detailed insights into API declarations, internal data structures,

configuration macros, and callback mechanisms, all of which are essential for confidently navigating and

extending the codebase. It also includes function-level documentation for low-level drivers and middleware

services that may not be fully elaborated in this guide.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

5

2. ARCHITECTURE
The architecture of the firmware for EPP is presented in the Figure 2.1:

Figure 2.1 – EPP’s firmware architecture

The presented architecture includes multiple layers each composed of various functional software

blocks. The primary architecture layers include:

• Device drivers’ layer

• Platform drivers’ layer

• Middleware layer

• Services layer

• Application layer

The standard STM32H7 device HAL drivers are wrapped within the device driver layer.

The introduction of the platform drivers layer ensures that the STM32H7 device driver is thread

safe. From a higher perspective, the drivers within this layer act as wrappers around standard device drivers,

enhancing the portability of our solution across various platforms.

Platform driver layer and higher software layers utilize different mechanisms from third parties’

libraries such as FreeRTOS and LWIP library. FreeRTOS library

Within the Middleware layer, we have implemented a collection of unique functionalities, carefully

divided into individual RTOS tasks. These tasks are designed to harness the capabilities of specific lower

software layers, creating a well-organized structure that enhances the modularity and efficiency of our

system architecture. This approach not only promotes clarity and maintainability but also allows for

seamless integration and scaling of functionalities within the overall system framework.

The Application layer serves as the embodiment of the main firmware logic, taking on the

responsibility of initializing all lower layers and initiating the RTOS scheduler. This layer acts as the

orchestrator, setting the stage for seamless interaction and collaboration of the various components within

the system. By encapsulating the core functionality, it establishes a cohesive framework that ensures the

proper execution and synchronization of tasks throughout the entire system.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

6

3. SOURCE CODE ORGANIZATION
Complete project source code is available under Firmware repository on the official OpenEPT

organization on the GitHub.

Figure 3.1 - OpenEPT Organization on GitHub and Firmware repository

The Firmware repository is organized as it is presented on Figure 3.2:

Figure 3.2 - Firmware repository top level

Top level repository hierarchy contains two subdirectories:

• Documentation

Here are located scripts to generate documentation based on code comments (Doxygen)

• Source

Here are located two subdirectories:

- ADFirmware – STM32 Cube IDE project that contains all source code for Acquisition Device.

-ConfProject - STM32 Cube IDE project that contains .ioc file that is useful for fast device

configuration (this is used during development phase, and it is left for testing purpose only).

Therefore, all source code of Acquisition device is located on path Source/ADFirmware which top

directory structure is illustrated on

https://github.com/OpenEPT
https://github.com/OpenEPT

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

7

Figure 3.3 - ADFirmware directory structure

• CM4

Complete source code that will be run on Cortex M4 core.

• CM7

Complete source code that will be run on Cortex M7 core.

• Common

Startup file directory to booth all cores successfully.

• Drivers

STM32 driver library from the official STM32H7 Cube git repository

• Middleware

Third parties’ libraries are common for all cores (for example FreeRTOS, LwIP, etc)

Within each core directory (CM4 and CM7) code directory organization is implemented to

correspond to the overall firmware architecture presented on Figure 2.1. This organization is illustrated on

Figure 3.4.

Figure 3.4 - Firmware code directory structure

• Application

Contains firmware top-level source code.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

8

• Configuration

Contains all configuration files such as global firmware configuration, LwIP

configuration, FreeRTOS configuration

• Drivers

This directory contains two sub-directories: Platform and Device. The platform directory

contains thread-safe platform-independent drivers for different peripherals (UART, SPI,

I2C) while the Device directory is linked to the Driver’s directory.

• Middleware

This directory contains two subdirectories: Services and Third party. Each service

functionality, that corresponds to the Acquisition device architecture described here, will

be implemented within a separate subdirectory.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

9

4. FUNCTIONAL SOFTWARE BLOCKS

4.1. Drivers

4.1.1. Analog IN

BLOCK SUMMARY

Name Analog IN Layer Driver

Version 1.03

Related files

Driver top source file
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogIN/drv_ain.c
Driver top header file
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogIN/drv_ain.h
ADS9224R ADC Source file
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogIN/ADS9224R/ads9224r.c
ADS9224R ADC Header file
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogIN/ADS9224R/ads9224r.h

Continuous voltage and current sample acquisition is implemented within the Analog IN driver’s

software block whose main components are illustrated in Figure 4.1.

Figure 4.1 - Functional elements of AnalogIN software block

This software block is in charge to communicate with external ADC and to continuously, with

minimal software assistance, acquire, read and store multiple voltage and current samples into a single

packet of data. For such actions, the Timer and DMA peripherals, both connected with SPI, are configured

to periodically trigger sample conversion on external ADC. Voltage and Current sampling are performed

sequentially after the request to start conversion. At each end of the sampling process, start Timers that

generate clock which initiate samples transfer from external ADC to ADU. Sample transfer triggers DMA

to store voltage current samples to the specific part inside MCU memory. An interrupt is generated when

the buffer is filled with several samples defined with the DRV_AIN_ADC_BUFFER_MAX_SIZE macro.

Inside ISR is called the previously registered callback function from the Samples Stream service which has

forwarded buffer address value.

Analog IN driver is designed to support two operational modes: configuration and acquisition. These

two modes are related to ADS9224R operating modes:

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

10

• configuration – used to configure ADS9224R ADC and to prepare it for acquisition.

• acquisition – mode where it is expected to receive sampling request and to generate CLK to read

samples from ADS9224R.

After ADS9224R is powered up, and firmware is run on the STM32 MCU platform, it is important

to check that ADS9224R is ready to be configured. The function inside the ADS9224R driver, in charge of

properly configuring ADS9224R, is named ADS9224R_Init and its definition is presented on Figure 4.2.

Figure 4.2 - ADS9224R_Init function definition

One of the first steps performed within this function is to “ping” the device to check if ADS9224R

is present and if it is ready to be configured. This “ping” operation considers powering down and then

powering up the device to force ADS9224R to generate a ready signal pulse. The device is power-down by

pulling the #PD/RST pin and holding it minimum tWL_PD period defined within a datasheet, which is in our

case about 1 ms. After this, the device is powered up by pulling the #PD/RST pin high. When ADS9224R

detects a rising edge, if it is ready and present within a system, consequently it will generate a READY

signal too high, and the duration of the high level will be TPU = 0.9ms. This is illustrated on Figure 4.3.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

11

Figure 4.3 - ADS9224R Powerup cycle

After the device is responded to by a rising Ready signal, it is ready to be configured and the

ADS9224R driver is moved to Configuration mode by calling private function

prvADS9224R_CONF_SetState. In Configuration mode is mainly performed writing and reading device

registers over standard SPI protocol. On the ADU side is used SPI3 instance of SPI that is configured to

operate in Master mode and few GPIO pins. Lines between ADS9224R and ADU used within Configuration

mode are illustrated in Figure 4.4.

Figure 4.4 - Lines in configuration mode

SPI3 instance on the STM32 side is configured to operate in Master mode. Pin 12 of GPIOD is

configured as output and it is used as Chip Select signal for SPI while Pin 10 of GPIOG is configured as

input and is used for reading operations. Pin 3 of GPIOA is used to keep the CONVST input of ADS9224R

high during the configuration stage.

Different types of operations over ADS9224R registers are supported within ADS9224R. Operations

are performed by sending the corresponding commands to the ADS9224R device over SPI. Even if there

are multiple supported operations, within a current firmware version, two operations are extensively used:

Register write, and Register read.

To perform register, and write operations, the standard procedure of sending two bytes over SPI is

performed. This procedure is described in official documentation [1]. However, there are a few important

notices related to the reading operations. When the register content wants to be read, two bytes are sent from

MCU where the first 4 bits indicate the read command. After these two bytes are sent to the device, the

device raises a READY pin which indicates that the requested register content is ready to be sent to MCU.

After the Ready pin is set high, STM32 can perform an SPI read of one byte. This sequence is illustrated in

Figure 4.5.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

12

Figure 4.5 - Read the sequence timing diagram

There are two possible conversion control and data transfer frame modes supported by ADS9224R:

Zone 1 and Zone 2. These two modes are detailed and described in official ADC documentation [1] and

their described protocol between ADC and MCU. For our project, Zone 1 is more suitable even if it requires

a few more hardware resources.

To enable streaming from ADC to MCU, the following peripherals are used:

• Timer instance No 5 (TIM5) – Configured in master mode and it used to Periodically trigger

conversion

• Timer instance No 4 (TIM4) – Configured in slave mode and it is used to control Chip select

(CS) signal

• Timer instance No 8 (TIM8) – Configured in slave mode and it is used to generate a Clock for

data transfer

• SPI instance No 5 (SPI5) – Configured in slave mode and it is used to receive data from channel

A

• SPI instance No 4 (SPI4) – Configured in slave mode and it is used to receive data from channel

B

Schematic which illustrates details related to the connections between ADU and ADS9224R is

presented in Figure 4.6.

Figure 4.6 - Lines used in Acquisition mode

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

13

TIM5 is utilized to periodically trigger the conversion process by generating short high-level pulses

on the CONVST input of the ADS9224R ADC. The timer is configured in master mode, with channel 4

operating in PWM mode. TIM5 is connected to STM32's internal APB bus, with its input clock frequency

set to the maximum of 200 MHz. To achieve the desired sampling rate, the timer's prescaler and PWM duty

cycle are adjusted based on the sampling rate defined by the OpenEPT GUI. All timer configurations related

to this process are encapsulated within the prvADS9224R_TIMER_CONVST_Init function, while the

sampling rate can be configured using the ADS9224R_SetSamplingRate function.

TIM4 is responsible for controlling the SPI Chip Select (CS) input of the ADS9224R ADC. It is set

to operate in slave mode as a One Pulse timer, triggered by the rising edge of the READY signal generated

by the ADS9224R. Channel 1 of the timer is configured in PWM mode, with its active level set to zero. Like

TIM5, TIM4 is also connected to the STM32’s internal APB bus, with its input clock frequency set to 200

MHz. The total high- and low-level duration of the signal remains constant across all sampling periods. All

configurations related to this timer are handled within the prvADS9224R_TIMER_CS_Init function.

TIM8 is used to generate clock signal for SPI communication. Like TIM4, TIM8 is configured to

operate in slave mode, triggered by the falling edge of the READY signal. Channel 4 is set to PWM mode,

with a 50% duty cycle, and the repetition counter is set to 16 (corresponding to one clock period per data

bit). The clock frequency remains constant regardless of the sampling period. As with TIM5 and TIM4,

TIM8 is also connected to the STM32’s internal APB bus, with its input clock frequency set to the maximum

of 200 MHz. All timer configurations for this process are encapsulated within the

prvADS9224R_TIMER_SCLK_Init function.

An overview of Timers’ configurations is presented in Table 2

Table 2 – Timer’s configuration overview

Timer Instance Mode Function External Trigger
Base CLK

[MHZ]
Channel/Mode

TIM4 Slave Chip Selext
Rising Edge of

Ready Signal
200 CH1/PWM

TIM5 Master Conversion start - 200 CH4/PWM

TIM8 Slave SCLK
Falling edge of

Ready signal
200 CH1/PWM

After we are presented with the timer’s configuration it is important to explain the way they are

synchronized to achieve timing for Zone 1. This synchronization is presented in Figure 4.7.

Figure 4.7 - Zone 1 timing diagram

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

14

Once the ADS9224R configuration is complete, the device is ready to transmit the acquired samples

from channels A and B. The conversion process is initiated by the rising edge of the CONVST signal (1).

The minimum high-level duration of this signal is defined by the switching characteristics outlined in [1].

As previously mentioned, this signal is controlled by TIM5, which is configured in master mode to generate

a PWM signal with the pre-configured period TS. When the rising edge of the CONVST signal is detected,

after a delay of TR (which, according to [1], does not exceed 315ns), the READY signal is generated. This

signal plays a key role as it triggers TIM4 and TIM8, which are responsible for the CS and SCLK signals,

respectively. The rising edge of the READY signal (2) starts TIM4, which pulls the CS signal low to activate

all SPI slaves. The low-level duration of the CS signal, denoted as TT, corresponds to the time needed to

transfer all 16 bits of data. The falling edge of the READY (3) signal then triggers TIM8, which generates

16 clock cycles to facilitate data transfer.

It is important to highlight three critical timing parameters:

• TR: The time interval between the rising edge of the CONVST signal and the rising edge of the

READY signal, controlled by the ADS9224R, which is specified in [1] and does not exceed

315ns.

• TS: The sampling period is determined by the value set by the user through the GUI application.

• TT: The time interval during which data transfer is active, which must be less than TS - TR.

In the current software version, 16 clock cycles are generated during each TT interval. To ensure

high-speed data transfer, the TT interval remains constant, regardless of the sampling period. This setup

allows the transmission of the 16-bit sampled value from the corresponding ADC channel, even when the

sampling rate is 1MSps.

To manage data acquisition, three timers generate the CS, SCLK, and CONVST signals for Zone 1,

while SPI instances 4 and 5 are used to receive data and store it in local memory. These SPI peripherals are

connected to DMA controllers, which offload the CPU by handling data transfer. The DMA retrieves one

byte at a time from the SPI and continues until N samples have been received. Unlike the internal ADC

setup in the Analog IN software block, where data from both channels is stored sequentially in a single

buffer, in case the software utilizes the external ADC, each buffer is divided into two equal parts, with each

part storing N samples from one channel. Since the DMA operates in double-buffer mode, when one buffer

fills with N samples, the DMA automatically switches the data stream to the second buffer. These buffers,

declared as non-cacheable within the AIN software block, store the data. Once both buffer sections are full,

an interrupted service routine (ISR) notifies the software to read and transmit the data over Ethernet, while

the DMA continues to fill the alternate buffer. This process is illustrated in Figure 4.8.

Figure 4.8 - Samples transfer logic

When the "START ACQUISITION" command is received by the MCU from the GUI, the

acquisition process using the external ADC begins with a call to the ADS9224R_StartAcquisition function.

The function first checks whether the ADS9224R driver is already in acquisition mode; if not, it configures

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

15

the driver for acquisition by calling prvADS9224R_ACQ_SetState. An important modification made to the

STM32 HAL library ensures that the DMA operates in double-buffer mode. This modification involves

replacing the HAL_DMA_Start_IT function with HAL_DMAEx_MultiBufferStart_IT inside the

HAL_SPI_Receive_DMA function. This change is illustrated in Figure 4.9.

Figure 4.9 - Part of the STM32 HAL library that is modified to support DMA double buffer mode

Once it is confirmed that the driver is in acquisition mode, the PWM channels are enabled in the

following order: TIM4 (CS), TIM8 (SCLK), and TIM5 (CONVST). When the TIM5 timer is activated, it

generates pulses that initiate the conversion process, starting the data transfer cycles on the SPI bus.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

16

4.1.2. Analog OUT

BLOCK SUMMARY

Name Analog OUT Layer Driver

Version 1.03

Related files

Driver top source file
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogOUT/drv_aout.c
Driver top header file
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogOUT/drv_aout.h

This driver oversees configuring DAC value used for current sense part of the circuit. Within the

current version, this driver block defines three public functions: DRV_AOUT_Init, DRV_AOUT_SetEnable

and DRV_AOUT_SetValue. DRV_AOUT_Init is called during system initialization, and this function is in

charge to properly initializing all functionalities related to STM32 DAC. DRV_AOUT_SetEnable enable or

disable STM32 DAC channel while DRV_AOUT_SetValue set DAC value.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

17

4.1.3. Network

BLOCK SUMMARY

Name Network Layer Driver

Version 1.03

Related files

Driver top source file
Source/ADFirmware/CM7/Core/Drivers/Platform/LwIP/ethernetif.c
Driver top header file
Source/ADFirmware/CM7/Core/Drivers/Platform/LwIP/ethernetif.h

The Ethernet Interface (ETHIF) software block provides RTOS compatible network interface driver

for the LwIP TCP/IP stack on STM32H7 microcontrollers. This block implements all the required low-level

hardware abstraction and DMA-based packet handling mechanisms

The ethernet interface driver is composed of three primary layers:

• Low-level hardware control (HAL_ETH)

• LwIP driver glue logic (ethernetif_init, low_level_input/output)

• Dedicated RTOS tasks and semaphores for asynchronous event handling

The initialization sequence begins with ethernetif_init, which is typically passed to netif_add during

network stack setup. Internally, this function invokes low_level_init to configure the STM32H7 Ethernet

peripheral, initialize the PHY driver (LAN8742), allocate Rx/Tx descriptors, and create memory pools for

zero-copy RX buffers (RX_POOL). The Ethernet MAC is started in interrupt mode, and a dedicated

FreeRTOS thread ethernetif_input is spawned to process incoming packets signaled by a semaphore

RxPktSemaphore. Link status and PHY negotiation (duplex and speed) are managed via the LAN8742

driver, which is abstracted using a CMSIS-compliant I/O layer.

Transmission is handled through low_level_output, where the pbuf chain is traversed and packaged

into ETH_BufferTypeDef buffers. The data is sent using the STM32 HAL function HAL_ETH_Transmit_IT,

with blocking behavior implemented via TxPktSemaphore in case of DMA descriptor unavailability. Upon

completion of transmission, HAL_ETH_TxCpltCallback releases the semaphore to unblock pending

operations. Similarly, reception flow begins with the ISR-driven HAL_ETH_RxCpltCallback, which signals

the input thread to retrieve packets via low_level_input. Definition of low_level_input function is presented

on Figure 4.10.

Figure 4.10 - low_leve_input function definition

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

18

The driver fully supports zero-copy reception. RX pbufs are allocated using the

HAL_ETH_RxAllocateCallback hook (Figure 4.11), which provides aligned memory from the RX_POOL.

Received packets are linked using HAL_ETH_RxLinkCallback, and coherency is ensured via

SCB_InvalidateDCache_by_Addr. Freed buffers are reclaimed through pbuf_free_custom, ensuring

efficient memory reuse without fragmentation. On the transmission side, LwIP-managed pbufs are released

using HAL_ETH_TxFreeCallback.

Figure 4.11 – HAL_ETH_RxLinkCallback function definition

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

19

4.1.4. GPIO

BLOCK SUMMARY

Name GPIO Layer Driver

Version 1.03

Related files

Driver top source file
Source/ADFirmware/CM7/Core/Drivers/Platform/GPIO/drv_gpio.c
Driver top header file
Source/ADFirmware/CM7/Core/Drivers/Platform/GPIO/drv_gpio.h

The General-Purpose Input/Output (GPIO) software block provides a thread-safe abstraction layer

for configuring and controlling digital input and output pins across the STM32H7 platform. This software

block manages initialization, runtime state manipulation, and interrupt servicing of GPIO pins. The block is

built with FreeRTOS compatibility in mind and leverages synchronization mechanisms to ensure safe

concurrent access in real-time systems.

All GPIO port-level operations are safeguarded using dedicated mutex semaphores. During the

initialization of a GPIO port (invoked via DRV_GPIO_Port_Init), a mutex is created and associated with

the corresponding port handle. This lock is used to ensure atomic access when configuring or manipulating

pins associated with that port. Public APIs such as DRV_GPIO_Pin_Init and DRV_GPIO_Pin_SetState,

which definition is presented on Figure 4.12, acquire this lock before performing HAL-level operations on

the port registers. Similarly, pin deinitialization and state reading are protected to prevent data races and

ensure consistent behavior in multi-threaded execution environments. For ISR contexts, specialized

functions DRV_GPIO_Pin_SetStateFromISR, DRV_GPIO_Pin_ToogleFromISR are provided to avoid

context-switch violations while maintaining thread safety.

Figure 4.12 – DRV_GPIO_Pin_SetState function definition

Interrupt support is implemented through a shared registry of callback functions, where each pin

with interrupting capability is associated with a user-defined handler function. The

DRV_GPIO_RegisterCallback, which definition is presented on Figure 4.13, and

DRV_GPIO_Pin_EnableInt functions configure the pin in interrupt mode and register the corresponding

ISR callback. At runtime, the global EXTI interrupt handlers delegate control to the user-defined callback

based on the pin number, enabling fast and modular response to GPIO events. All pin interrupt callbacks are

stored in a statically allocated array prvDRV_GPIO_PINS_INTERRUPTS, while the corresponding port

state is tracked in prvDRV_GPIO_PORTS.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

20

Figure 4.13 - DRV_GPIO_RegisterCallback function’s definition

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

21

4.1.5. Interrupts

BLOCK SUMMARY

Name Interrupts Layer Driver

Version 1.03

Related files

Driver top source file
Source/ADFirmware/CM7/Core/Drivers/Platform/Interrupts/stm32h7xx_it.c
Driver top header file
Source/ADFirmware/CM7/Core/Drivers/Platform/Interrupts/stm32h7xx_it.h

The Interrupt Service Routine (ISR) software block is responsible for handling all processor

exceptions and peripheral interruptions generated on the STM32H7 platform. This module acts as the

centralized dispatch layer for routing hardware interrupts to their respective handlers, ensuring deterministic

and responsive behavior of time-critical software components.

A significant portion of the ISR logic is dedicated to external interrupt (EXTI) line handling,

especially for GPIO events. These handlers, such as EXTI15_10_IRQHandler and EXTI9_5_IRQHandler,

check which EXTI line has triggered the interrupt using __HAL_GPIO_EXTI_GET_IT and clear the

interrupt flag after servicing via __HAL_GPIO_EXTI_CLEAR_IT. Each triggered line then invokes the

corresponding HAL-level callback via HAL_GPIO_EXTI_IRQHandler, which is further routed to user-

defined callback functions registered in the GPIO driver layer. This layered approach ensures clear

separation of responsibilities, where the ISR module provides the hardware-level dispatch mechanism while

higher-level services (e.g., drv_gpio) handle the application-specific logic.

Figure 4.14 - EXTI Service Routine

In addition to GPIO interrupts, this ISR block manages interrupts from Ethernet (ETH), DAC and

Timer peripherals (TIM6_DAC), and others. For instance, TIM6_DAC_IRQHandler simultaneously checks

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

22

the state of the DAC and triggers both DAC and Timer-related handlers. This combined handling is essential

in cases where peripherals share interruption lines or when coordinated processing is required (e.g., DAC

output under Timer control). The implementation is modular and allows HAL drivers to manage their

internal state, while application logic is typically offloaded to registered callbacks or deferred via task

notifications if operating within a FreeRTOS-based system.

For fault-related exceptions (e.g., HardFault_Handler, BusFault_Handler), the current

implementation enters infinite loops, serving as breakpoints for debugging unrecoverable errors. These can

later be extended to include logging or safe system reset procedures depending on system-level fault

tolerance strategies. Overall, the ISR block provides a robust and scalable foundation for real-time event

processing and is tightly integrated with the platform’s peripheral driver and HAL layers.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

23

4.1.6. SPI

BLOCK SUMMARY

Name SPI Layer Driver

Version 1.03

Related files

Driver top source file
Source/ADFirmware/CM7/Core/Drivers/Platform/SPI/drv_spi.c
Driver top header file
Source/ADFirmware/CM7/Core/Drivers/Platform/SPI/drv_spi.h

The SPI Interface (DRV_SPI) software block provides a modular, FreeRTOS-compatible abstraction

layer for configuring and operating SPI peripherals. The SPI software block is structured around a

centralized handle management system (drv_spi_handle_t) that stores initialization state, user

configuration, FreeRTOS lock handle, and an embedded HAL SPI handler SPI_HandleTypeDef. A fixed-

size array, prvDRV_SPI_INSTANCES, holds these handles for all SPI instances, enabling the driver to

manage multiple peripherals concurrently in a thread-safe manner. Each SPI instance is guarded by a binary

mutex, ensuring thread-safe operation for concurrent access to transmission and reception routines in a

multitasking environment.

Figure 4.15 - drv_spi_handle_t structure definition

Initialization is performed using DRV_SPI_Instance_Init, where users configure mode

(master/slave), clock polarity, and clock phase. Default values are applied for advanced parameters such as

CRC, NSS behavior, and FIFO settings, but these can be extended for future configurability. Deinitialization

is handled via DRV_SPI_Instance_DeInit to allow dynamic reconfiguration or power management.

Data communication is supported through both blocking DRV_SPI_TransmitData,

DRV_SPI_ReceiveData and non-blocking interrupt/DMA-based APIs. The DRV_SPI_EnableITData

function triggers full-duplex DMA transfers, while interrupt-based completion is serviced by

HAL_SPI_TxRxCpltCallback and routed to user-registered callbacks via

DRV_SPI_Instance_RegisterRxCallback. These mechanisms are especially useful in latency-sensitive

scenarios where SPI peripherals require low-overhead, high-throughput communication.

The SPI block also includes full integration with the HAL MSP layer. GPIO and DMA configuration

for each SPI peripheral (SPI2, SPI3, SPI4, SPI5) is handled in HAL_SPI_MspInit and HAL_SPI_MspDeInit

functions. Each peripheral is conditionally configured with specific GPIO ports, DMA streams, and clock

sources. For instance, SPI2 uses DMA1_Stream4/5 and operates in circular DMA mode, suitable for

continuous streaming scenarios.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

24

4.1.7. System

BLOCK SUMMARY

Name System Layer Driver

Version 1.03

Related files

Driver top source file
Source/ADFirmware/CM7/Core/Drivers/Platform/System/drv_system.c
Driver top header file
Source/ADFirmware/CM7/Core/Drivers/Platform/System/drv_system.h

The System Initialization (DRV_SYSTEM) software block is responsible for performing all

essential platform-level initialization tasks prior to enabling specific services. This block ensures a well-

defined and safe startup sequence for STM32H7-based dual-core (Cortex-M7 + Cortex-M4) embedded

systems. It provides two key entry points: DRV_SYSTEM_InitCoreFunc for early core/system configuration

and DRV_SYSTEM_InitDrivers for initializing platform-wide peripheral drivers. Definition of these two

functions is presented on Figure 4.16.

Figure 4.16 - System initialization functions

The core initialization path DRV_SYSTEM_InitCoreFunc begins by enabling instruction and data

caches SCB_EnableICache and SCB_EnableDCache to improve execution performance. In dual-core

configurations, synchronization with CPU2 (typically the Cortex-M4 core) is handled through hardware

semaphores and RCC flags. Specifically, prvDRV_SYSTEM_CPU2_Wait waits for the M4 core to reach stop

mode before proceeding, ensuring coordination between both processing units. A shared semaphore

(HSEM_ID_0) is taken and released to signal startup readiness between the cores.

Next, the Memory Protection Unit (MPU) is configured using prvDRV_SYSTEM_MPU_Init to

define memory attributes for key regions such as LwIP buffers, DMA descriptors, and reserved regions.

Each MPU region is carefully assigned access permissions, caching behavior, and execution rights,

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

25

enforcing memory safety and optimizing performance for DMA operations (e.g., ETH RX descriptors are

marked as non-cacheable, bufferable, and shareable). This MPU configuration is crucial for maintaining

data coherency in systems using cache and peripheral DMA access.

Figure 4.17 - Initialization of Memory region that belongs to AnalogIN buffer.

The system clock configuration is then performed via prvDRV_SYSTEM_CLOCK_Init, which uses

the HSI oscillator as the PLL source to derive all main system clocks (SYSCLK, HCLK, APBx) with

appropriate dividers. This ensures that peripherals operate at well-defined and validated frequencies. The

configuration targets high performance with voltage scaling set to

PWR_REGULATOR_VOLTAGE_SCALE1 and PLL settings customized for the specific STM32H7 system

design.

Once the core system is fully initialized, DRV_SYSTEM_InitDrivers is called to bring up all

platform-level hardware abstraction layers. This includes GPIO, UART, SPI, analog input, analog output

(DAC), timers, and I2C. Each driver is initialized in sequence, and any failure in peripheral initialization

leads to a controlled error response. This centralization of driver initialization ensures deterministic system

behavior and simplifies diagnostics during bring-up and deployment.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

26

4.1.8. Timer

BLOCK SUMMARY

Name Timer Layer Driver

Version 1.03

Related files

Driver top source file
Source/ADFirmware/CM7/Core/Drivers/Platform/Timer/drv_timer.c
Driver top header file
Source/ADFirmware/CM7/Core/Drivers/Platform/Timer/drv_timer.h

The DRV_TIMER software block serves as a modular, and thread-safe abstraction layer for

managing the STM32H7’s timers. It is designed to support a wide range of use cases, including periodic

task scheduling, PWM signal generation, and precise time-based control, all within the context of

FreeRTOS-based embedded systems.

This driver supports multiple hardware timer instances (e.g., TIM1–TIM4), each with up to four

independent channels. The configuration for each timer is defined using the drv_timer_config_t structure,

which includes the prescaler value, counter mode (up/down), clock divider, auto-reload behavior, and other

key parameters. Upon initialization, the selected timer is configured in base and PWM modes using STM32

HAL functions, and a FreeRTOS mutex is created to guard all interactions with that specific timer instance.

This ensures thread-safe operations even when multiple tasks attempt concurrent access.

The initialization sequence starts with DRV_Timer_Init, which resets all driver-internal state and

marks the timer module as ready. Each timer instance is then individually configured using

DRV_Timer_Init_Instance. This function handles the allocation of hardware resources, such as enabling

peripheral clocks and configuring GPIOs via HAL_TIM_Base_MspInit. The timer is then brought up in

PWM-ready mode using HAL_TIM_Base_Init, HAL_TIM_PWM_Init, and clock configuration routines.

Each channel within a timer can be independently configured using DRV_Timer_Channel_Init. As

of the current implementation, only PWM1 mode is supported, which allows for duty-cycle-based waveform

generation. Configuration is performed through HAL_TIM_PWM_ConfigChannel, and upon successful

setup, the channel’s metadata is stored in the driver’s internal handle structure.

To start signal generation, the application calls DRV_Timer_Channel_PWM_Start, specifying the

timer, channel, target pulse width (period), and a timeout value. Internally, the driver acquires the mutex

associated with the timer instance, validates that both the timer and channel are initialized, and then updates

the corresponding CCR register to set the PWM duty cycle. The channel then started using

HAL_TIM_PWM_Start, and the mutex is released.

All critical operations in this driver are protected using FreeRTOS binary semaphores, making this

module inherently safe for use in preemptive multitasking environments. Mutexes ensure that no race

conditions occur when starting or modifying timer output, even if multiple tasks are involved. The per-

instance locking model also ensures that unrelated timers do not interfere with one another.

Internally, the driver maintains two key static arrays:

- prvDRV_TIMER_PLATFORM_HANDLER contains HAL-level TIM_HandleTypeDef

structures.

- prvDRV_TIMER_HANDLER maintains driver-specific metadata, including channel

configuration and state flags.

This static allocation model ensures deterministic memory usage, a critical requirement in real-time

embedded systems where heap allocation is often restricted or discouraged.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

27

4.1.9. UART

BLOCK SUMMARY

Name UART Layer Driver

Version 1.03

Related files

Driver top source file
Source/ADFirmware/CM7/Core/Drivers/Platform/UART/drv_uart.c
Driver top header file
Source/ADFirmware/CM7/Core/Drivers/Platform/UART/drv_uart.h

The DRV_UART software block is a thread-safe abstraction layer designed to manage UART

peripheral instances on STM32H7-based platform. It provides configuration, data transmission, and receive-

callback registration services over multiple UART ports. The implementation is tailored for use in

FreeRTOS environments and supports concurrent access using mutexes for each UART instance.

The driver supports up to CONF_UART_INSTANCES_MAX_NUMBER UART interfaces, which are

statically allocated in the internal prvDRV_UART_INSTANCES array. Each UART instance is associated

with a dedicated UART_HandleTypeDef structure for HAL interactions, as well as a FreeRTOS semaphore

to protect shared access to the interface. The DRV_UART_Init function initializes internal structures,

clearing any previous state, and marks the driver ready for instance-level configuration.

Individual UARTs are initialized using DRV_UART_Instance_Init. This function sets up the selected

UART peripheral based on a user-supplied configuration structure drv_uart_config_t. Although currently

only the baud rate is configurable via this structure, the initialization routine sets the word length, parity,

stop bits, hardware flow control, FIFO thresholds, and disables FIFO mode using standard STM32 HAL

functions. Once initialized, a dedicated mutex (lock) is created per instance, enabling thread-safe

transmission.

Data transmission is performed through the DRV_UART_TransferData function. This function first

acquires the instance's mutex before calling HAL_UART_Transmit to send the data buffer. If the mutex

acquisition or HAL transmission fails, the function returns an error. The use of per-instance semaphores

ensures that only one task at a time may access a UART resource, thus avoiding race conditions in concurrent

environments.

Reception is supported via interrupt mode and a lightweight callback mechanism. The

DRV_UART_Instance_RegisterRxCallback function allows the user to register a type

drv_uart_rx_isr_callback, which is invoked each time a new byte is received. Upon registering, the function

also starts with the reception interrupt using HAL_UART_Receive_IT. When data arrives, the

HAL_UART_RxCpltCallback ISR invokes the appropriate callback and immediately restarts the reception

for the next byte. This design supports byte-wise interrupt-driven reception and is well-suited for protocols

that require immediate handling of control or framing bytes.

The driver also implements peripheral clock configuration and GPIO alternate function mapping in

the HAL_UART_MspInit routine. This low-level function ensures that each UART instance is properly

clocked and that TX/RX pins are initialized with the correct GPIO settings, using STM32Cube HAL APIs.

Interrupts are configured and prioritized to support asynchronous receive operation.

The DRV_UART module is designed with modularity and safety in mind. By encapsulating all

hardware and synchronization resources per instance, the driver supports multiple concurrent UART

sessions with deterministic behavior and minimal resource contention. This makes it ideal for embedded

applications requiring robust serial communication, such as CLI interfaces, sensor networks, debug logging,

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

28

and inter-MCU data exchange. Future enhancements may include DMA support, more advanced parity/stop

bit configuration, and framing-layer abstraction.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

29

4.2. Services

4.2.1. Control

BLOCK SUMMARY

Name Control Layer Middleware

Version 1.03

Related files

Top source file
Source/ADFirmware/CM7/Core/Middlewares/Services/Control/control.c
Top header file
Source/ADFirmware/CM7/Core/Middlewares/Services/Control/control.h
Command parser source file
Source/ADFirmware/CM7/Core/Middlewares/Services/Control/CMParse/cmparse.c
Command parser header file
Source/ADFirmware/CM7/Core/Middlewares/Services/Control/CMParse/cmparse.h

Within the device firmware, the logic for control and status messages is encapsulated within a

distinct service. This service is responsible for receiving control messages, parsing their content, executing

the appropriate actions based on the message content, and generating responses accordingly. The core logic

and operational mechanisms of this service are depicted in the Figure 4.18.

Figure 4.18 - Control service working principle

Control messages are sent to the Acquisition device in the form of a control message request. These

requests are sent from the HOST side on the previously opened TCP port on the acquisition device. A control

message request is received inside the Control service server task, and it is forwarded to Message parsing

logic to analyse control message content. Message parsing logic is part of Control service logic in charge of

analyzing the content of received control messages and calling corresponding callback functions previously

assigned to specific control messages. Part of the Control service code that creates a mapping between

callback functions and control messages is presented in Figure 4.19. When callback functions that

correspond to request control messages are executed, corresponding control message responses are

generated based on callback function execution results. This response is sent back to the HOST machine.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

30

Figure 4.19 - Part of the supported commands list with corresponding callback functions

All control messages are in ASCII format with predefined structures. Control message structures, as

well as commands implemented within the current software version, are presented in [2]

Besides control messages, there are also status messages that are used to inform the host machine

about the system execution status. To enable this service, the device-side control message for configuring

the status messages server should be utilized.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

31

4.2.2. Stream

BLOCK SUMMARY

Name Stream Layer Middleware

Version 1.03

Related files

Top source file
Source/ADFirmware/CM7/Core/Middlewares/Services/SamplesStream/sstream.c
Top header file
Source/ADFirmware/CM7/Core/Middlewares/Services/SamplesStream/sstream.h

Figure 4.20 illustrates all firmware software blocks that are parts of streaming functionalities.

Figure 4.20 – Streaming service’s functional software blocks

Presented blocks are:

• Analog IN

In charge of acquiring voltage and current samples and storing them in corresponding buffers

• Ethernet Interface and Network service

Software IP stack

• Samples Stream Service

In charge of receiving sample data packets from lower software layers, processing them, and

forwarding them to the host side

• Control Service

In charge of parsing control commands.

After MCU firmware is successfully run and the ethernet link is established, the host initiates the

data streaming process by transmitting a control message. This message, as defined within the [2] file,

contains the server’s IP address where obtained samples should be sent. This established streaming channel

facilitates the continuous transmission of data from the MCU to the server for real-time processing or further

analysis. For clarity, the "create stream" command format with some IP address information is provided

below:

device stream create -ip=192.168.1.200 -port=5000

Upon receiving the control message, the Control Service parses it and forwards the "Create Stream"

action to the Samples Stream Service. This service, based on the message content, creates a stream for

sending data to the server at 192.168.1.200, port 5000.

Stream is created by calling SSTREAM_CreateChannel which is key part of the Sample Stream

(SSTREAM) service. New streaming channel is established based on the provided connection information.

https://www.openept.net/post/core-software-functionality-streamlining-data-flow

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

32

It ensures that each new channel is properly initialized, both in terms of synchronization primitives and task

management, before the system begins using it for data streaming. The function is designed to be thread-

safe and supports multiple concurrent stream connections, with a maximum number defined in the system

configuration.

The process begins by checking if the number of currently active connections has reached the

configured upper limit (SSTREAM_CONNECTIONS_MAX_NO). If so, it returns an error to avoid resource

over-allocation. Assuming there is room for another channel, the function assigns a new connection ID based

on the current active count. It then updates internal bookkeeping structures for control and stream handling

with this ID, and copies over the connection parameters (such as IP address and port) from the provided

connectionHandler.

To support synchronization between the main system and the newly created tasks, the function

initializes binary semaphores (initSig) and mutexes (guard) for both the control and stream components of

the channel. These semaphores serve as signals indicating successful task startup, while the mutexes ensure

safe access to shared resources in a multithreaded environment.

Once synchronization objects are successfully created, the function proceeds to launch two

FreeRTOS tasks: the control task and the stream task. These tasks are responsible for handling the control

interface and the actual data streaming respectively. After each task is created, the function waits on its

corresponding semaphore with a timeout to confirm that the task has initialized correctly. If any of the task

creation or synchronization steps fail, the function exits with an error status.

If all steps complete successfully, the new channel's connection ID is finalized, and the system’s

active connection counter is incremented. The function then returns SSTREAM_STATUS_OK, signalling

that the new streaming channel is fully initialized and ready for use.

Following stream creation, the host can send commands for configuring parameters like sampling

rate and resolution. The current software version supports the configuration of the Sampling period and

number of samples within single stream packet. The [2] provides a comprehensive list of commands used

to configure specific parameter values.

After the data stream is established and configured, the host may trigger data transmission by sending

a "Start Stream" command. Upon receiving this command, the Stream Service leverages the Stream ID

(SID) value to identify the relevant stream. The designated stream then begins continuous sample acquisition

and transmits the data to the pre-configured server. This ongoing data transmission process can be

dynamically controlled by the host through specific pause or stop commands.

When streaming is active, the corresponding stream task is triggered, by Analog IN driver, for further

processing when current and voltage samples are stored inside a corresponding buffer within Analog IN

driver. Processing logic implemented inside this task includes two steps:

1. Incrementing the Message ID (MID) sequentially

2. Appending a Message Type (MTI)

The sequential MID allows the host system to detect potential packet loss during transmission

because unreliable, very fast, UDP protocol is used for packet transmission. The MTI serves to identify the

specific data type contained within the packet. While the current version handles only one data type, this

design offers flexibility for future implementations that may include different data streaming types. Data

samples, together with MID and MTI, create a Stream message packet which is forwarded to the network

service where it is encapsulated inside the corresponding ethernet packet and sent to the host side. Stream

message packet creation over different software services is illustrated in Figure 4.21.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

33

Figure 4.21 - Stream message content among firmware's services

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

34

4.2.3. Energy Debugging

BLOCK SUMMARY

Name Energy Debugging Layer Middleware

Version 1.03

Related files

Top source file
Source/ADFirmware/CM7/Core/Middlewares/Services/ED/energy_debugger.c
Top header file
Source/ADFirmware/CM7/Core/Middlewares/Services/ED/energy_debugger.h

Inside OpenEPT Device’s firmware is implemented energy debugging service which primary

functionality is to receive and process energy sampling request by recording PacketID and SampleID when

energy request is issued. Figure 4.22 illustrates software architecture of this service. To fully understand

algorithms implemented inside this service, it is important to understand samples streaming and network

functionalities first.

Figure 4.22 - Software Architecture Overview of Energy Debugging Service within OpenEPT Device's firmware

When a rising or falling edge of the Sync signal is detected, the corresponding Sync Interrupt Service

Routine (ISR) is triggered. As the first step within this ISR, a request is made to the Analog Interface (AIN)

software block to retrieve two values: PacketID and SampleID. PacketID uniquely identifies a streaming

packet, as ADC samples are transmitted in chunks of N samples. SampleID represents the specific sample

within that chunk. The PacketID matches the ID of the packet that will be sent over the UDP interface, while

the SampleID is obtained from the DMA counter. Once these values are retrieved, they are stored in the

corresponding Value structure, which is then added to the Values queue.

The Serial ISR is responsible for receiving metadata messages. It gathers characters received over

the serial interface, configured for use within the Energy Debugging Interface (currently implemented as

UART in the OpenEPT firmware), and stores them in a corresponding buffer. When a \r (carriage return)

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

35

character is detected, the buffer contents are transferred to a corresponding Name structure and then added

to the Names queue.

The Energy Points Processing (EPP) task integrates the core functionalities of the Energy Debugging

mechanism. This task reads from two queues, with only the Names queue being a blocking read. When the

Serial ISR writes a Name structure instance to the Names queue, it unblocks the EPP task, which then

analyses the received metadata messages to determine their type. Part of this task content, responsible for

processing these queues, is illustrated on Figure 4.23.

Figure 4.23 - Part of EPP task responsible for processing Value structure

Three processing scenarios are possible:

• If the message is a START or STOP command, the system initializes communication by setting

up all relevant buffers and generate response that will be sent back to the DUT

• If the message is of type Energy Point Name, the task performs a non-blocking read from the

Values queue. If the Values queue is empty, an error is generated; otherwise, the retrieved

PacketID, SampleID, and Sample Name are combined to create a corresponding Energy Point.

The generated Energy Point message is then written to the Energy Point (EP) queue.

• If the message is logging message, received message content is forwarded to the OpenEPT

logging interface

Energy Debugging Client (EDC) Task perform blocking read from EP queue to obtain EP messages

after which it extracts content from EP messages and transform it to binary format message named EPBinary.

This message will be sent over TCP to OpenEPT GUI application, and its format is illustrated on Figure

4.24.

Figure 4.24 - EP binary message structure

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

36

This EPBinary message format consists of following fields:

• PacketID (4B wide) – represents packetID to which EP message is related to

• SampleID (4B wide) – id of sample inside the packet to which EP message is related to

• Name (n Bytes wide end with \r\n characters) – name of the EP

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

37

4.2.4. EEZ DIB

BLOCK SUMMARY

Name EEZ DIB Layer Middleware

Version 1.03

Related files

Top source file
Source/ADFirmware/CM7/Core/Middlewares/Services/EezDib/eez_dib.c
Top header file
Source/ADFirmware/CM7/Core/Middlewares/Services/EezDib/eez_dib.h

Main EEZ DIB Service task, with relevant synchronization elements with other system services, is

illustrated on Figure 4.25.

Figure 4.25 - EEZ DIB Service's task and relevant synchronization elements

The SStream service is responsible for acquiring voltage and current samples from the AnalogIN

driver, processing them, and transmitting the data to the OpenEPT GUI application running on the host side.

This service supports two acquisition modes: Active and Inactive. The current acquisition state of the

SStream service is critical for the operation of the EEZ DIB service. To facilitate this interaction, the

SStream service has been extended to support the registration of a callback function that is invoked

whenever the acquisition state changes. During service initialization, performed within the System Task, the

prvSYSTEM_AcquisitionStateChanged function is registered as the callback handler. This function,

implemented in system.c notifies the EEZ DIB service whenever a change in the acquisition state occurs.

Within the EEZ DIB service, this state recorded within the first bit of a service-specific variable named

STATUS. This acquisition state information is crucial for the EEZ DIB service to determine the appropriate

timing for initiating sample collection from the SSample service.

The EEZ DIB Service Task operates in three distinct states: Initialization, Service, and Error. During

the Initialization state, all relevant peripherals (such as SPI Instance 2) and internal variables are set up. The

Error state handles fault recovery mechanisms if an error occurs in any of the other states. The core

functionality resides in the Service state, where the main task logic is executed. In this state, the task begins

by reading the queue that stores incoming request messages from EEZ DIB MCU. Once a message is

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

38

retrieved, it is processed, and the appropriate action is executed, and response is sent back to the EEZ DIB

MCU.

Communication between the EEZ DIB Main MCU and the OpenEPT MCU is established over a

full-duplex SPI interface. In this setup, the EEZ DIB side operates as the SPI master, while the OpenEPT

side functions as the SPI slave. Messages exchanged between the two MCUs are limited to a maximum of

10 bytes and can be either in ASCII or binary format. There are two message types:

• Request - Sent from the EEZ DIB MCU to the OpenEPT MCU, in ASCII format, over the MOSI

line.

• Response – Sent from the OpenEPT MCU back to the EEZ DIB MCU, in binary format, over

the MISO line.

When a Request message is transmitted during an SPI transaction, it is received by the OpenEPT

MCU using a dedicated SPI DMA channel. Upon reception, a corresponding callback is triggered. The

message is then encapsulated into a request message structure and send to the queue on which EEZ DIB

Service task is blocked. Writing to this queue will unblock task, and message processing will start. As

processing results, binary response is prepared it will be transmitted during the next SPI frame.

As previously mentioned, request messages are sent from the EEZ DIB MCU to the OpenEPT MCU

over the MOSI line in ASCII format. Each request consists of a command string followed by the \r character,

which signifies the end of the message. The current version of the OpenEPT firmware supports a single

request command: "GetVC\r". Upon receiving this command, OpenEPT responds by sending a binary-

formatted message within the SPI frame. This response includes the following fields:

• Voltage (2 bytes)

• Current (2 bytes)

• STATUS variable (1 byte)

• End-of-Message (EOM) marker (2 bytes)

This binary response format is illustrated in the Figure 4.26.

Figure 4.26 - EEZ DIB Response message format

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

39

4.2.5. Logging

BLOCK SUMMARY

Name Logging Layer Middleware

Version 1.03

Related files

Top source file
Source/ADFirmware/CM7/Core/Middlewares/Services/Logging/logging.c
Top header file
Source/ADFirmware/CM7/Core/Middlewares/Services/Logging/logging.h

The LOGGING service is built on FreeRTOS. It provides an abstraction for formatted log

generation, queuing, and asynchronous transmission through configurable output channels. This service is

designed to support modular, multitasking applications by offloading the message formatting and

transmission logic into a dedicated logging task.

The service uses a FreeRTOS queue to buffer logging messages and a background task to process

and transmit these logs. Messages are formed using standard printf-style formatting with variable arguments,

allowing to embed context-rich diagnostic information. Log messages are categorized by severity using the

logging_msg_type_t enum, which includes INFO, WARNING, and ERROR types. Each message is

prepended with a service identifier string, and a consistent message format is applied for clarity.

The initialization process begins with LOGGING_Init, which creates the message queue and the

binary semaphore used to signal readiness. A dedicated task (prvLOGGING_TaskFunc) is created and enters

a finite-state machine with three states: INIT, SERVICE, and ERROR. In the INIT state, the task initializes

its output channels (currently UART3) by configuring and activating the corresponding UART peripheral

using the DRV_UART driver. Once the UART is ready, the service transitions to the SERVICE state and

signals that it is initialized. Should any failure occur during initialization or runtime message processing,

the service enters the ERROR state and signals a low-level error through the SYSTEM_ReportError

interface.

Figure 4.27 - Logging Service's main task

Log messages are constructed and dispatched using the LOGGING_Write function. If the FreeRTOS

scheduler has not yet started, the message is sent synchronously over the UART using a blocking transmit

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

40

function. Otherwise, the message is queued into the logging queue to be handled asynchronously by the

background task. This dual-mode behavior ensures the system can produce logs even during early startup

before multitasking begins.

Internally, each log message is encapsulated in a logging_message_t structure that holds a statically

sized buffer and its length. The prvLOGGING_SendLogMessage function ensures all data is transmitted

using the currently initialized output channel. In this implementation, UART3 is used exclusively, and its

configuration is hardcoded within prvLOGGING_InitChannels.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

41

4.2.6. Network

BLOCK SUMMARY

Name Network Layer Middleware

Version 1.03

Related files

Top source file
Source/ADFirmware/CM7/Core/Middlewares/Services/Network/network.c
Top header file
Source/ADFirmware/CM7/Core/Middlewares/Services/Network/network.h

The Network service handles Ethernet-based communication and integrates with the LwIP stack to

provide IP connectivity for the system. This service operates as a dedicated FreeRTOS task and manages

link detection, interface configuration, and runtime monitoring of the physical and MAC layers. It is built

to support a static IP configuration and does not rely on DHCP, simplifying integration in systems with fixed

addressing schemes.

During initialization, the service sets up the LwIP TCP/IP stack, configures the network interface

with predefined IP, subnet mask, and gateway values, and adds it to the system. It then registers a callback

to handle link state changes, which allows the service to update the internal state and inform the rest of the

system when the connection is established or lost. Status information, such as connection speed and duplex

mode, is reported through the centralized logging service, aiding in system diagnostics.

The runtime task periodically checks the state of the Ethernet PHY using the LAN8742 driver. If a

link-up or link-down condition is detected, it reconfigures the MAC layer accordingly and brings the

interface up or down as needed. This mechanism ensures that the system maintains a consistent view of

network availability and reacts appropriately to changes in link conditions. The task uses

LOCK_TCPIP_CORE and UNLOCK_TCPIP_CORE to protect LwIP operations, ensuring thread safety

during status transitions.

In case of initialization or runtime failures, the service enters a safe error state and reports the

problem via the system error handler. The NETWORK_Init function is the entry point for external modules

and is responsible for creating the task, setting up synchronization, and waiting for the link configuration to

complete within a given timeout. Overall, the service provides a clean and isolated way to manage Ethernet

networking without exposing internal logic or requiring manual setup from application code.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

42

4.2.7. System

BLOCK SUMMARY

Name System Layer Middleware

Version 1.03

Related files

Top source file
Source/ADFirmware/CM7/Core/Middlewares/Services/System/system.c
Top header file
Source/ADFirmware/CM7/Core/Middlewares/Services/System/system.h

The System service is the central service responsible for initializing, supervising, and coordinating

key firmware modules. It is implemented as a dedicated FreeRTOS task that operates across three well-

defined states: INIT, SERVICE, and ERROR. Its main purpose is to establish a stable runtime environment

by initializing dependent services, managing global system parameters, and providing synchronized access

to shared state variables. This service ensures consistent behavior during system startup and runtime, with

robust fault handling and status indication mechanisms.

During the INIT phase, the service sequentially initializes critical hardware interfaces and

middleware services. This includes GPIO configuration for system status indicators, PWM timer setup for

RGB LED control, and external interrupt configuration for user input (e.g., button press). It then proceeds

to initialize a few software components, namely the Logging, Network, Control, Sample Stream

(SSTREAM), Discharge Profile Control (DPCONTROL), Energy Debugger, and EEZ DIB services. Each

component is initialized with a timeout mechanism, and any failure during this phase results in a transition

to the ERROR state, with corresponding logging output and LED indication.

The System service manages a global RGB LED whose colour can be dynamically updated to reflect

various system statuses (e.g., idle, error, or active acquisition). The current colour values are stored in a

shared data structure and updated using a thread-safe mechanism with FreeRTOS semaphores. Updates are

propagated to the main system task via task notifications, ensuring that PWM adjustments are performed

within the correct task context. This design prevents concurrency issues and eliminates the need for direct

hardware access from external tasks.

Another critical responsibility of the System service is linking status monitoring. It provides a public

API (SYSTEM_SetLinkStatus) that allows the network service (or other modules) to update the current

network connection state. The link status is indicated using a dedicated GPIO-controlled diode, and internal

state updates are guarded by a semaphore to ensure safe access from multiple contexts.

The service also supports dynamic assignment of a device name, which is stored internally and can

be accessed or updated by external components via SYSTEM_SetDeviceName and

SYSTEM_GetDeviceName. The data is protected by the same mutex used for other shared resources,

maintaining consistency across the system.

If an error occurs at any stage, the System service provides centralized fault handling via the

SYSTEM_ReportError API. Depending on the severity (low, medium, or high), the function configures the

RGB LED to a corresponding red intensity and activates the error status diode. This visual feedback is useful

for debugging and system monitoring in embedded environments where console access might be limited.

Once all components are initialized and no faults have been detected, the system transitions into the

SERVICE state. In this state, the task waits for asynchronous events (e.g., RGB LED updates) and maintains

the system's stable operation. The core logic of the application may also be placed here, although typically

higher-level modules will handle runtime logic beyond the scope of basic system management.

Overall, the System service plays a pivotal role in the architecture by initializing and supervising all

major services, providing reliable runtime control, and managing system-wide status indicators in a thread-

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

43

safe manner. This modular and guarded design ensures scalability, robustness, and ease of integration across

a wide range of embedded firmware projects.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

44

4.3. Configuration

The globalConfig.h file (Source/ADFirmware/CM7/Core/Configuration/globalConfig.h) serves as a

centralized configuration header that defines compile-time constants used across the firmware architecture.

It encapsulates the system-wide definitions required to configure various software services, hardware

abstraction layers, driver interfaces, and task-related parameters. This file enables the firmware to be easily

adjusted for different hardware configurations, operational modes, and performance tuning without

requiring deep changes in implementation files.

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

45

5. BUILD AND RUN INSTRUCTIONS
To successfully build and run the DAU firmware, the STM32Cube IDE must be installed and

configured with the appropriate dependencies. The following steps guide you through the full setup process.

Step 1: Download and install STM32CubeIDE

The latest version of STM32CubeIDE should be obtained from this link. After downloading,

STM32CubeIDE should be installed on the machine by following standard installation instructions.

Step 2: Clone project from official GitHub account

There are two primary methods for downloading the project from the official GitHub repository. The

first method is using a dedicated Git console, such as Git Bash Application, which allows cloning

the repository directly via the command line. The second method involves navigating to the

repository's GitHub page and clicking the green Code button, then selecting the Download ZIP

option. This will download the project files as a compressed archive. The latter method is visually

illustrated in the corresponding Figure 5.1.

Step 3: Import project

Once STM32CubeIDE is launched and the workspace path is configured, navigate to File → Open

Projects from File System (1, 2 in Figure 5.2).

1

2

Figure 5.2 - Open project from file system option

1

2

Figure 5.1 - Download project from the official GitHub repository

https://www.st.com/en/development-tools/stm32cubeide.html
https://github.com/OpenEPT/Firmware
https://git-scm.com/downloads

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

46

Clicking Open Projects from File System opens the Import Project from File System or Archive

window. In this dialog, you need to specify the directory where the project resides (in our case,

Source/ADFirmware). To do so, click the Directory button (1 in Figure 5.3).

Figure 5.3 - Import project from file system or archive

After clicking the Directory button, the Browse for Folder window appears (Figure 5.4). Here,

navigate to the Source/ADFirmware directory (step 1), and click Select Folder (step 2).

1

2

1

Figure 5.4 - Browse for Folder window

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

47

If the project is successfully detected in the selected directory, the window from Figure 5.3 will be

updated to reflect the discovered project, as shown in Figure 5.5. To proceed with the import, click

the Finish button (step 1).

Once the project is successfully imported, it will be displayed in the Project Explorer panel, as shown

in Figure 5.6.

Figure 5.6 - Project Explorer window after the project is successfully imported

Step 4: Configure Global path

The PROJECT_PATH variable serves as a reference point for many relative include paths used

throughout the project. Instead of hardcoding absolute paths, source files and build configurations

use this variable to dynamically resolve locations of headers and source files within the project

directory. This approach improves project portability and maintainability, especially when working

across different systems or when the project is moved to a different directory structure.

To define the PROJECT_PATH build variable, right-click on the project named ADFirmware_CM7

in the Project Explorer, then select Properties. In the Properties window, navigate to C/C++ Build

→ Build Variables (Figure 5.7). Locate the variable named PROJECT_PATH, which is essential

since many of the project's include paths are defined relative to it.

1

Figure 5.5 - Import projects window after the project is successfully found on selected path

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

48

Figure 5.7 - Build variables part of Properties window

After locating the PROJECT_PATH variable, double-click on it to open the Edit Existing Build

Variable dialog (1 in Figure 5.7). In this window, click Browse (1 in Figure 5.8). and navigate to the

project directory, specifically Source/ADFirmware. Select this folder and confirm by clicking OK.

This assigns the correct path to the PROJECT_PATH variable, ensuring that include files are

properly resolved during the build process.

Figure 5.8 - Edit Existing Build Variable

After clicking OK in the Edit Existing Build Variable dialog, return to the Properties window shown

in Figure 5.7. To finalize the change, click Apply and Close. If the specified path is valid and correctly

set, the include paths listed under ADFirmware_CM7 → Includes in the Project Explorer will update

automatically. The folder icon should change from a transparent folder with a yellow warning

triangle in the bottom-right corner (Figure 5.9) to a solid blue folder icon (Figure 5.10), indicating

that the include path has been successfully resolved.

1

1

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

49

Figure 5.9 - Paths before Build variable path is resolved

Figure 5.10 - Paths after Build variable path is resolved

Step 4: Build and Run the project and run first Debug session

Once the project is fully configured and successfully imported, the build process can be initiated. To

begin, right-click on the ADFirmware_CM7 project in the Project Explorer. It is recommended to

first perform a clean build to ensure that all previously generated files are removed. To do this, select

Clean Project from the context menu. After the cleaning process is complete, right-click on the

project again and select Build Project. This will start the compilation process using the defined

settings and paths. If building process is successfully done, ADFirmware_CM7.elf is generated under

ADFirmware_CM7 → Binaries (1 in Figure 5.11). To run the project, click on bug symbol from tool

bar (2 in Figure 5.11).

Figure 5.11 - Project binary and first debug run

1

2

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

50

LIST OF FIGURES
FIGURE 2.1 – EPP’S FIRMWARE ARCHITECTURE .. 5
FIGURE 3.1 - OPENEPT ORGANIZATION ON GITHUB AND FIRMWARE REPOSITORY ... 6
FIGURE 3.2 - FIRMWARE REPOSITORY TOP LEVEL .. 6
FIGURE 3.3 - ADFIRMWARE DIRECTORY STRUCTURE .. 7
FIGURE 3.4 - FIRMWARE CODE DIRECTORY STRUCTURE .. 7
FIGURE 4.1 - FUNCTIONAL ELEMENTS OF ANALOGIN SOFTWARE BLOCK .. 9
FIGURE 4.2 - ADS9224R_INIT FUNCTION DEFINITION .. 10
FIGURE 4.3 - ADS9224R POWERUP CYCLE ... 11
FIGURE 4.4 - LINES IN CONFIGURATION MODE ... 11
FIGURE 4.5 - READ THE SEQUENCE TIMING DIAGRAM ... 12
FIGURE 4.6 - LINES USED IN ACQUISITION MODE .. 12
FIGURE 4.7 - ZONE 1 TIMING DIAGRAM ... 13
FIGURE 4.8 - SAMPLES TRANSFER LOGIC ... 14
FIGURE 4.9 - PART OF THE STM32 HAL LIBRARY THAT IS MODIFIED TO SUPPORT DMA DOUBLE BUFFER MODE 15
FIGURE 4.10 - LOW_LEVE_INPUT FUNCTION DEFINITION .. 17
FIGURE 4.11 – HAL_ETH_RXLINKCALLBACK FUNCTION DEFINITION .. 18
FIGURE 4.12 – DRV_GPIO_PIN_SETSTATE FUNCTION DEFINITION ... 19
FIGURE 4.13 - DRV_GPIO_REGISTERCALLBACK FUNCTION’S DEFINITION .. 20
FIGURE 4.14 - EXTI SERVICE ROUTINE .. 21
FIGURE 4.15 - DRV_SPI_HANDLE_T STRUCTURE DEFINITION .. 23
FIGURE 4.16 - SYSTEM INITIALIZATION FUNCTIONS .. 24
FIGURE 4.17 - INITIALIZATION OF MEMORY REGION THAT BELONGS TO ANALOGIN BUFFER... 25
FIGURE 4.18 - CONTROL SERVICE WORKING PRINCIPLE ... 29
FIGURE 4.19 - PART OF THE SUPPORTED COMMANDS LIST WITH CORRESPONDING CALLBACK FUNCTIONS 30
FIGURE 4.20 – STREAMING SERVICE’S FUNCTIONAL SOFTWARE BLOCKS ... 31
FIGURE 4.21 - STREAM MESSAGE CONTENT AMONG FIRMWARE'S SERVICES .. 33
FIGURE 4.22 - SOFTWARE ARCHITECTURE OVERVIEW OF ENERGY DEBUGGING SERVICE WITHIN OPENEPT DEVICE'S FIRMWARE

 ... 34
FIGURE 4.23 - PART OF EPP TASK RESPONSIBLE FOR PROCESSING VALUE STRUCTURE ... 35
FIGURE 4.24 - EP BINARY MESSAGE STRUCTURE ... 35
FIGURE 4.25 - EEZ DIB SERVICE'S TASK AND RELEVANT SYNCHRONIZATION ELEMENTS .. 37
FIGURE 4.26 - EEZ DIB RESPONSE MESSAGE FORMAT .. 38
FIGURE 4.27 - LOGGING SERVICE'S MAIN TASK ... 39
FIGURE 5.1 - DOWNLOAD PROJECT FROM THE OFFICIAL GITHUB REPOSITORY .. 45
FIGURE 5.2 - OPEN PROJECT FROM FILE SYSTEM OPTION ... 45
FIGURE 5.3 - IMPORT PROJECT FROM FILE SYSTEM OR ARCHIVE .. 46
FIGURE 5.4 - BROWSE FOR FOLDER WINDOW .. 46
FIGURE 5.5 - IMPORT PROJECTS WINDOW AFTER THE PROJECT IS SUCCESSFULLY FOUND ON SELECTED PATH 47
FIGURE 5.6 - PROJECT EXPLORER WINDOW AFTER THE PROJECT IS SUCCESSFULLY IMPORTED .. 47
FIGURE 5.7 - BUILD VARIABLES PART OF PROPERTIES WINDOW ... 48
FIGURE 5.8 - EDIT EXISTING BUILD VARIABLE ... 48
FIGURE 5.9 - PATHS BEFORE BUILD VARIABLE PATH IS RESOLVED ... 49
FIGURE 5.10 - PATHS AFTER BUILD VARIABLE PATH IS RESOLVED .. 49
FIGURE 5.11 - PROJECT BINARY AND FIRST DEBUG RUN ... 49

 OPENEPT ENERGY PROFILER PROBE - FIRMWARE DEVELOPER GUIDE

51

REFERENCES
[1] ADS92x4R Dual, Low-Latency, Simultaneous-Sampling SAR ADC Datasheet, June 2019

[2] Command list document

https://www.ti.com/lit/ds/symlink/ads9224r.pdf?ts=1730318477631&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FADS9224R
https://cdn.prod.website-files.com/674a337abe02a7c9cc0b1487/67547b8c305fa369168abfbc_ADSCL_v2.pdf

	1. Introduction
	2. Architecture
	3. Source Code Organization
	4. Functional Software Blocks
	4.1. Drivers
	4.1.1. Analog IN
	4.1.2. Analog OUT
	4.1.3. Network
	4.1.4. GPIO
	4.1.5. Interrupts
	4.1.6. SPI
	4.1.7. System
	4.1.8. Timer
	4.1.9. UART

	4.2. Services
	4.2.1. Control
	4.2.2. Stream
	4.2.3. Energy Debugging
	4.2.4. EEZ DIB
	4.2.5. Logging
	4.2.6. Network
	4.2.7. System

	4.3. Configuration

	5. Build and Run Instructions
	List of Figures
	References

