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1. INTRODUCTION 
 

This document serves as the official developer guide for the firmware running on the Energy Profiler 

Probe (EPP), a critical embedded component within the broader Open Energy Profiler Toolset (OpenEPT) 

ecosystem. It is specifically designed for embedded systems developers, system integrators, researchers, 

and contributors who aim to understand, maintain, or extend the capabilities of this firmware. 

The Energy Profiler Probe (EPP) is an essential tool for the development and optimization of modern 

energy-aware systems, providing both high-speed voltage and current measurement capabilities, up to 1 

MSPS sampling rate, and the ability to generate arbitrary current profiles. This combination of features 

enables developers to perform precise, high-resolution monitoring of power consumption while also actively 

stimulating and analyzing the behavior of battery-powered devices. Such capabilities are particularly 

valuable for battery profiling, power efficiency tuning, and real-time energy diagnostics. By unifying data 

acquisition and signal generation within a single, cohesive hardware platform, the EPP significantly 

streamlines the process of designing, validating, and optimizing low-power embedded applications, making 

it an indispensable asset in energy-focused development environments. 

The firmware described in this guide is architected for reliability, modularity, and performance, and 

is optimized to run on STM32 dual-core processors (Cortex-M7 and Cortex-M4). It utilizes FreeRTOS for 

real-time scheduling and LWIP for lightweight IP stack support, in addition to the official STM32 HAL 

libraries. This software stack ensures that the EPP meets the demands of both low-latency streaming and 

high-throughput data processing. 

A core advantage of the firmware lies in its layered and extensible architecture. It is logically divided 

into functional layers that include device and platform drivers, middleware services, application logic, and 

a central system management layer. This structure not only facilitates clear separation of concerns but also 

makes the codebase easy to scale and adapt, whether for new hardware peripherals, emerging protocols, or 

application-specific extensions. 

Each software block, such as AnalogIN, AnalogOUT, Energy Debugging, Control Service, EEZ DIB 

Interface, and Sample Stream, is implemented as a self-contained, thread-safe module with clearly defined 

interfaces. These services operate independently yet cooperatively under FreeRTOS supervision, ensuring 

robust performance in real-time scenarios. Whether the goal is to integrate a new external ADC, introduce 

an advanced streaming format, or enable system-wide energy event tracking, this architecture provides a 

clean starting point. 

This guide offers in-depth coverage of the firmware system, including conceptual overviews, 

architectural diagrams, peripheral configuration details, and real-world usage scenarios. It walks the reader 

through essential topics such as stream synchronization, multi-buffered DMA management, sample packet 

construction, network task coordination, and service initialization sequences. For each functional 

component, associated source code locations and configuration parameters are clearly identified. 

While this document presents a complete top-down explanation of the firmware’s operational 

principles, it is recommended to complement your reading with the auto-generated Doxygen documentation 

[xxx]. The Doxygen reference provides detailed insights into API declarations, internal data structures, 

configuration macros, and callback mechanisms, all of which are essential for confidently navigating and 

extending the codebase. It also includes function-level documentation for low-level drivers and middleware 

services that may not be fully elaborated in this guide. 
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2. ARCHITECTURE 
The architecture of the firmware for EPP is presented in the Figure 2.1: 

 
Figure 2.1 – EPP’s firmware architecture 

The presented architecture includes multiple layers each composed of various functional software 

blocks. The primary architecture layers include: 

• Device drivers’ layer 

• Platform drivers’ layer 

• Middleware layer 

• Services layer 

• Application layer 

The standard STM32H7 device HAL drivers are wrapped within the device driver layer. 

The introduction of the platform drivers layer ensures that the STM32H7 device driver is thread 

safe. From a higher perspective, the drivers within this layer act as wrappers around standard device drivers, 

enhancing the portability of our solution across various platforms. 

Platform driver layer and higher software layers utilize different mechanisms from third parties’ 

libraries such as FreeRTOS and LWIP library. FreeRTOS library 

Within the Middleware layer, we have implemented a collection of unique functionalities, carefully 

divided into individual RTOS tasks. These tasks are designed to harness the capabilities of specific lower 

software layers, creating a well-organized structure that enhances the modularity and efficiency of our 

system architecture. This approach not only promotes clarity and maintainability but also allows for 

seamless integration and scaling of functionalities within the overall system framework. 

The Application layer serves as the embodiment of the main firmware logic, taking on the 

responsibility of initializing all lower layers and initiating the RTOS scheduler. This layer acts as the 

orchestrator, setting the stage for seamless interaction and collaboration of the various components within 

the system. By encapsulating the core functionality, it establishes a cohesive framework that ensures the 

proper execution and synchronization of tasks throughout the entire system. 
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3. SOURCE CODE ORGANIZATION 
Complete project source code is available under Firmware repository on the official OpenEPT 

organization on the GitHub.  

 
Figure 3.1 - OpenEPT Organization on GitHub and Firmware repository 

The Firmware repository is organized as it is presented on Figure 3.2: 

 
Figure 3.2 - Firmware repository top level 

Top level repository hierarchy contains two subdirectories: 

• Documentation 

Here are located scripts to generate documentation based on code comments (Doxygen) 

• Source 

Here are located two subdirectories:  

- ADFirmware – STM32 Cube IDE project that contains all source code for Acquisition Device. 

-ConfProject - STM32 Cube IDE project that contains .ioc file that is useful for fast device 

configuration (this is used during development phase, and it is left for testing purpose only). 

Therefore, all source code of Acquisition device is located on path Source/ADFirmware which top 

directory structure is illustrated on   

https://github.com/OpenEPT
https://github.com/OpenEPT
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Figure 3.3 - ADFirmware directory structure 

• CM4  

Complete source code that will be run on Cortex M4 core. 

• CM7 

Complete source code that will be run on Cortex M7 core. 

• Common 

Startup file directory to booth all cores successfully. 

• Drivers 

STM32 driver library from the official STM32H7 Cube git repository 

• Middleware  

Third parties’ libraries are common for all cores (for example FreeRTOS, LwIP, etc) 

Within each core directory (CM4 and CM7) code directory organization is implemented to 

correspond to the overall firmware architecture presented on Figure 2.1. This organization is illustrated on 

Figure 3.4. 

 
Figure 3.4 - Firmware code directory structure 

• Application 

Contains firmware top-level source code. 
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• Configuration 

Contains all configuration files such as global firmware configuration, LwIP 

configuration, FreeRTOS configuration 

• Drivers 

This directory contains two sub-directories: Platform and Device. The platform directory 

contains thread-safe platform-independent drivers for different peripherals (UART, SPI, 

I2C) while the Device directory is linked to the Driver’s directory. 

• Middleware 

This directory contains two subdirectories: Services and Third party. Each service 

functionality, that corresponds to the Acquisition device architecture described here, will 

be implemented within a separate subdirectory.  
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4. FUNCTIONAL SOFTWARE BLOCKS  

4.1. Drivers 

4.1.1. Analog IN 

BLOCK SUMMARY  

Name Analog IN Layer Driver 

Version 1.03 

Related files 

Driver top source file 
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogIN/drv_ain.c 
Driver top header file 
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogIN/drv_ain.h 
ADS9224R ADC Source file 
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogIN/ADS9224R/ads9224r.c 
ADS9224R ADC Header file 
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogIN/ADS9224R/ads9224r.h 

Continuous voltage and current sample acquisition is implemented within the Analog IN driver’s 

software block whose main components are illustrated in Figure 4.1.  

 
Figure 4.1 - Functional elements of AnalogIN software block 

This software block is in charge to communicate with external ADC and to continuously, with 

minimal software assistance, acquire, read and store multiple voltage and current samples into a single 

packet of data. For such actions, the Timer and DMA peripherals, both connected with SPI, are configured 

to periodically trigger sample conversion on external ADC. Voltage and Current sampling are performed 

sequentially after the request to start conversion. At each end of the sampling process, start Timers that 

generate clock which initiate samples transfer from external ADC to ADU. Sample transfer triggers DMA 

to store voltage current samples to the specific part inside MCU memory. An interrupt is generated when 

the buffer is filled with several samples defined with the DRV_AIN_ADC_BUFFER_MAX_SIZE macro. 

Inside ISR is called the previously registered callback function from the Samples Stream service which has 

forwarded buffer address value. 

Analog IN driver is designed to support two operational modes: configuration and acquisition. These 

two modes are related to ADS9224R operating modes:  
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• configuration – used to configure ADS9224R ADC and to prepare it for acquisition. 

• acquisition – mode where it is expected to receive sampling request and to generate CLK to read 

samples from ADS9224R.   

After ADS9224R is powered up, and firmware is run on the STM32 MCU platform, it is important 

to check that ADS9224R is ready to be configured. The function inside the ADS9224R driver, in charge of 

properly configuring ADS9224R, is named ADS9224R_Init and its definition is presented on Figure 4.2. 

 
Figure 4.2 - ADS9224R_Init function definition 

One of the first steps performed within this function is to “ping” the device to check if ADS9224R 

is present and if it is ready to be configured. This “ping” operation considers powering down and then 

powering up the device to force ADS9224R to generate a ready signal pulse. The device is power-down by 

pulling the #PD/RST pin and holding it minimum tWL_PD period defined within a datasheet, which is in our 

case about 1 ms. After this, the device is powered up by pulling the #PD/RST pin high. When ADS9224R 

detects a rising edge, if it is ready and present within a system, consequently it will generate a READY 

signal too high, and the duration of the high level will be TPU = 0.9ms. This is illustrated on Figure 4.3. 
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Figure 4.3 - ADS9224R Powerup cycle 

After the device is responded to by a rising Ready signal, it is ready to be configured and the 

ADS9224R driver is moved to Configuration mode by calling private function 

prvADS9224R_CONF_SetState. In Configuration mode is mainly performed writing and reading device 

registers over standard SPI protocol. On the ADU side is used SPI3 instance of SPI that is configured to 

operate in Master mode and few GPIO pins. Lines between ADS9224R and ADU used within Configuration 

mode are illustrated in Figure 4.4. 

 
Figure 4.4 - Lines in configuration mode 

SPI3 instance on the STM32 side is configured to operate in Master mode. Pin 12 of GPIOD is 

configured as output and it is used as Chip Select signal for SPI while Pin 10 of GPIOG is configured as 

input and is used for reading operations. Pin 3 of GPIOA is used to keep the CONVST input of ADS9224R 

high during the configuration stage. 

Different types of operations over ADS9224R registers are supported within ADS9224R. Operations 

are performed by sending the corresponding commands to the ADS9224R device over SPI. Even if there 

are multiple supported operations, within a current firmware version, two operations are extensively used: 

Register write, and Register read. 

To perform register, and write operations, the standard procedure of sending two bytes over SPI is 

performed. This procedure is described in official documentation [1]. However, there are a few important 

notices related to the reading operations. When the register content wants to be read, two bytes are sent from 

MCU where the first 4 bits indicate the read command. After these two bytes are sent to the device, the 

device raises a READY pin which indicates that the requested register content is ready to be sent to MCU. 

After the Ready pin is set high, STM32 can perform an SPI read of one byte. This sequence is illustrated in 

Figure 4.5. 
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Figure 4.5 - Read the sequence timing diagram 

There are two possible conversion control and data transfer frame modes supported by ADS9224R: 

Zone 1 and Zone 2. These two modes are detailed and described in official ADC documentation [1] and 

their described protocol between ADC and MCU. For our project, Zone 1 is more suitable even if it requires 

a few more hardware resources. 

To enable streaming from ADC to MCU, the following peripherals are used: 

• Timer instance No 5 (TIM5) – Configured in master mode and it used to Periodically trigger 

conversion 

• Timer instance No 4 (TIM4) – Configured in slave mode and it is used to control Chip select 

(CS) signal 

• Timer instance No 8 (TIM8) – Configured in slave mode and it is used to generate a Clock for 

data transfer 

• SPI instance No 5 (SPI5) – Configured in slave mode and it is used to receive data from channel 

A 

• SPI instance No 4 (SPI4) – Configured in slave mode and it is used to receive data from channel 

B 

Schematic which illustrates details related to the connections between ADU and ADS9224R is 

presented in Figure 4.6. 

 
Figure 4.6 - Lines used in Acquisition mode 
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TIM5 is utilized to periodically trigger the conversion process by generating short high-level pulses 

on the CONVST input of the ADS9224R ADC. The timer is configured in master mode, with channel 4 

operating in PWM mode. TIM5 is connected to STM32's internal APB bus, with its input clock frequency 

set to the maximum of 200 MHz. To achieve the desired sampling rate, the timer's prescaler and PWM duty 

cycle are adjusted based on the sampling rate defined by the OpenEPT GUI. All timer configurations related 

to this process are encapsulated within the prvADS9224R_TIMER_CONVST_Init function, while the 

sampling rate can be configured using the ADS9224R_SetSamplingRate function. 

TIM4 is responsible for controlling the SPI Chip Select (CS) input of the ADS9224R ADC. It is set 

to operate in slave mode as a One Pulse timer, triggered by the rising edge of the READY signal generated 

by the ADS9224R. Channel 1 of the timer is configured in PWM mode, with its active level set to zero. Like 

TIM5, TIM4 is also connected to the STM32’s internal APB bus, with its input clock frequency set to 200 

MHz. The total high- and low-level duration of the signal remains constant across all sampling periods. All 

configurations related to this timer are handled within the prvADS9224R_TIMER_CS_Init function. 

TIM8 is used to generate clock signal for SPI communication. Like TIM4, TIM8 is configured to 

operate in slave mode, triggered by the falling edge of the READY signal. Channel 4 is set to PWM mode, 

with a 50% duty cycle, and the repetition counter is set to 16 (corresponding to one clock period per data 

bit). The clock frequency remains constant regardless of the sampling period. As with TIM5 and TIM4, 

TIM8 is also connected to the STM32’s internal APB bus, with its input clock frequency set to the maximum 

of 200 MHz. All timer configurations for this process are encapsulated within the 

prvADS9224R_TIMER_SCLK_Init function. 

An overview of Timers’ configurations is presented in Table 2 

Table 2 – Timer’s configuration overview  

Timer Instance Mode Function External Trigger 
Base CLK 

[MHZ] 
Channel/Mode 

TIM4 Slave Chip Selext 
Rising Edge of 

Ready Signal 
200 CH1/PWM 

TIM5 Master Conversion start - 200 CH4/PWM 

TIM8 Slave SCLK 
Falling edge of 

Ready signal 
200 CH1/PWM 

After we are presented with the timer’s configuration it is important to explain the way they are 

synchronized to achieve timing for Zone 1. This synchronization is presented in Figure 4.7. 

 
Figure 4.7 - Zone 1 timing diagram 
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Once the ADS9224R configuration is complete, the device is ready to transmit the acquired samples 

from channels A and B. The conversion process is initiated by the rising edge of the CONVST signal (1). 

The minimum high-level duration of this signal is defined by the switching characteristics outlined in [1]. 

As previously mentioned, this signal is controlled by TIM5, which is configured in master mode to generate 

a PWM signal with the pre-configured period TS. When the rising edge of the CONVST signal is detected, 

after a delay of TR (which, according to [1], does not exceed 315ns), the READY signal is generated. This 

signal plays a key role as it triggers TIM4 and TIM8, which are responsible for the CS and SCLK signals, 

respectively. The rising edge of the READY signal (2) starts TIM4, which pulls the CS signal low to activate 

all SPI slaves. The low-level duration of the CS signal, denoted as TT, corresponds to the time needed to 

transfer all 16 bits of data. The falling edge of the READY (3) signal then triggers TIM8, which generates 

16 clock cycles to facilitate data transfer. 

It is important to highlight three critical timing parameters: 

• TR: The time interval between the rising edge of the CONVST signal and the rising edge of the 

READY signal, controlled by the ADS9224R, which is specified in [1] and does not exceed 

315ns. 

• TS: The sampling period is determined by the value set by the user through the GUI application. 

• TT: The time interval during which data transfer is active, which must be less than TS - TR. 

In the current software version, 16 clock cycles are generated during each TT interval. To ensure 

high-speed data transfer, the TT interval remains constant, regardless of the sampling period. This setup 

allows the transmission of the 16-bit sampled value from the corresponding ADC channel, even when the 

sampling rate is 1MSps. 

To manage data acquisition, three timers generate the CS, SCLK, and CONVST signals for Zone 1, 

while SPI instances 4 and 5 are used to receive data and store it in local memory. These SPI peripherals are 

connected to DMA controllers, which offload the CPU by handling data transfer. The DMA retrieves one 

byte at a time from the SPI and continues until N samples have been received. Unlike the internal ADC 

setup in the Analog IN software block, where data from both channels is stored sequentially in a single 

buffer, in case the software utilizes the external ADC, each buffer is divided into two equal parts, with each 

part storing N samples from one channel. Since the DMA operates in double-buffer mode, when one buffer 

fills with N samples, the DMA automatically switches the data stream to the second buffer. These buffers, 

declared as non-cacheable within the AIN software block, store the data. Once both buffer sections are full, 

an interrupted service routine (ISR) notifies the software to read and transmit the data over Ethernet, while 

the DMA continues to fill the alternate buffer. This process is illustrated in Figure 4.8. 

 
Figure 4.8 - Samples transfer logic 

When the "START ACQUISITION" command is received by the MCU from the GUI, the 

acquisition process using the external ADC begins with a call to the ADS9224R_StartAcquisition function. 

The function first checks whether the ADS9224R driver is already in acquisition mode; if not, it configures 
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the driver for acquisition by calling prvADS9224R_ACQ_SetState. An important modification made to the 

STM32 HAL library ensures that the DMA operates in double-buffer mode. This modification involves 

replacing the HAL_DMA_Start_IT function with HAL_DMAEx_MultiBufferStart_IT inside the 

HAL_SPI_Receive_DMA function. This change is illustrated in Figure 4.9. 

 
Figure 4.9 - Part of the STM32 HAL library that is modified to support DMA double buffer mode 

Once it is confirmed that the driver is in acquisition mode, the PWM channels are enabled in the 

following order: TIM4 (CS), TIM8 (SCLK), and TIM5 (CONVST). When the TIM5 timer is activated, it 

generates pulses that initiate the conversion process, starting the data transfer cycles on the SPI bus. 
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4.1.2. Analog OUT 

BLOCK SUMMARY  

Name Analog OUT Layer Driver 

Version 1.03 

Related files 

Driver top source file 
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogOUT/drv_aout.c 
Driver top header file 
Source/ADFirmware/CM7/Core/Drivers/Platform/AnalogOUT/drv_aout.h 

This driver oversees configuring DAC value used for current sense part of the circuit. Within the 

current version, this driver block defines three public functions: DRV_AOUT_Init, DRV_AOUT_SetEnable 

and DRV_AOUT_SetValue. DRV_AOUT_Init is called during system initialization, and this function is in 

charge to properly initializing all functionalities related to STM32 DAC. DRV_AOUT_SetEnable enable or 

disable STM32 DAC channel while DRV_AOUT_SetValue set DAC value.  
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4.1.3. Network 

BLOCK SUMMARY  

Name Network Layer Driver 

Version 1.03 

Related files 

Driver top source file 
Source/ADFirmware/CM7/Core/Drivers/Platform/LwIP/ethernetif.c 
Driver top header file 
Source/ADFirmware/CM7/Core/Drivers/Platform/LwIP/ethernetif.h 

The Ethernet Interface (ETHIF) software block provides RTOS compatible network interface driver 

for the LwIP TCP/IP stack on STM32H7 microcontrollers. This block implements all the required low-level 

hardware abstraction and DMA-based packet handling mechanisms 

The ethernet interface driver is composed of three primary layers: 

• Low-level hardware control (HAL_ETH) 

• LwIP driver glue logic (ethernetif_init, low_level_input/output) 

• Dedicated RTOS tasks and semaphores for asynchronous event handling 

The initialization sequence begins with ethernetif_init, which is typically passed to netif_add during 

network stack setup. Internally, this function invokes low_level_init to configure the STM32H7 Ethernet 

peripheral, initialize the PHY driver (LAN8742), allocate Rx/Tx descriptors, and create memory pools for 

zero-copy RX buffers (RX_POOL). The Ethernet MAC is started in interrupt mode, and a dedicated 

FreeRTOS thread ethernetif_input is spawned to process incoming packets signaled by a semaphore 

RxPktSemaphore. Link status and PHY negotiation (duplex and speed) are managed via the LAN8742 

driver, which is abstracted using a CMSIS-compliant I/O layer. 

Transmission is handled through low_level_output, where the pbuf chain is traversed and packaged 

into ETH_BufferTypeDef buffers. The data is sent using the STM32 HAL function HAL_ETH_Transmit_IT, 

with blocking behavior implemented via TxPktSemaphore in case of DMA descriptor unavailability. Upon 

completion of transmission, HAL_ETH_TxCpltCallback releases the semaphore to unblock pending 

operations. Similarly, reception flow begins with the ISR-driven HAL_ETH_RxCpltCallback, which signals 

the input thread to retrieve packets via low_level_input. Definition of low_level_input function is presented 

on Figure 4.10. 

 
Figure 4.10 - low_leve_input function definition 
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The driver fully supports zero-copy reception. RX pbufs are allocated using the 

HAL_ETH_RxAllocateCallback hook (Figure 4.11), which provides aligned memory from the RX_POOL. 

Received packets are linked using HAL_ETH_RxLinkCallback, and coherency is ensured via 

SCB_InvalidateDCache_by_Addr. Freed buffers are reclaimed through pbuf_free_custom, ensuring 

efficient memory reuse without fragmentation. On the transmission side, LwIP-managed pbufs are released 

using HAL_ETH_TxFreeCallback. 

 
Figure 4.11 – HAL_ETH_RxLinkCallback function definition 
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4.1.4. GPIO  

BLOCK SUMMARY  

Name GPIO Layer Driver 

Version 1.03 

Related files 

Driver top source file 
Source/ADFirmware/CM7/Core/Drivers/Platform/GPIO/drv_gpio.c 
Driver top header file 
Source/ADFirmware/CM7/Core/Drivers/Platform/GPIO/drv_gpio.h 

The General-Purpose Input/Output (GPIO) software block provides a thread-safe abstraction layer 

for configuring and controlling digital input and output pins across the STM32H7 platform. This software 

block manages initialization, runtime state manipulation, and interrupt servicing of GPIO pins. The block is 

built with FreeRTOS compatibility in mind and leverages synchronization mechanisms to ensure safe 

concurrent access in real-time systems. 

All GPIO port-level operations are safeguarded using dedicated mutex semaphores. During the 

initialization of a GPIO port (invoked via DRV_GPIO_Port_Init), a mutex is created and associated with 

the corresponding port handle. This lock is used to ensure atomic access when configuring or manipulating 

pins associated with that port. Public APIs such as DRV_GPIO_Pin_Init and DRV_GPIO_Pin_SetState, 

which definition is presented on Figure 4.12, acquire this lock before performing HAL-level operations on 

the port registers. Similarly, pin deinitialization and state reading are protected to prevent data races and 

ensure consistent behavior in multi-threaded execution environments. For ISR contexts, specialized 

functions DRV_GPIO_Pin_SetStateFromISR, DRV_GPIO_Pin_ToogleFromISR are provided to avoid 

context-switch violations while maintaining thread safety. 

 
Figure 4.12 – DRV_GPIO_Pin_SetState function definition 

Interrupt support is implemented through a shared registry of callback functions, where each pin 

with interrupting capability is associated with a user-defined handler function. The 

DRV_GPIO_RegisterCallback, which definition is presented on Figure 4.13, and 

DRV_GPIO_Pin_EnableInt functions configure the pin in interrupt mode and register the corresponding 

ISR callback. At runtime, the global EXTI interrupt handlers delegate control to the user-defined callback 

based on the pin number, enabling fast and modular response to GPIO events. All pin interrupt callbacks are 

stored in a statically allocated array prvDRV_GPIO_PINS_INTERRUPTS, while the corresponding port 

state is tracked in prvDRV_GPIO_PORTS. 
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Figure 4.13 - DRV_GPIO_RegisterCallback function’s definition 
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4.1.5. Interrupts 

BLOCK SUMMARY  

Name Interrupts Layer Driver 

Version 1.03 

Related files 

Driver top source file 
Source/ADFirmware/CM7/Core/Drivers/Platform/Interrupts/stm32h7xx_it.c 
Driver top header file 
Source/ADFirmware/CM7/Core/Drivers/Platform/Interrupts/stm32h7xx_it.h 

The Interrupt Service Routine (ISR) software block is responsible for handling all processor 

exceptions and peripheral interruptions generated on the STM32H7 platform. This module acts as the 

centralized dispatch layer for routing hardware interrupts to their respective handlers, ensuring deterministic 

and responsive behavior of time-critical software components.  

A significant portion of the ISR logic is dedicated to external interrupt (EXTI) line handling, 

especially for GPIO events. These handlers, such as EXTI15_10_IRQHandler and EXTI9_5_IRQHandler, 

check which EXTI line has triggered the interrupt using __HAL_GPIO_EXTI_GET_IT and clear the 

interrupt flag after servicing via __HAL_GPIO_EXTI_CLEAR_IT. Each triggered line then invokes the 

corresponding HAL-level callback via HAL_GPIO_EXTI_IRQHandler, which is further routed to user-

defined callback functions registered in the GPIO driver layer. This layered approach ensures clear 

separation of responsibilities, where the ISR module provides the hardware-level dispatch mechanism while 

higher-level services (e.g., drv_gpio) handle the application-specific logic.  

 
Figure 4.14 - EXTI Service Routine 

In addition to GPIO interrupts, this ISR block manages interrupts from Ethernet (ETH), DAC and 

Timer peripherals (TIM6_DAC), and others. For instance, TIM6_DAC_IRQHandler simultaneously checks 
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the state of the DAC and triggers both DAC and Timer-related handlers. This combined handling is essential 

in cases where peripherals share interruption lines or when coordinated processing is required (e.g., DAC 

output under Timer control). The implementation is modular and allows HAL drivers to manage their 

internal state, while application logic is typically offloaded to registered callbacks or deferred via task 

notifications if operating within a FreeRTOS-based system. 

For fault-related exceptions (e.g., HardFault_Handler, BusFault_Handler), the current 

implementation enters infinite loops, serving as breakpoints for debugging unrecoverable errors. These can 

later be extended to include logging or safe system reset procedures depending on system-level fault 

tolerance strategies. Overall, the ISR block provides a robust and scalable foundation for real-time event 

processing and is tightly integrated with the platform’s peripheral driver and HAL layers. 
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4.1.6. SPI 

BLOCK SUMMARY  

Name SPI Layer Driver 

Version 1.03 

Related files 

Driver top source file 
Source/ADFirmware/CM7/Core/Drivers/Platform/SPI/drv_spi.c 
Driver top header file 
Source/ADFirmware/CM7/Core/Drivers/Platform/SPI/drv_spi.h 

The SPI Interface (DRV_SPI) software block provides a modular, FreeRTOS-compatible abstraction 

layer for configuring and operating SPI peripherals. The SPI software block is structured around a 

centralized handle management system (drv_spi_handle_t) that stores initialization state, user 

configuration, FreeRTOS lock handle, and an embedded HAL SPI handler SPI_HandleTypeDef. A fixed-

size array, prvDRV_SPI_INSTANCES, holds these handles for all SPI instances, enabling the driver to 

manage multiple peripherals concurrently in a thread-safe manner. Each SPI instance is guarded by a binary 

mutex, ensuring thread-safe operation for concurrent access to transmission and reception routines in a 

multitasking environment. 

 
Figure 4.15 - drv_spi_handle_t structure definition 

Initialization is performed using DRV_SPI_Instance_Init, where users configure mode 

(master/slave), clock polarity, and clock phase. Default values are applied for advanced parameters such as 

CRC, NSS behavior, and FIFO settings, but these can be extended for future configurability. Deinitialization 

is handled via DRV_SPI_Instance_DeInit to allow dynamic reconfiguration or power management. 

Data communication is supported through both blocking DRV_SPI_TransmitData, 

DRV_SPI_ReceiveData and non-blocking interrupt/DMA-based APIs. The DRV_SPI_EnableITData 

function triggers full-duplex DMA transfers, while interrupt-based completion is serviced by 

HAL_SPI_TxRxCpltCallback and routed to user-registered callbacks via 

DRV_SPI_Instance_RegisterRxCallback. These mechanisms are especially useful in latency-sensitive 

scenarios where SPI peripherals require low-overhead, high-throughput communication. 

The SPI block also includes full integration with the HAL MSP layer. GPIO and DMA configuration 

for each SPI peripheral (SPI2, SPI3, SPI4, SPI5) is handled in HAL_SPI_MspInit and HAL_SPI_MspDeInit 

functions. Each peripheral is conditionally configured with specific GPIO ports, DMA streams, and clock 

sources. For instance, SPI2 uses DMA1_Stream4/5 and operates in circular DMA mode, suitable for 

continuous streaming scenarios. 
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4.1.7. System 

BLOCK SUMMARY  

Name System Layer Driver 

Version 1.03 

Related files 

Driver top source file 
Source/ADFirmware/CM7/Core/Drivers/Platform/System/drv_system.c 
Driver top header file 
Source/ADFirmware/CM7/Core/Drivers/Platform/System/drv_system.h 

The System Initialization (DRV_SYSTEM) software block is responsible for performing all 

essential platform-level initialization tasks prior to enabling specific services. This block ensures a well-

defined and safe startup sequence for STM32H7-based dual-core (Cortex-M7 + Cortex-M4) embedded 

systems. It provides two key entry points: DRV_SYSTEM_InitCoreFunc for early core/system configuration 

and DRV_SYSTEM_InitDrivers for initializing platform-wide peripheral drivers. Definition of these two 

functions is presented on Figure 4.16. 

 
Figure 4.16 - System initialization functions 

The core initialization path DRV_SYSTEM_InitCoreFunc begins by enabling instruction and data 

caches SCB_EnableICache and SCB_EnableDCache to improve execution performance. In dual-core 

configurations, synchronization with CPU2 (typically the Cortex-M4 core) is handled through hardware 

semaphores and RCC flags. Specifically, prvDRV_SYSTEM_CPU2_Wait waits for the M4 core to reach stop 

mode before proceeding, ensuring coordination between both processing units. A shared semaphore 

(HSEM_ID_0) is taken and released to signal startup readiness between the cores. 

Next, the Memory Protection Unit (MPU) is configured using prvDRV_SYSTEM_MPU_Init to 

define memory attributes for key regions such as LwIP buffers, DMA descriptors, and reserved regions. 

Each MPU region is carefully assigned access permissions, caching behavior, and execution rights, 
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enforcing memory safety and optimizing performance for DMA operations (e.g., ETH RX descriptors are 

marked as non-cacheable, bufferable, and shareable). This MPU configuration is crucial for maintaining 

data coherency in systems using cache and peripheral DMA access. 

 
Figure 4.17 - Initialization of Memory region that belongs to AnalogIN buffer. 

The system clock configuration is then performed via prvDRV_SYSTEM_CLOCK_Init, which uses 

the HSI oscillator as the PLL source to derive all main system clocks (SYSCLK, HCLK, APBx) with 

appropriate dividers. This ensures that peripherals operate at well-defined and validated frequencies. The 

configuration targets high performance with voltage scaling set to 

PWR_REGULATOR_VOLTAGE_SCALE1 and PLL settings customized for the specific STM32H7 system 

design. 

Once the core system is fully initialized, DRV_SYSTEM_InitDrivers is called to bring up all 

platform-level hardware abstraction layers. This includes GPIO, UART, SPI, analog input, analog output 

(DAC), timers, and I2C. Each driver is initialized in sequence, and any failure in peripheral initialization 

leads to a controlled error response. This centralization of driver initialization ensures deterministic system 

behavior and simplifies diagnostics during bring-up and deployment. 
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4.1.8. Timer 

BLOCK SUMMARY  

Name Timer Layer Driver 

Version 1.03 

Related files 

Driver top source file 
Source/ADFirmware/CM7/Core/Drivers/Platform/Timer/drv_timer.c 
Driver top header file 
Source/ADFirmware/CM7/Core/Drivers/Platform/Timer/drv_timer.h 

The DRV_TIMER software block serves as a modular, and thread-safe abstraction layer for 

managing the STM32H7’s timers. It is designed to support a wide range of use cases, including periodic 

task scheduling, PWM signal generation, and precise time-based control, all within the context of 

FreeRTOS-based embedded systems. 

This driver supports multiple hardware timer instances (e.g., TIM1–TIM4), each with up to four 

independent channels. The configuration for each timer is defined using the drv_timer_config_t structure, 

which includes the prescaler value, counter mode (up/down), clock divider, auto-reload behavior, and other 

key parameters. Upon initialization, the selected timer is configured in base and PWM modes using STM32 

HAL functions, and a FreeRTOS mutex is created to guard all interactions with that specific timer instance. 

This ensures thread-safe operations even when multiple tasks attempt concurrent access. 

The initialization sequence starts with DRV_Timer_Init, which resets all driver-internal state and 

marks the timer module as ready. Each timer instance is then individually configured using 

DRV_Timer_Init_Instance. This function handles the allocation of hardware resources, such as enabling 

peripheral clocks and configuring GPIOs via HAL_TIM_Base_MspInit. The timer is then brought up in 

PWM-ready mode using HAL_TIM_Base_Init, HAL_TIM_PWM_Init, and clock configuration routines. 

Each channel within a timer can be independently configured using DRV_Timer_Channel_Init. As 

of the current implementation, only PWM1 mode is supported, which allows for duty-cycle-based waveform 

generation. Configuration is performed through HAL_TIM_PWM_ConfigChannel, and upon successful 

setup, the channel’s metadata is stored in the driver’s internal handle structure. 

To start signal generation, the application calls DRV_Timer_Channel_PWM_Start, specifying the 

timer, channel, target pulse width (period), and a timeout value. Internally, the driver acquires the mutex 

associated with the timer instance, validates that both the timer and channel are initialized, and then updates 

the corresponding CCR register to set the PWM duty cycle. The channel then started using 

HAL_TIM_PWM_Start, and the mutex is released. 

All critical operations in this driver are protected using FreeRTOS binary semaphores, making this 

module inherently safe for use in preemptive multitasking environments. Mutexes ensure that no race 

conditions occur when starting or modifying timer output, even if multiple tasks are involved. The per-

instance locking model also ensures that unrelated timers do not interfere with one another. 

Internally, the driver maintains two key static arrays: 

- prvDRV_TIMER_PLATFORM_HANDLER contains HAL-level TIM_HandleTypeDef 

structures. 

- prvDRV_TIMER_HANDLER maintains driver-specific metadata, including channel 

configuration and state flags. 

This static allocation model ensures deterministic memory usage, a critical requirement in real-time 

embedded systems where heap allocation is often restricted or discouraged. 
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4.1.9. UART 

BLOCK SUMMARY  

Name UART Layer Driver 

Version 1.03 

Related files 

Driver top source file 
Source/ADFirmware/CM7/Core/Drivers/Platform/UART/drv_uart.c 
Driver top header file 
Source/ADFirmware/CM7/Core/Drivers/Platform/UART/drv_uart.h 

The DRV_UART software block is a thread-safe abstraction layer designed to manage UART 

peripheral instances on STM32H7-based platform. It provides configuration, data transmission, and receive-

callback registration services over multiple UART ports. The implementation is tailored for use in 

FreeRTOS environments and supports concurrent access using mutexes for each UART instance. 

The driver supports up to CONF_UART_INSTANCES_MAX_NUMBER UART interfaces, which are 

statically allocated in the internal prvDRV_UART_INSTANCES array. Each UART instance is associated 

with a dedicated UART_HandleTypeDef structure for HAL interactions, as well as a FreeRTOS semaphore 

to protect shared access to the interface. The DRV_UART_Init function initializes internal structures, 

clearing any previous state, and marks the driver ready for instance-level configuration. 

Individual UARTs are initialized using DRV_UART_Instance_Init. This function sets up the selected 

UART peripheral based on a user-supplied configuration structure drv_uart_config_t. Although currently 

only the baud rate is configurable via this structure, the initialization routine sets the word length, parity, 

stop bits, hardware flow control, FIFO thresholds, and disables FIFO mode using standard STM32 HAL 

functions. Once initialized, a dedicated mutex (lock) is created per instance, enabling thread-safe 

transmission. 

Data transmission is performed through the DRV_UART_TransferData function. This function first 

acquires the instance's mutex before calling HAL_UART_Transmit to send the data buffer. If the mutex 

acquisition or HAL transmission fails, the function returns an error. The use of per-instance semaphores 

ensures that only one task at a time may access a UART resource, thus avoiding race conditions in concurrent 

environments. 

Reception is supported via interrupt mode and a lightweight callback mechanism. The 

DRV_UART_Instance_RegisterRxCallback function allows the user to register a type 

drv_uart_rx_isr_callback, which is invoked each time a new byte is received. Upon registering, the function 

also starts with the reception interrupt using HAL_UART_Receive_IT. When data arrives, the 

HAL_UART_RxCpltCallback ISR invokes the appropriate callback and immediately restarts the reception 

for the next byte. This design supports byte-wise interrupt-driven reception and is well-suited for protocols 

that require immediate handling of control or framing bytes. 

The driver also implements peripheral clock configuration and GPIO alternate function mapping in 

the HAL_UART_MspInit routine. This low-level function ensures that each UART instance is properly 

clocked and that TX/RX pins are initialized with the correct GPIO settings, using STM32Cube HAL APIs. 

Interrupts are configured and prioritized to support asynchronous receive operation. 

The DRV_UART module is designed with modularity and safety in mind. By encapsulating all 

hardware and synchronization resources per instance, the driver supports multiple concurrent UART 

sessions with deterministic behavior and minimal resource contention. This makes it ideal for embedded 

applications requiring robust serial communication, such as CLI interfaces, sensor networks, debug logging, 
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and inter-MCU data exchange. Future enhancements may include DMA support, more advanced parity/stop 

bit configuration, and framing-layer abstraction. 
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4.2. Services 

4.2.1. Control  

BLOCK SUMMARY  

Name Control Layer Middleware 

Version 1.03 

Related files 

Top source file 
Source/ADFirmware/CM7/Core/Middlewares/Services/Control/control.c 
Top header file 
Source/ADFirmware/CM7/Core/Middlewares/Services/Control/control.h 
Command parser source file 
Source/ADFirmware/CM7/Core/Middlewares/Services/Control/CMParse/cmparse.c 
Command parser header file 
Source/ADFirmware/CM7/Core/Middlewares/Services/Control/CMParse/cmparse.h 

Within the device firmware, the logic for control and status messages is encapsulated within a 

distinct service. This service is responsible for receiving control messages, parsing their content, executing 

the appropriate actions based on the message content, and generating responses accordingly. The core logic 

and operational mechanisms of this service are depicted in the Figure 4.18. 

 

Figure 4.18 - Control service working principle 

Control messages are sent to the Acquisition device in the form of a control message request. These 

requests are sent from the HOST side on the previously opened TCP port on the acquisition device. A control 

message request is received inside the Control service server task, and it is forwarded to Message parsing 

logic to analyse control message content. Message parsing logic is part of Control service logic in charge of 

analyzing the content of received control messages and calling corresponding callback functions previously 

assigned to specific control messages. Part of the Control service code that creates a mapping between 

callback functions and control messages is presented in Figure 4.19. When callback functions that 

correspond to request control messages are executed, corresponding control message responses are 

generated based on callback function execution results. This response is sent back to the HOST machine. 
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Figure 4.19 - Part of the supported commands list with corresponding callback functions 

All control messages are in ASCII format with predefined structures. Control message structures, as 

well as commands implemented within the current software version, are presented in [2] 

Besides control messages, there are also status messages that are used to inform the host machine 

about the system execution status. To enable this service, the device-side control message for configuring 

the status messages server should be utilized. 
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4.2.2. Stream  

BLOCK SUMMARY  

Name Stream Layer Middleware 

Version 1.03 

Related files 

Top source file 
Source/ADFirmware/CM7/Core/Middlewares/Services/SamplesStream/sstream.c 
Top header file 
Source/ADFirmware/CM7/Core/Middlewares/Services/SamplesStream/sstream.h 

Figure 4.20 illustrates all firmware software blocks that are parts of streaming functionalities. 

 
Figure 4.20 – Streaming service’s functional software blocks 

Presented blocks are: 

• Analog IN 

In charge of acquiring voltage and current samples and storing them in corresponding buffers 

• Ethernet Interface and Network service  

Software IP stack 

• Samples Stream Service  

In charge of receiving sample data packets from lower software layers, processing them, and 

forwarding them to the host side 

• Control Service 

In charge of parsing control commands. 

After MCU firmware is successfully run and the ethernet link is established, the host initiates the 

data streaming process by transmitting a control message. This message, as defined within the [2] file, 

contains the server’s IP address where obtained samples should be sent. This established streaming channel 

facilitates the continuous transmission of data from the MCU to the server for real-time processing or further 

analysis. For clarity, the "create stream" command format with some IP address information is provided 

below: 

device stream create -ip=192.168.1.200 -port=5000 

Upon receiving the control message, the Control Service  parses it and forwards the "Create Stream" 

action to the Samples Stream Service. This service, based on the message content, creates a stream for 

sending data to the server at 192.168.1.200, port 5000. 

Stream is created by calling SSTREAM_CreateChannel which is key part of the Sample Stream 

(SSTREAM) service. New streaming channel is established based on the provided connection information. 

https://www.openept.net/post/core-software-functionality-streamlining-data-flow


      OPENEPT                      ENERGY PROFILER PROBE - FIRMWARE                      DEVELOPER GUIDE 

 

 

32 

It ensures that each new channel is properly initialized, both in terms of synchronization primitives and task 

management, before the system begins using it for data streaming. The function is designed to be thread-

safe and supports multiple concurrent stream connections, with a maximum number defined in the system 

configuration. 

The process begins by checking if the number of currently active connections has reached the 

configured upper limit (SSTREAM_CONNECTIONS_MAX_NO). If so, it returns an error to avoid resource 

over-allocation. Assuming there is room for another channel, the function assigns a new connection ID based 

on the current active count. It then updates internal bookkeeping structures for control and stream handling 

with this ID, and copies over the connection parameters (such as IP address and port) from the provided 

connectionHandler. 

To support synchronization between the main system and the newly created tasks, the function 

initializes binary semaphores (initSig) and mutexes (guard) for both the control and stream components of 

the channel. These semaphores serve as signals indicating successful task startup, while the mutexes ensure 

safe access to shared resources in a multithreaded environment. 

Once synchronization objects are successfully created, the function proceeds to launch two 

FreeRTOS tasks: the control task and the stream task. These tasks are responsible for handling the control 

interface and the actual data streaming respectively. After each task is created, the function waits on its 

corresponding semaphore with a timeout to confirm that the task has initialized correctly. If any of the task 

creation or synchronization steps fail, the function exits with an error status. 

If all steps complete successfully, the new channel's connection ID is finalized, and the system’s 

active connection counter is incremented. The function then returns SSTREAM_STATUS_OK, signalling 

that the new streaming channel is fully initialized and ready for use. 

Following stream creation, the host can send commands for configuring parameters like sampling 

rate and resolution. The current software version supports the configuration of the Sampling period and 

number of samples within single stream packet. The [2] provides a comprehensive list of commands used 

to configure specific parameter values. 

After the data stream is established and configured, the host may trigger data transmission by sending 

a "Start Stream" command. Upon receiving this command, the Stream Service leverages the Stream ID 

(SID) value to identify the relevant stream. The designated stream then begins continuous sample acquisition 

and transmits the data to the pre-configured server. This ongoing data transmission process can be 

dynamically controlled by the host through specific pause or stop commands. 

When streaming is active, the corresponding stream task is triggered, by Analog IN driver, for further 

processing when current and voltage samples are stored inside a corresponding buffer within Analog IN 

driver. Processing logic implemented inside this task includes two steps: 

1. Incrementing the Message ID (MID) sequentially 

2. Appending a Message Type (MTI) 

The sequential MID allows the host system to detect potential packet loss during transmission 

because unreliable, very fast, UDP protocol is used for packet transmission. The MTI serves to identify the 

specific data type contained within the packet. While the current version handles only one data type, this 

design offers flexibility for future implementations that may include different data streaming types. Data 

samples, together with MID and MTI, create a Stream message packet which is forwarded to the network 

service where it is encapsulated inside the corresponding ethernet packet and sent to the host side.  Stream 

message packet creation over different software services is illustrated in Figure 4.21. 
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Figure 4.21 - Stream message content among firmware's services 
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4.2.3. Energy Debugging  

BLOCK SUMMARY  

Name Energy Debugging Layer Middleware 

Version 1.03 

Related files 

Top source file 
Source/ADFirmware/CM7/Core/Middlewares/Services/ED/energy_debugger.c 
Top header file 
Source/ADFirmware/CM7/Core/Middlewares/Services/ED/energy_debugger.h 

 

Inside OpenEPT Device’s firmware is implemented energy debugging service which primary 

functionality is to receive and process energy sampling request by recording PacketID and SampleID when 

energy request is issued. Figure 4.22 illustrates software architecture of this service. To fully understand 

algorithms implemented inside this service, it is important to understand samples streaming and network 

functionalities first. 

 

Figure 4.22 - Software Architecture Overview of Energy Debugging Service within OpenEPT Device's firmware 

When a rising or falling edge of the Sync signal is detected, the corresponding Sync Interrupt Service 

Routine (ISR) is triggered. As the first step within this ISR, a request is made to the Analog Interface (AIN) 

software block to retrieve two values: PacketID and SampleID.  PacketID uniquely identifies a streaming 

packet, as ADC samples are transmitted in chunks of N samples. SampleID represents the specific sample 

within that chunk. The PacketID matches the ID of the packet that will be sent over the UDP interface, while 

the SampleID is obtained from the DMA counter. Once these values are retrieved, they are stored in the 

corresponding Value structure, which is then added to the Values queue. 

The Serial ISR is responsible for receiving metadata messages. It gathers characters received over 

the serial interface, configured for use within the Energy Debugging Interface (currently implemented as 

UART in the OpenEPT firmware), and stores them in a corresponding buffer. When a \r (carriage return) 
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character is detected, the buffer contents are transferred to a corresponding Name structure and then added 

to the Names queue.  

The Energy Points Processing (EPP) task integrates the core functionalities of the Energy Debugging 

mechanism. This task reads from two queues, with only the Names queue being a blocking read. When the 

Serial ISR writes a Name structure instance to the Names queue, it unblocks the EPP task, which then 

analyses the received metadata messages to determine their type. Part of this task content, responsible for 

processing these queues, is illustrated on Figure 4.23. 

 
Figure 4.23 - Part of EPP task responsible for processing Value structure 

Three processing scenarios are possible: 

• If the message is a START or STOP command, the system initializes communication by setting 

up all relevant buffers and generate response that will be sent back to the DUT 

• If the message is of type Energy Point Name, the task performs a non-blocking read from the 

Values queue. If the Values queue is empty, an error is generated; otherwise, the retrieved 

PacketID, SampleID, and Sample Name are combined to create a corresponding Energy Point. 

The generated Energy Point message is then written to the Energy Point (EP) queue.  

• If the message is logging message, received message content is forwarded to the OpenEPT 

logging interface 

Energy Debugging Client (EDC) Task perform blocking read from EP queue to obtain EP messages 

after which it extracts content from EP messages and transform it to binary format message named EPBinary. 

This message will be sent over TCP to OpenEPT GUI application, and its format is illustrated on Figure 

4.24. 

 
Figure 4.24 - EP binary message structure 
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This EPBinary message format consists of following fields: 

• PacketID (4B wide) – represents packetID to which EP message is related to 

• SampleID (4B wide) – id of sample inside the packet to which EP message is related to 

• Name (n Bytes wide end with \r\n characters) – name of the EP 
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4.2.4. EEZ DIB 

BLOCK SUMMARY  

Name EEZ DIB Layer Middleware 

Version 1.03 

Related files 

Top source file 
Source/ADFirmware/CM7/Core/Middlewares/Services/EezDib/eez_dib.c 
Top header file 
Source/ADFirmware/CM7/Core/Middlewares/Services/EezDib/eez_dib.h 

Main EEZ DIB Service task, with relevant synchronization elements with other system services, is 

illustrated on Figure 4.25. 

 
Figure 4.25 - EEZ DIB Service's task and relevant synchronization elements 

The SStream service is responsible for acquiring voltage and current samples from the AnalogIN 

driver, processing them, and transmitting the data to the OpenEPT GUI application running on the host side. 

This service supports two acquisition modes: Active and Inactive. The current acquisition state of the 

SStream service is critical for the operation of the EEZ DIB service. To facilitate this interaction, the 

SStream service has been extended to support the registration of a callback function that is invoked 

whenever the acquisition state changes. During service initialization, performed within the System Task, the 

prvSYSTEM_AcquisitionStateChanged function is registered as the callback handler. This function, 

implemented in system.c notifies the EEZ DIB service whenever a change in the acquisition state occurs. 

Within the EEZ DIB service, this state recorded within the first bit of a service-specific variable named 

STATUS. This acquisition state information is crucial for the EEZ DIB service to determine the appropriate 

timing for initiating sample collection from the SSample service. 

The EEZ DIB Service Task operates in three distinct states: Initialization, Service, and Error. During 

the Initialization state, all relevant peripherals (such as SPI Instance 2) and internal variables are set up. The 

Error state handles fault recovery mechanisms if an error occurs in any of the other states. The core 

functionality resides in the Service state, where the main task logic is executed. In this state, the task begins 

by reading the queue that stores incoming request messages from EEZ DIB MCU. Once a message is 
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retrieved, it is processed, and the appropriate action is executed, and response is sent back to the EEZ DIB 

MCU.  

Communication between the EEZ DIB Main MCU and the OpenEPT MCU is established over a 

full-duplex SPI interface. In this setup, the EEZ DIB side operates as the SPI master, while the OpenEPT 

side functions as the SPI slave. Messages exchanged between the two MCUs are limited to a maximum of 

10 bytes and can be either in ASCII or binary format. There are two message types: 

• Request - Sent from the EEZ DIB MCU to the OpenEPT MCU, in ASCII format, over the MOSI 

line. 

• Response – Sent from the OpenEPT MCU back to the EEZ DIB MCU, in binary format, over 

the MISO line. 

When a Request message is transmitted during an SPI transaction, it is received by the OpenEPT 

MCU using a dedicated SPI DMA channel. Upon reception, a corresponding callback is triggered. The 

message is then encapsulated into a request message structure and send to the queue on which EEZ DIB 

Service task is blocked. Writing to this queue will unblock task, and message processing will start. As 

processing results, binary response is prepared it will be transmitted during the next SPI frame.  

As previously mentioned, request messages are sent from the EEZ DIB MCU to the OpenEPT MCU 

over the MOSI line in ASCII format. Each request consists of a command string followed by the \r character, 

which signifies the end of the message. The current version of the OpenEPT firmware supports a single 

request command: "GetVC\r". Upon receiving this command, OpenEPT responds by sending a binary-

formatted message within the SPI frame. This response includes the following fields: 

• Voltage (2 bytes) 

• Current (2 bytes) 

• STATUS variable (1 byte) 

• End-of-Message (EOM) marker (2 bytes) 

This binary response format is illustrated in the Figure 4.26. 

 
Figure 4.26 - EEZ DIB Response message format 
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4.2.5. Logging  

BLOCK SUMMARY  

Name Logging Layer Middleware 

Version 1.03 

Related files 

Top source file 
Source/ADFirmware/CM7/Core/Middlewares/Services/Logging/logging.c 
Top header file 
Source/ADFirmware/CM7/Core/Middlewares/Services/Logging/logging.h 

The LOGGING service is built on FreeRTOS. It provides an abstraction for formatted log 

generation, queuing, and asynchronous transmission through configurable output channels. This service is 

designed to support modular, multitasking applications by offloading the message formatting and 

transmission logic into a dedicated logging task. 

The service uses a FreeRTOS queue to buffer logging messages and a background task to process 

and transmit these logs. Messages are formed using standard printf-style formatting with variable arguments, 

allowing to embed context-rich diagnostic information. Log messages are categorized by severity using the 

logging_msg_type_t enum, which includes INFO, WARNING, and ERROR types. Each message is 

prepended with a service identifier string, and a consistent message format is applied for clarity. 

The initialization process begins with LOGGING_Init, which creates the message queue and the 

binary semaphore used to signal readiness. A dedicated task (prvLOGGING_TaskFunc) is created and enters 

a finite-state machine with three states: INIT, SERVICE, and ERROR. In the INIT state, the task initializes 

its output channels (currently UART3) by configuring and activating the corresponding UART peripheral 

using the DRV_UART driver. Once the UART is ready, the service transitions to the SERVICE state and 

signals that it is initialized. Should any failure occur during initialization or runtime message processing, 

the service enters the ERROR state and signals a low-level error through the SYSTEM_ReportError 

interface. 

 
Figure 4.27 - Logging Service's main task 

Log messages are constructed and dispatched using the LOGGING_Write function. If the FreeRTOS 

scheduler has not yet started, the message is sent synchronously over the UART using a blocking transmit 
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function. Otherwise, the message is queued into the logging queue to be handled asynchronously by the 

background task. This dual-mode behavior ensures the system can produce logs even during early startup 

before multitasking begins. 

Internally, each log message is encapsulated in a logging_message_t structure that holds a statically 

sized buffer and its length. The prvLOGGING_SendLogMessage function ensures all data is transmitted 

using the currently initialized output channel. In this implementation, UART3 is used exclusively, and its 

configuration is hardcoded within prvLOGGING_InitChannels. 
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4.2.6. Network 

BLOCK SUMMARY  

Name Network Layer Middleware 

Version 1.03 

Related files 

Top source file 
Source/ADFirmware/CM7/Core/Middlewares/Services/Network/network.c 
Top header file 
Source/ADFirmware/CM7/Core/Middlewares/Services/Network/network.h 

The Network service handles Ethernet-based communication and integrates with the LwIP stack to 

provide IP connectivity for the system. This service operates as a dedicated FreeRTOS task and manages 

link detection, interface configuration, and runtime monitoring of the physical and MAC layers. It is built 

to support a static IP configuration and does not rely on DHCP, simplifying integration in systems with fixed 

addressing schemes. 

During initialization, the service sets up the LwIP TCP/IP stack, configures the network interface 

with predefined IP, subnet mask, and gateway values, and adds it to the system. It then registers a callback 

to handle link state changes, which allows the service to update the internal state and inform the rest of the 

system when the connection is established or lost. Status information, such as connection speed and duplex 

mode, is reported through the centralized logging service, aiding in system diagnostics. 

The runtime task periodically checks the state of the Ethernet PHY using the LAN8742 driver. If a 

link-up or link-down condition is detected, it reconfigures the MAC layer accordingly and brings the 

interface up or down as needed. This mechanism ensures that the system maintains a consistent view of 

network availability and reacts appropriately to changes in link conditions. The task uses 

LOCK_TCPIP_CORE and UNLOCK_TCPIP_CORE to protect LwIP operations, ensuring thread safety 

during status transitions. 

In case of initialization or runtime failures, the service enters a safe error state and reports the 

problem via the system error handler. The NETWORK_Init function is the entry point for external modules 

and is responsible for creating the task, setting up synchronization, and waiting for the link configuration to 

complete within a given timeout. Overall, the service provides a clean and isolated way to manage Ethernet 

networking without exposing internal logic or requiring manual setup from application code. 
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4.2.7. System 

BLOCK SUMMARY  

Name System Layer Middleware 

Version 1.03 

Related files 

Top source file 
Source/ADFirmware/CM7/Core/Middlewares/Services/System/system.c 
Top header file 
Source/ADFirmware/CM7/Core/Middlewares/Services/System/system.h 

The System service is the central service responsible for initializing, supervising, and coordinating 

key firmware modules. It is implemented as a dedicated FreeRTOS task that operates across three well-

defined states: INIT, SERVICE, and ERROR. Its main purpose is to establish a stable runtime environment 

by initializing dependent services, managing global system parameters, and providing synchronized access 

to shared state variables. This service ensures consistent behavior during system startup and runtime, with 

robust fault handling and status indication mechanisms. 

During the INIT phase, the service sequentially initializes critical hardware interfaces and 

middleware services. This includes GPIO configuration for system status indicators, PWM timer setup for 

RGB LED control, and external interrupt configuration for user input (e.g., button press). It then proceeds 

to initialize a few software components, namely the Logging, Network, Control, Sample Stream 

(SSTREAM), Discharge Profile Control (DPCONTROL), Energy Debugger, and EEZ DIB services. Each 

component is initialized with a timeout mechanism, and any failure during this phase results in a transition 

to the ERROR state, with corresponding logging output and LED indication. 

The System service manages a global RGB LED whose colour can be dynamically updated to reflect 

various system statuses (e.g., idle, error, or active acquisition). The current colour values are stored in a 

shared data structure and updated using a thread-safe mechanism with FreeRTOS semaphores. Updates are 

propagated to the main system task via task notifications, ensuring that PWM adjustments are performed 

within the correct task context. This design prevents concurrency issues and eliminates the need for direct 

hardware access from external tasks. 

Another critical responsibility of the System service is linking status monitoring. It provides a public 

API (SYSTEM_SetLinkStatus) that allows the network service (or other modules) to update the current 

network connection state. The link status is indicated using a dedicated GPIO-controlled diode, and internal 

state updates are guarded by a semaphore to ensure safe access from multiple contexts. 

The service also supports dynamic assignment of a device name, which is stored internally and can 

be accessed or updated by external components via SYSTEM_SetDeviceName and 

SYSTEM_GetDeviceName. The data is protected by the same mutex used for other shared resources, 

maintaining consistency across the system. 

If an error occurs at any stage, the System service provides centralized fault handling via the 

SYSTEM_ReportError API. Depending on the severity (low, medium, or high), the function configures the 

RGB LED to a corresponding red intensity and activates the error status diode. This visual feedback is useful 

for debugging and system monitoring in embedded environments where console access might be limited. 

Once all components are initialized and no faults have been detected, the system transitions into the 

SERVICE state. In this state, the task waits for asynchronous events (e.g., RGB LED updates) and maintains 

the system's stable operation. The core logic of the application may also be placed here, although typically 

higher-level modules will handle runtime logic beyond the scope of basic system management. 

Overall, the System service plays a pivotal role in the architecture by initializing and supervising all 

major services, providing reliable runtime control, and managing system-wide status indicators in a thread-



      OPENEPT                      ENERGY PROFILER PROBE - FIRMWARE                      DEVELOPER GUIDE 

 

 

43 

safe manner. This modular and guarded design ensures scalability, robustness, and ease of integration across 

a wide range of embedded firmware projects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



      OPENEPT                      ENERGY PROFILER PROBE - FIRMWARE                      DEVELOPER GUIDE 

 

 

44 

4.3. Configuration 

The globalConfig.h file (Source/ADFirmware/CM7/Core/Configuration/globalConfig.h) serves as a 

centralized configuration header that defines compile-time constants used across the firmware architecture. 

It encapsulates the system-wide definitions required to configure various software services, hardware 

abstraction layers, driver interfaces, and task-related parameters. This file enables the firmware to be easily 

adjusted for different hardware configurations, operational modes, and performance tuning without 

requiring deep changes in implementation files. 
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5. BUILD AND RUN INSTRUCTIONS 
To successfully build and run the DAU firmware, the STM32Cube IDE must be installed and 

configured with the appropriate dependencies. The following steps guide you through the full setup process. 

Step 1: Download and install STM32CubeIDE  

The latest version of STM32CubeIDE should be obtained from this link. After downloading, 

STM32CubeIDE should be installed on the machine by following standard installation instructions.  

Step 2: Clone project from official GitHub account 

There are two primary methods for downloading the project from the official GitHub repository. The 

first method is using a dedicated Git console, such as Git Bash Application, which allows cloning 

the repository directly via the command line. The second method involves navigating to the 

repository's GitHub page and clicking the green Code button, then selecting the Download ZIP 

option. This will download the project files as a compressed archive. The latter method is visually 

illustrated in the corresponding Figure 5.1. 

Step 3: Import project 

Once STM32CubeIDE is launched and the workspace path is configured, navigate to File → Open 

Projects from File System (1, 2 in Figure 5.2). 

 

1

2

Figure 5.2 - Open project from file system option 

1

2

Figure 5.1 - Download project from the official GitHub repository 

https://www.st.com/en/development-tools/stm32cubeide.html
https://github.com/OpenEPT/Firmware
https://git-scm.com/downloads
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Clicking Open Projects from File System opens the Import Project from File System or Archive 

window. In this dialog, you need to specify the directory where the project resides (in our case, 

Source/ADFirmware). To do so, click the Directory button (1 in Figure 5.3). 

 
Figure 5.3 - Import project from file system or archive  

After clicking the Directory button, the Browse for Folder window appears (Figure 5.4). Here, 

navigate to the Source/ADFirmware directory (step 1), and click Select Folder (step 2).  
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2

1

Figure 5.4 - Browse for Folder window 
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If the project is successfully detected in the selected directory, the window from Figure 5.3 will be 

updated to reflect the discovered project, as shown in Figure 5.5. To proceed with the import, click 

the Finish button (step 1). 

Once the project is successfully imported, it will be displayed in the Project Explorer panel, as shown 

in Figure 5.6. 

 
Figure 5.6 - Project Explorer window after the project is successfully imported 

Step 4: Configure Global path 

The PROJECT_PATH variable serves as a reference point for many relative include paths used 

throughout the project. Instead of hardcoding absolute paths, source files and build configurations 

use this variable to dynamically resolve locations of headers and source files within the project 

directory. This approach improves project portability and maintainability, especially when working 

across different systems or when the project is moved to a different directory structure. 

To define the PROJECT_PATH build variable, right-click on the project named ADFirmware_CM7 

in the Project Explorer, then select Properties. In the Properties window, navigate to C/C++ Build 

→ Build Variables (Figure 5.7). Locate the variable named PROJECT_PATH, which is essential 

since many of the project's include paths are defined relative to it. 

 

1

Figure 5.5 - Import projects window after the project is successfully found on selected path 
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Figure 5.7 - Build variables part of Properties window 

After locating the PROJECT_PATH variable, double-click on it to open the Edit Existing Build 

Variable dialog (1 in Figure 5.7). In this window, click Browse (1 in Figure 5.8). and navigate to the 

project directory, specifically Source/ADFirmware. Select this folder and confirm by clicking OK. 

This assigns the correct path to the PROJECT_PATH variable, ensuring that include files are 

properly resolved during the build process. 

 
Figure 5.8 - Edit Existing Build Variable 

After clicking OK in the Edit Existing Build Variable dialog, return to the Properties window shown 

in Figure 5.7. To finalize the change, click Apply and Close. If the specified path is valid and correctly 

set, the include paths listed under ADFirmware_CM7 → Includes in the Project Explorer will update 

automatically. The folder icon should change from a transparent folder with a yellow warning 

triangle in the bottom-right corner (Figure 5.9) to a solid blue folder icon (Figure 5.10), indicating 

that the include path has been successfully resolved. 

 

 

1

1
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Figure 5.9 - Paths before Build variable path is resolved 

 
Figure 5.10 - Paths after Build variable path is resolved 

Step 4: Build and Run the project and run first Debug session 

Once the project is fully configured and successfully imported, the build process can be initiated. To 

begin, right-click on the ADFirmware_CM7 project in the Project Explorer. It is recommended to 

first perform a clean build to ensure that all previously generated files are removed. To do this, select 

Clean Project from the context menu. After the cleaning process is complete, right-click on the 

project again and select Build Project. This will start the compilation process using the defined 

settings and paths. If building process is successfully done, ADFirmware_CM7.elf is generated under 

ADFirmware_CM7 → Binaries (1 in Figure 5.11). To run the project, click on bug symbol from tool 

bar (2 in Figure 5.11).  

 
Figure 5.11 - Project binary and first debug run 
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