

Documentation

GRAPHICAL USER INTERFACE

DEVELOPER GUIDE

30. JUNE 2025

Open Energy Profiler Toolset
Drive innovations in the field of low-powered technologies

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

2

Revision History

Version Date Description

1.0 30.06.2025. Initial draft

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

3

CONTENT

1. INTRODUCTION .. 4

2. ARCHITECTURE ... 5

3. SOURCE CODE ORGANIZATION .. 7

4. CLASSES .. 10

4.1. Top Level ... 10
4.1.1. Device .. 10
4.1.2. Device container .. 12

4.2. Processing .. 13
4.2.1. File processing ... 13
4.2.2. Energy Point processing .. 14
4.2.3. Data processing .. 16

4.3. Links .. 18
4.3.1. Stream Link ... 18
4.3.2. Control Link .. 19
4.3.3. Status Link ... 21
4.3.4. Energy Debugging Link ... 22

4.4. Windows .. 23
4.4.1. Add Device .. 23
4.4.2. Console .. 24
4.4.3. Data Analyzer .. 26
4.4.4. Device .. 28
4.4.5. Data Statistics .. 30
4.4.6. Calibration ... 32

5. BUILD AND RUN INSTRUCTIONS ... 34

LIST OF FIGURES .. 39

REFERENCES ... 40

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

4

1. INTRODUCTION

This document serves as a detailed technical manual for understanding, building, and extending the

OpenEPT Graphical User Interface (OpenEPT GUI), a central software component within the Open

Energy Profiler Toolset (OpenEPT). It is specifically tailored for software developers, embedded systems

engineers, and future contributors who will be involved in the design, development, testing, or maintenance

of the OpenEPT GUI application. Readers are expected to possess foundational knowledge of C++, the Qt

Creator development environment, Qt’s signal-slot mechanism, and general principles related to embedded

systems and graphical user interface development.

The OpenEPT GUI is a modular, high-performance application developed using the Qt framework.

It enables real-time control, monitoring, and diagnostic interaction with the Energy Profiler Probe (EPP)

[1]. The GUI provides an intuitive interface for streaming data management, hardware configuration, and

execution of calibration and analysis procedures. Designed to run on both Windows and Linux platforms,

the application offers cross-platform support and was built using Qt version 5.15.2, which includes several

essential Qt modules to ensure flexibility and scalability.

The primary responsibilities of the OpenEPT GUI include acquiring, visualizing, and processing

real-time data from the EPP, as well as presenting the device’s operational status and offering control over

key runtime parameters. Its architecture is carefully structured to allow straightforward extension and

adaptation for energy profiling use cases, making it well-suited for ongoing research and industry

applications that require dynamic system interaction.

To support modularity and maintainability, the OpenEPT GUI is designed as a layered architecture,

based on guidelines [2], comprising four main layers: Logic, Processing, Windows, and Link. Each of these

layers is implemented through dedicated C++ classes, with clearly defined responsibilities. This separation

ensures organized data flow, from raw acquisition and calibration through processing, up to user interaction,

while promoting clean code structure, scalability, and testability. The application leverages Qt's event-driven

programming model and multithreading features to ensure smooth user experiences and low-latency data

visualization, even during high-frequency sampling.

Beyond architectural documentation, this guide provides complete instructions for setting up a

compatible development environment. This includes installing the appropriate version of the Qt framework,

selecting required Qt modules, configuring the toolchain, and preparing Qt Creator for building and running

the application.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

5

2. ARCHITECTURE
The architecture of the Acquisition Device Firmware is presented in the Figure 2.1:

Figure 2.1 – Acquisition Device’s Firmware

The diagram presents a high-level architectural overview of the OpenEPT application, highlighting

the separation of functionalities between the main application, individual device containers, and the

underlying operating system.

At the topmost layer is the Main Application, which serves as the central control unit responsible for

managing the overall workflow, user interface, and orchestration of all connected acquisition devices. This

application operates in relation to the number of devices and abstracts complexity by handling each device

through a dedicated component referred to as a container.

The Device Layer illustrates the concept of device containers, Container 1, Container 2, and

Container 3. Each container encapsulates all logic, data processing, and communication mechanisms related

to an individual acquisition device. This design ensures that devices operate independently from one another,

allowing the application to scale horizontally as more devices are added. The containers isolate device-

specific behavior, facilitate parallelism, and simplify debugging and development. All classes instantiated

inside the device container are presented on Figure 2.2.

Figure 2.2 - Device Container's elements

All classes instantiated inside Device Container are organized into four clearly defined layers: Logic

Layer, Windows Layer, Processing Layer, and Link Layer. This layered design provides a modular

foundation for robust development, where responsibilities are cleanly separated and encapsulated within

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

6

distinct blocks. Each block shown in the diagram corresponds to a dedicated C++ class, ensuring

encapsulation, maintainability, and clear abstraction of responsibilities.

At the top of the architecture is the Logic Layer, which coordinates all high-level operations. It is

composed of the DeviceContainer and Device classes. The DeviceContainer serves as the entry point for

managing one or more devices simultaneously. Each Device instance maintains full ownership over its

processing pipeline, user interface components, and communication links. This separation enables the

system to support multiple concurrent measurement sessions while keeping their execution contexts isolated

and well-managed.

Beneath the logic layer lies the Windows Layer, which comprises the GUI modules that form the

visual and interactive core of the application. Each block within this layer is implemented as an independent

Qt-based C++ class, presenting a self-contained graphical interface. This includes modules such as Add

Device, for incorporating new hardware into the system, Calibration, for tuning measurement accuracy, and

Data Statistics, for summarizing data trends. Plot and Console windows offer real-time visual and textual

feedback, respectively, while Data Analyzer supports offline review. The Advance Configuration module

provides access to expert-level settings, allowing deeper customization of system behavior.

Backend for the graphical interface is the Processing Layer, which performs critical backend tasks

essential for data integrity and feature extraction. This layer includes components such as Calibration Data,

which stores and manages device-specific calibration coefficients, and Data Processing, which transforms

raw input signals into usable information. The Energy Point Processing module detects and annotates

energy-related events within the data stream, while File Processing manages structured logging and

persistent storage of collected data. All processing modules are designed to operate either synchronously or

within dedicated threads, depending on system requirements.

At the foundation of architecture is the Link Layer, which manages all external communication with

EPP [1]. Each link is encapsulated in its own C++ class and typically operates in a dedicated thread to ensure

responsiveness and real-time performance. The Control Link establishes a TCP connection for command-

based interaction, while the Energy Debug Link receives structured labels and debug events. Status Link

functions as a TCP server that accepts periodic status reports from devices, and the Stream Link serves as a

high-bandwidth UDP receiver for real-time acquisition of analog samples, such as voltage and current.

Altogether, this layered and modular architecture enables OpenEPT to function as a highly adaptable

and efficient platform for embedded measurement and energy analysis. By decoupling system components

into specialized, reusable C++ classes, the software maintains strong cohesion and extensibility. This design

not only simplifies development and debugging but also positions the system well for future expansion and

integration into diverse measurement environments.

At the foundation, the Operating System Layer, represented here by Linux/Windows, provides the

runtime environment for both the main application and the device containers. The architecture is designed

to be platform-independent and can operate on either of the supported operating systems. The containers

themselves are implemented as software modules but are conceptually treated as isolated units managed by

the main application.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

7

3. SOURCE CODE ORGANIZATION
Complete project source code is available under Firmware repository on the official OpenEPT

organization on the GitHub [3].

Figure 3.1 - OpenEPT Organization on GitHub and GUI repository

The GUI repository contains two main directories:

• Documentation

Here are located scripts to generate documentation based on code comments (Doxygen)

• Source

Where complete OpenEPT GUI source code is located

Therefore, all source code of OpenEPT GUI is located inside Source directory which structure is

illustrated on Figure 3.2

https://github.com/OpenEPT
https://github.com/OpenEPT

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

8

Figure 3.2 – OpenEPT Source directory structure

The Source directory serves as the root of the application’s codebase, organizing all the functional

components of the OpenEPT GUI software into well-separated modules. Each subfolder within Source

encapsulates a specific aspect of the application, contributing to a modular and maintainable design.

• Chart

This directory contains components responsible for visualizing data. It includes custom

plotting widgets, real-time chart implementations, and mechanisms for displaying voltage,

current, or consumption curves. The logic here interfaces with graphical libraries like

QCustomPlot or QChart to present data to the user.

• Images

The images folder stores graphical assets used throughout GUI, such as icons, splash screens,

button graphics, and UI embellishments. These resources are loaded into the application at

runtime to support a consistent and professional interface appearance

• Links

This directory manages network communication interfaces and abstractions. It includes

classes for handling TCP/UDP connections to hardware devices, such as StatusLink and

StreamLink, as well as connection lifecycle management (connect/disconnect, message

parsing, etc.).

• Processing

This folder hosts data processing modules, including filtering, analysis, transformation, or

aggregation of incoming measurement streams. Components here serve as the computational

backend, preparing data for visualization or further calibration.

• Utility

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

9

The Utility folder provides supporting services and helper classes that are shared across

modules. It may include logging utilities, configuration parsers, data validators, color

palettes, unit conversion helpers, or file handling logic.

• Windows

This high-level directory groups all GUI subcomponents into dedicated windows or widgets.

Each subfolder represents a specific user interface feature of the application and encapsulates

its respective UI logic.

- AddDevice

Contains the implementation for the dialog or window that allows users to manually

add a device by IP address and port. It likely includes input validation and emits

connection requests.

- Console

Implements the textual command interface window. It allows manual sending of

control messages to devices, shows responses, supports command history, and may

feature auto-completion for faster use

- Data Analyzer

Hosts the interface for analyzing acquired measurement data. This may include tools

for exporting, segmenting, statistical analysis, or browsing logged sessions.

- Device

Encapsulates the main interface for managing a connected device. This includes

configuration dialogs, real-time monitoring, control toggles, and integration with

other subsystems like plots or logs.

- Plot

Provides the interactive window or panel where data is plotted in real-time or from

logs. It handles rendering updates, axis scaling, plot interaction, and curve overlays.

- WSSelection

Likely stands for "Workspace Selection" or "Working Session Selection", offering an

interface for the user to choose which device, dataset, or operating mode to engage.

It may also manage workspace configurations or presets.

Each of these directories is organized to promote encapsulation and separation of concerns, making

the project easier to scale, debug, and maintain.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

10

4. CLASSES

4.1. Top Level

4.1.1. Device

BLOCK SUMMARY

Name Device Layer Logic

Version 1.03

Related files

Top source file
Source/device.cpp
Top header file
Source/device.h

The Device class encapsulates the complete logic required to configure, control, and monitor a EPP.

It is designed as a high-level abstraction built on top of Qt’s QObject, and serves as a central coordinator

for data streaming, analogue signal processing, and peripheral control. The class enables seamless

communication between a host application and the embedded device via multiple link types: ControlLink,

StreamLink, StatusLink, and EDLink. These links manage command-based interactions, real-time data

transfer, status updates, and energy point processing respectively.

This class enables dynamic configuration of the ADC subsystem. Through dedicated setter and getter

methods, it supports adjusting key acquisition parameters including ADC resolution, sampling period,

channel sampling time, clock division factor, and hardware averaging ratio. It also manages the

synchronization of these settings by computing the effective sampling time and updating dependent modules

such as the DataProcessing and ChargingAnalysis components. A dedicated method is provided to

automatically retrieve the current configuration from the device.

Beyond signal acquisition, the Device class enables real-time control over various power path

elements and actuators within the system. It implements control commands for enabling or disabling the

load, DAC, battery path, and power path. The current DAC setting is computed using a fitted inverse

function, ensuring precise digital-to-analog translation based on calibration data. Overvoltage, undervoltage,

and overcurrent conditions can be queried and monitored in real time.

The data streaming capability is enabled via the createStreamLink method, which sets up the stream

server and connects it to the DataProcessing pipeline. Incoming data samples are decoded, processed, and

re-emitted as Qt signals containing voltage, current, and derived energy metrics. Statistical analysis, event-

based energy processing (via EPProcessing), and battery charging state tracking (via ChargingAnalysis) are

also integrated within the class structure. These components interact through Qt signal-slot mechanisms,

ensuring asynchronous, non-blocking data flow.

Internally, the Device class maintains a comprehensive set of state variables that represent the real-

time configuration and operational status of the device. These include ADC characteristics, offsets, sampling

configurations, current and voltage thresholds, and component states. All interactions with the firmware are

performed through structured string-based command protocols, and each result is validated, parsed, and

used to update internal state or propagate signals to higher-level modules.

In summary, the Device class is responsible for the full lifecycle management of a measurement

device, from low-level ADC setup to high-level power control and data streaming. It abstracts the

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

11

complexity of embedded communication and real-time signal handling while providing a modular and

extensible interface for further system development.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

12

4.1.2. Device container

BLOCK SUMMARY

Name Device Container Layer Logic

Version 1.03

Related files

Top source file
Source/devicecontainer.cpp
Top header file
Source/devicecontainer.h

The DeviceContainer class functions as a high-level integration layer that connects the GUI front-

end (represented by DeviceWnd) with the hardware interface logic (encapsulated by the Device class). It is

designed to manage and coordinate interactions between the user interface, logging system, device control,

data acquisition, and file processing mechanisms. This class enables the encapsulation of a single acquisition

session, maintaining contextual state and behavior across user-driven actions and device-generated events.

This class enables initialization of all signal-slot bindings required for real-time operation of the

device interface. Upon construction, it connects GUI actions (such as parameter changes, acquisition control

commands, and calibration updates) to corresponding slots that translate these actions into appropriate

method calls on the underlying Device instance. It also binds the Device class signals (e.g., hardware status

changes, new samples received, energy point updates) back to the GUI, ensuring responsive feedback and

seamless visualization. In this role, DeviceContainer acts as a mediator and state synchronizer between the

human operator and the hardware abstraction layer.

Internally, DeviceContainer maintains additional services such as logging (via the Log class), file-

based data logging (via the FileProcessing class), and runtime state variables like elapsed acquisition time,

energy point enablement status, and file write permissions. It ensures that the correct directories and files

are created for storing acquisition data, summaries, and computed statistics, and manages filename conflicts

and profile overwrites with user confirmation through message boxes. When acquisition is active and saving

is enabled, incoming data (voltage, current, consumption, energy points) is continuously streamed to disk.

Additionally, DeviceContainer enables translation and validation of textual GUI inputs into

enumerated types for ADC resolution, clock dividers, sampling times, and averaging modes. This mapping

ensures the consistency and correctness of configuration commands issued to the hardware. Device

configuration can also be applied in bulk via the onDeviceWndNewConfiguration method, which parses and

applies all relevant acquisition parameters from an advanced configuration structure.

This class further monitors acquisition state and protects data integrity by enforcing profile setup

before writing to file. It enables acquisition start, pause, stop, and refresh operations, while logging all

relevant actions, warnings, and errors. It also tracks elapsed acquisition time via a periodic timer and

propagates this information to the GUI, keeping the user informed of ongoing progress.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

13

4.2. Processing

4.2.1. File processing

BLOCK SUMMARY

Name File processing Layer Processing

Version 1.03

Related files

Top source file
Source/Processing/fileprocessing.cpp
Top header file
Source/Processing/fileprocessing.cpp

The FileProcessing class is responsible for managing all file input/output operations related to data

logging and acquisition results within the OpenEPT system. It supports multiple files types and organizes

output data into well-structured CSV and text formats. This class enables the storage of raw measurement

samples, calculated consumption data, summary information, and extracted energy points in a structured

and thread-safe manner. It also ensures data integrity and writes efficiency through a dedicated file-

processing thread and synchronized operations.

Upon initialization, the class creates and opens the required output files depending on the specified

fileprocessing_type_t. When operating in FILEPROCESSING_TYPE_SAMPLES mode, the class moves

itself to a dedicated thread and establishes queued connections for sample, consumption, and energy point

logging. This design enables safe, non-blocking data logging even when large volumes of data are streamed

in real time from the acquisition device.

Each file is created with a header section that includes a user-defined title and a content-specific

column structure. For instance, voltage/current samples are stored in vc.csv with timestamped entries, while

consumption data is logged in cons.csv, and energy point data in ep.csv. The OpenEPT.txt summary file is

used to record session metadata such as acquisition start/stop time and user-defined notes.

The class enables both direct and queued appending of data. Queued appending is particularly useful

for multithreaded contexts where data is generated asynchronously. Corresponding signal-slot pairs such as

sigAppendSampleData and onAppendSampleData ensure that sample data is written in the background

thread, preventing UI blocking or race conditions. Direct appending functions (appendSampleData,

appendConsumptionData, etc.) are also available for simpler or single-threaded use cases.

Internally, the FileProcessing class maintains key configuration state such as the file type, output

paths, and header contents. It offers methods to set or reset headers, reopen files (e.g., when overwriting an

existing session), and append new entries with precision formatting. For synchronization during threaded

startup, a QSemaphore is used to delay data logging until all files are safely opened and ready.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

14

4.2.2. Energy Point processing

BLOCK SUMMARY

Name File processing Layer Processing

Version 1.03

Related files

Top source file
Source/Processing/epprocessing.cpp
Top header file
Source/Processing/epprocessing.h

The EPProcessing class is responsible for managing the detection, tracking, and handling of Energy

Points (EPs) within the OpenEPT measurement framework. An energy point represents a notable event or

annotation in the energy profile of a system—typically associated with a specific sample, timestamp, or

packet. This class enables asynchronous processing of EP data, allowing the system to handle high-

frequency measurements without blocking the main application thread. Figure 4.1 illustrates classes that

are, besides EPProcessing, included in Energy Points processing mechanism.

Figure 4.1 - Overview of the OpenEPT GUI classes that process and visualize Energy Points

Upon instantiation, EPProcessing moves itself to a dedicated thread, isolating its operations from

the main thread to ensure non-blocking behavior during real-time acquisition. This threading model is

particularly important when managing queued data such as energy point names and values arriving

independently via separate signals.

The onNewEPValueReceived function is triggered when a new energy point value is received. This

includes the PacketID, the computed value, and its associated key (which typically represents a timestamp

or sample index). Instead of matching incoming values with previously known names (which is commented

out in the current implementation), the function directly creates a new EPInfo instance and appends it to the

internal epList for later processing or reference.

Conversely, onNewEPNameReceived handles the case where only the energy point name is known,

along with a PacketID and SampleID. It computes a samplePosition based on a default buffer size and emits

a sigEPProcessed signal immediately. This allows the system to reflect named energy points on the user

interface, even if the value is not yet associated.

The EPInfo class serves as a container for individual energy point data. It encapsulates the packet

identifier (packetID), the assigned name (if any), the associated value and key, and flags indicating whether

the name or value has been set. The class provides methods to assign names and values independently,

retrieve stored attributes, and compare against a packet ID via the operator == overload.

Although the matching mechanism between name and value assignments is currently disabled

(commented out in onNewEPValueReceived), the infrastructure is in place to enable full pairing between

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

15

asynchronously received EP metadata. Once re-enabled, this logic would allow EPProcessing to accumulate

partial data (name or value) and emit complete EP results only when both parts are available.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

16

4.2.3. Data processing

BLOCK SUMMARY

Name Data processing Layer Processing

Version 1.03

Related files

Top source file
Source/Processing/dataprocessing.cpp
Top header file
Source/Processing/dataprocessing.h

The DataProcessing class is responsible for handling the core data acquisition and signal processing

functionality within the OpenEPT platform. It manages the collection, calibration, buffering, and processing

of voltage and current measurements received from the acquisition device. This class operates in its own

dedicated thread to ensure that all time-sensitive operations, such as high-speed sampling and FFT

processing, can be executed without blocking the main GUI or interfering with other system tasks.

Upon creation, the class sets up key internal parameters such as buffer sizes, calibration coefficients,

and filtering options. It allocates buffers for voltage and current samples, timestamps (keys), and energy

consumption data. Depending on the selected device mode, the raw data received through the

onNewSampleBufferReceived, method is either interpreted as integer values or as packed binary words. Each

sample is converted into meaningful voltage or current values using user-defined or default calibration

constants, including gain, shunt resistance, voltage correction factor, and ADC reference voltage. These

conversions are updated automatically if calibration data changes.

In addition to calibration, DataProcessing tracks a wide range of signal statistics in real time. It

computes and stores minimum, maximum, and average values of both voltage and current throughout the

measurement session. For energy tracking, it offers two consumption modes: one that estimates energy using

instantaneous current values (current mode) and another that integrates current over time to produce a

cumulative energy profile (cumulative mode), expressed in mAh. The user can switch between these modes

depending on whether the focus is on momentary power draw or long-term energy usage.

Once the number of acquired buffers reaches a user-defined threshold, the class finalizes data

processing and emits a variety of signals. These include sigNewVoltageCurrentSamplesReceived for

voltage/current data, sigNewConsumptionDataReceived for energy data, sigSamplesBufferReceiveStatistics

for transmission diagnostics, and sigSignalStatistics for updated measurement statistics. It also emits

sigAverageValues to report average current and voltage for the completed buffer session. These signals are

presented on Figure 4.2.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

17

Figure 4.2 - Signals inside DataProcessing class

All buffers are reset after each full acquisition cycle, ensuring that new data can be collected

seamlessly. This reset is handled cleanly through modular methods like initVoltageBuffer and

initCurrentBuffer, which resize and zero the internal data arrays.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

18

4.3. Links

4.3.1. Stream Link

BLOCK SUMMARY

Name Stream Link Layer Link

Version 1.03

Related files

Top source file
Source/Links/streamlink.cpp
Top header file
Source/Links/streamlink.h

The StreamLink class is designed to manage UDP-based data streaming in the OpenEPT system. It

provides a dedicated interface for receiving high-frequency measurement packets over the network and

seamlessly integrating them into the data processing pipeline. The class is implemented as a QObject and is

executed in a separate thread to ensure non-blocking communication and thread-safe operation across the

application.

Upon initialization, the class assigns a default packet size (STREAM_LINK_PACKET_SIZE) and

creates a QThread instance dedicated to handling UDP operations. When the thread is started through the

enable method, it triggers the initStreamLinkThread slot, which binds a new QUdpSocket to the configured

port and sets an increased receive buffer size to accommodate high-throughput datagram traffic. The socket

is configured to listen for incoming datagrams, and whenever data is available, the readPendingData slot is

automatically invoked.

The class supports dynamic configuration of the network port and stream ID through the setPort and

setID methods. It also provides a method setPacketSize for adjusting the expected number of 16-bit values

per packet, giving flexibility to accommodate various hardware or firmware configurations.

When datagrams arrive, the readPendingData function (Figure 4.3) processes each packet in a loop.

It first allocates space for the incoming byte stream and then uses receiveDatagram to extract the actual

payload. The first 8 bytes of each packet are assumed to contain a 32-bit counter (used as packet ID) and a

32-bit magic field (used for auxiliary data such as flags or checksums). The remainder of the packet contains

raw 16-bit signed integers, which are copied into a QVector<short> and then cast to a QVector<double> to

standardize the format used downstream. Once the data is prepared, the class emits the

sigNewSamplesBufferReceived signal with the converted sample array, packet counter, and magic number.

Figure 4.3 - Parsing Stream Message inside Stream Link

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

19

4.3.2. Control Link

BLOCK SUMMARY

Name Control Link Layer Link

Version 1.03

Related files

Top source file
Source/Links/controllink.cpp
Top header file
Source/Links/controllink.h

The ControlLink class implements a TCP client interface used to establish and manage a control

communication link between the host application and a remote embedded device. It is designed to issue

textual commands over TCP/IP and receive formatted responses, supporting command/response-based

interaction with the device’s firmware.

Upon initialization, the class sets up a QTcpSocket, enables the TCP keep-alive option, and stores

initial default values such as IP address and port number. The establishLink method is used to initiate a

connection to the target device. It takes an IP address and port number, attempts to connect using Qt’s

networking primitives, and returns the current link status. This method also sets up signal-slot connections

for handling disconnection and reconnection events.

In the event of an unexpected disconnection, the onDisconnected slot is invoked. It sets the internal

status to reconnecting and starts a QTimer that attempts to re-establish the connection periodically using the

reconnect slot. Once reconnected, the onReconnected slot is triggered, at which point the TCP keep-alive

options are applied at the system socket level to help detect stale or dead links in environments where

continuous communication cannot be guaranteed.

The class provides the executeCommand method as the primary mechanism for interacting with the

remote device. This method sends a command string, waits for a response within a specified timeout, and

parses the response. It performs basic validation to ensure the command is properly terminated and returns

the parsed result or an appropriate error message if the exchange fails. Definition of this method is presented

on Figure 4.4.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

20

Figure 4.4 - executeCommand method definition

Additionally, the ControlLink class offers helper methods such as getDeviceName to retrieve

identifying information from the device and setSocketKeepAlive to configure low-level socket options such

as idle timeout, probe interval, and maximum probe count. These settings ensure reliable long-term

connectivity, especially over unstable or mobile networks.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

21

4.3.3. Status Link

BLOCK SUMMARY

Name Status Link Layer Link

Version 1.03

Related files

Top source file
Source/Links/statuslink.cpp
Top header file
Source/Links/statuslink.h

The StatusLink class provides a TCP-based communication channel for receiving status messages

from one or more remote clients in the OpenEPT system. Its main purpose is to listen for incoming TCP

connections on a specified port, accept them, and process textual status messages that are sent during the

acquisition process or system operation. The class is implemented as a QObject and operates within its own

dedicated thread to isolate network activities from the main application and ensure smooth, asynchronous

message handling.

Upon construction, the StatusLink class sets up a QThread instance named "OpenEPT - Status link

server" and connects its started signal to the internal slot onServerStarted. The server is started by calling

startServer, which triggers the thread to begin execution. When the thread starts, the class initializes a

QTcpServer and binds it to the configured port, which is set in advance using the setPort method. If the

binding fails, a diagnostic message is printed to aid debugging.

Once the server is active and listening, any new incoming client connection is handled by the

onNewConnectionAdded (Figure 4.5) slot. This slot is triggered whenever the server detects a new pending

connection. It retrieves each connection using nextPendingConnection, stores the corresponding

QTcpSocket in an internal list (clientList), and connects each socket's readyRead signal to the

onReadPendingData slot. Additionally, a signal sigNewClientConnected is emitted with the IP address of

the newly connected client, allowing external components (e.g., GUI or logging systems) to respond

accordingly.

Figure 4.5 - onNewConnectionAdded slot definition

The onReadPendingData slot is responsible for reading incoming messages from the connected

clients. When triggered, it identifies the sending socket and reads available data into a fixed-size buffer

(STATUS_LINK_BUFFER_SIZE). Messages are read continuously in a loop until no more data remains,

and each valid message is passed along through the sigNewStatusMessageReceived signal, which includes

both the client’s IP address and the received message.

In summary, the StatusLink class acts as a lightweight TCP server module for receiving and

forwarding status updates from external devices or software components. Its multithreaded structure ensures

that network I/O does not interfere with real-time data acquisition or UI responsiveness. With support for

multiple simultaneous client connections, signal-based integration, and message dispatching, it forms an

essential part of OpenEPT's runtime status monitoring and system coordination infrastructure.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

22

4.3.4. Energy Debugging Link

BLOCK SUMMARY

Name Energy Debugging Link Layer Link

Version 1.03

Related files

Top source file
Source/Links/edlink.cpp
Top header file
Source/Links/edlink.h

The EDLink class implements a TCP server interface responsible for handling energy debugging

messages sent from acquisition device unit to the OpenEPT GUI application. It listens for incoming TCP

connections on a dedicated thread and processes client messages according to a predefined protocol. By

default, the server binds to port 8000, although this can be configured as needed. Upon startup, EDLink

initializes a QTcpServer and connects to its newConnection signal to detect when new clients attempt to

establish a connection.

When a new client connects, the onNewConnectionAdded slot accepts the connection, adds the

socket to an internal list of active clients, and connects the socket’s readyRead signal to the

onReadPendingData handler. This design ensures that incoming messages from all clients are handled

asynchronously and independently.

The message format is defined with a simple structure: each message must end with a carriage return

and newline (\r\n) and must include a minimum of 8 bytes of header data—comprising a 32-bit identifier

and a 32-bit DMA ID—followed by an optional UTF-8 encoded payload. The onReadPendingData method,

which definition is presented on Figure 4.6, accumulates data from the socket into a static buffer and parses

messages in a loop, ensuring that fragmented or incomplete transmissions are handled. Valid messages are

parsed to extract the header and payload, and a signal (sigNewEPNameReceived) is emitted to notify other

components about the received data.

Figure 4.6 - Initial processing of energy debugging messages inside EDLink class

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

23

4.4. Windows

4.4.1. Add Device

BLOCK SUMMARY

Name Add Device Layer Windows

Version 1.03

Related files

Top source file
Source/Windows/AddDevice/adddevicewnd.cpp
Top header file
Source/Windows/AddDevice/adddevicewnd.h
Top UI file
Source/Windows/AddDevice/adddevicewnd.ui

The AddDeviceWnd class defines a graphical user interface component that enables the addition of

a new acquisition device within the OpenEPT GUI application. This window provides users with a compact

form to input connection parameters, specifically an IP address and port number, and then submit this data

to the main application for device initialization. Layout of AddDeviceWnd is illustrated on Figure 4.7

Figure 4.7 - Add Device Windows layout

Upon construction, the class initializes its UI elements using the AddDeviceWnd form definition,

sets a fixed window size, and adjusts the font size for consistency with application-wide settings. Two

interactive buttons are configured through Qt's signal-slot mechanism: one to close the window (closePusb)

and another to trigger the device addition process (addDevicePusb).

When the "Add Device" button is pressed, the widget reads the text fields for IP address and port

number, emits a signal sigAddDevice with those parameters, and closes the window. This signal is typically

connected to the part of the application responsible for managing device containers or communication links,

thereby allowing dynamic runtime device registration.

The window is designed to be lightweight and modal in function, encapsulated in its own QWidget

derived class to enable clean instantiation and destruction (delete ui in the destructor). This separation of

concerns makes it easy to maintain, reuse, and modify the interface logic as the application evolves.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

24

4.4.2. Console

BLOCK SUMMARY

Name Console Layer Windows

Version 1.03

Related files

Top source file
Source/Windows/Console/consolewnd.cpp
Top header file
Source/Windows/Console/consolewnd.h
Top UI file
Source/Windows/Console/consolewnd.ui

The ConsoleWnd class implements a terminal-style user interface within the OpenEPT GUI

application, enabling direct communication with the connected device via command-line input. This

component is especially useful for advanced users and developers who need fine-grained control or quick

access to low-level device functions without navigating through the graphical configuration modules.

Layout of ConsoleWnd is illustrated on Figure 4.8

Figure 4.8 – Console Window Layout

Upon initialization, the UI is configured through the ConsoleWnd form. Font settings are adjusted

for consistency, and signal-slot connections are established to handle user interactions. Specifically, the

widget listens for clicks on the "Send" button or the press of the Enter key within the command line edit,

both of which trigger the onSendControlMsgClicked slot.

A QCompleter is populated with a predefined list of supported device commands. This enhances

usability by providing auto-completion suggestions as the user types, making it easier to explore the

available command set and reducing the chance of input errors. The list includes various device

management, ADC/DAC configuration, power path control, and charger commands. Figure 4.9 illustrate

autocomplete option within a console window.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

25

Figure 4.9 - Console autocomplete option

Internally, the console maintains a history of previously entered commands in the entries list. This

history is navigable via the up and down arrow keys, with the logic implemented in the overridden

keyPressEvent method. This behavior mimics traditional shell consoles, improving usability for power users

who frequently reissue or tweak commands.

Messages exchanged with the device are logged using a logUtil utility. Responses are visually

differentiated based on execution success, with informational messages shown for successful commands

and error messages highlighted for failures. Incoming acknowledgment messages (e.g., "OK") are appended

directly to the display widget.

Finally, the class emits the sigControlMsgSend signal whenever a new command is issued. This

decouples the console from the device logic itself, allowing it to remain lightweight and focused solely on

interaction.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

26

4.4.3. Data Analyzer

BLOCK SUMMARY

Name Data Analyzer Layer Windows

Version 1.03

Related files

Top source file
Source/Windows/DataAnalyzer/dataanalyzer.cpp
Top header file
Source/Windows/DataAnalyzer/dataanalyzer.h
Top UI file
Source/Windows/DataAnalyzer/dataanalyzer.ui

The DataAnalyzer class in this implementation provides a flexible and interactive graphical

component for analyzing recorded consumption profile data, particularly voltage, current, and derived

consumption metrics. It is designed with usability and responsiveness in mind, integrating both user

interface elements and background processing through a worker thread. Data Analyzer window layout is

illustrated on Figure 4.10.

Figure 4.10 - Data Analyzer Window Layout

Upon instantiation, the constructor sets up the graphical layout, including a toolbar with controls for

selecting and reloading consumption profiles, and for initiating data analysis. It dynamically lists available

profiles by scanning the working directory for subfolders containing a marker file (OpenEPT.txt). These

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

27

profiles are shown in a drop-down combo box, which is automatically refreshed when the reload button is

pressed.

A unique feature of this class is its embedded QMainWindow, used solely to host dockable plotting

windows for voltage, current, and consumption signals. Each plot is encapsulated in a custom Plot widget,

with auto-scaling and descriptive axis labels. These plots can be rearranged and detached thanks to

QDockWidget support, providing a highly modular and customizable user experience.

When a user triggers data processing, a separate DataAnalyzerWorker object, executing in a

dedicated thread, is signalled to begin parsing data from CSV files corresponding to voltage/current (vc.csv),

consumption (cons.csv), and optionally energy points (ep.csv). This parallel processing ensures that the user

interface remains responsive even during heavy data loads.

Progress updates, including percentage complete and current processing stage, are communicated

back to the UI via Qt’s signal-slot mechanism. A modal progress dialog keeps users informed of the ongoing

task without blocking application interaction.

Parsed data is returned as structured vectors and passed to the plotting components for immediate

visualization. If the profile indicates that energy point data is available (based on metadata from

OpenEPT.txt), the analyzed will proceed to load this information and overlay relevant annotations on all

plots. This integration of consumption signal processing and energy event annotation gives the

DataAnalyzer module significant analytical depth.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

28

4.4.4. Device

BLOCK SUMMARY

Name Device Layer Windows

Version 1.03

Related files

Top source file
Source/Windows/Device/devicewnd.cpp
Top header file
Source/Windows/Device/devicewnd.h

Top UI file
Source/Windows/Device/devicewnd.ui

The DeviceWnd class serves as a central control panel, providing the user interface and backend

logic to configure, monitor, and manage a EPP. It is derived from QWidget and integrates a complex set of

functionalities related to hardware interaction, signal visualization, and user-driven control over various

parameters of the DAQ system. The widget handles user interactions through numerous buttons, combo

boxes, checkboxes, and radio buttons, all of which are connected to corresponding slots using Qt’s signal-

slot mechanism. Device Window’s layout is presented on Figure 4.11.

Figure 4.11 - Device Window Layout

During initialization, DeviceWnd constructs a wide variety of user interface components, including

drop-down menus for selecting ADC sources, resolutions, sampling times, clock dividers, and averaging

ratios. It also automatically detects active network interfaces using QNetworkInterface, populating a combo

box to allow users to choose which interface will be used for streaming data. Alongside basic configuration,

the window also instantiates and manages auxiliary subwindows such as AdvanceConfigurationWnd,

ConsoleWnd, CalibrationWnd, and DataStatistics, each of which offers specialized functionality, like

advanced ADC setup or real-time data analysis.

For visualization, DeviceWnd creates and embeds three Plot objects into the layout: one for voltage,

one for current, and one for consumption. These plots are dynamically updated during acquisition and

tailored according to the current measurement mode and data type (instantaneous or cumulative). They

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

29

provide both time-domain and frequency-domain representations, with additional support for marking key

events or error boundaries using named data points. These plots are allocated minimum dimensions and are

set to expand with the layout.

A significant part of the class is dedicated to managing stateful interactions with the hardware.

Depending on the selected ADC mode ("Int" for internal or "Ext" for external), various fields are enabled

or disabled, ensuring that the user is only allowed to modify parameters that are valid in the current mode.

When users adjust settings such as resolution, clock dividers, or sampling periods, the new values are

reflected not only in the GUI but also propagated to the AdvanceConfigurationWnd to ensure consistency

across modules.

The DeviceWnd class also provides support for real-time acquisition control. It implements slots for

handling actions like starting, pausing, stopping, and refreshing data acquisition. Each of these emits

corresponding signals (sigStartAcquisition, sigPauseAcquisition, etc.) that connect to the data handling and

device communication backend. Furthermore, it supports saving measurement results to disk. When this

mode is enabled via a checkbox, it allows the user to enter a consumption profile name.

The class plays a key role in real-time interaction with the Acquisition Device Unite (ADU)

hardware by managing various subsystems. It supports enabling/disabling hardware blocks like the load,

battery path, and power path, as well as setting voltage/current offsets and DAC control. The class can

update visual charging status (Charging, Discharging, Idle) in response to device feedback.

Internally, DeviceWnd maintains state variables like the current device state (connected,

disconnected, undefined), interface selection status, measurement and consumption types, and acquisition

mode. These internal states drive both GUI logic (e.g., disabling or enabling UI elements) and system

behavior (e.g., switching chart titles and units). The class includes robust handling of device connection and

disconnection, visually updating indicators in the GUI and resetting the state when needed.

To support debugging and control commands, DeviceWnd integrates a ConsoleWnd that allows users

to send raw commands and view device responses. Received messages are logged in the console and can

also be echoed to the main interface if needed. A calibration window is also embedded to allow users to

interact with device-specific calibration data, and the setCalibrationData method ensures synchronization

with the calibration engine.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

30

4.4.5. Data Statistics

BLOCK SUMMARY

Name Data Statistics Layer Windows

Version 1.03

Related files

Top source file
Source/Windows/Device/datastatistics.cpp
Top header file
Source/Windows/Device/datastatistics.h
Top UI file
Source/Windows/Device/datastatistics.ui

The DataStatistics class is a QWidget-derived component designed to present summary statistics for

key measurements, specifically voltage, current, and consumption data. It offers a compact and user-friendly

interface where users can view the average, minimum, and maximum values associated with each of these

signal types. This class plays a supporting role in the overall data analysis workflow by enabling real-time

insights into signal quality and measurement trends without needing to manually inspect the raw plots. Data

Statistics Window layout is presented on Figure 4.12.

Figure 4.12 - Data Statistics Window Layout

Upon initialization, the constructor sets up the interface using a predefined UI file

(ui_datastatistics.h) and customizes the font to ensure consistency across all widgets. It builds a vertical

layout that is anchored to the AverageData tab of a QTabWidget. Within this layout, the class creates

dedicated horizontal sub-layouts for voltage, current, and consumption statistics, each comprising labelled

fields for the average, maximum, and minimum values.

The voltage section is created first through the createVoltageInfoLayout method. It includes two

vertical layout branches: one for the average voltage value and another for the maximum and minimum

values. Each value is displayed in a read-only QLineEdit next to a descriptive QLabel, and spacing elements

are used to ensure clean alignment and visual separation between columns.

A similar approach is applied to current data via the createCurrentInfoLayout method. It replicates

the same structure but with labels and units specific to current (mA). Again, values are displayed using read-

only QLineEdit widgets to ensure the interface remains non-editable, reflecting its analytical, display-only

nature. This consistent layout design ensures that users can easily compare structure and values across signal

types without confusion.

The third and final data section is dedicated to consumption, created with

createConsumptionInfoLayout. Here, the fields are labelled with units in milliampere-hours (mAh),

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

31

reflecting the cumulative nature of the consumption signal. This section includes similar components—

QLabels, QLineEdits, and spacers, ensuring visual consistency with the voltage and current sections.

Between each major layout section, horizontal separator lines are added using QFrame widgets

configured with a sunken style. These lines visually segment the data blocks, improving readability and

organization. The lines are wrapped in QHBoxLayouts and inserted between sections in the main vertical

layout.

The class provides three public setter methods, setVoltageStatisticInfo, setCurrentStatisticInfo, and

setConsumptionStatisticInfo, to populate the fields with the calculated statistics. Each method takes average,

maximum, and minimum values as arguments and updates the corresponding line edit fields using formatted

floating-point strings with three decimal places of precision.

The layout is adjusted to a fixed size of 600x300 pixels to provide a compact but clear view of all

relevant information. Additional UI tweaks are made using Qt’s stylesheet system to remove unnecessary

background decorations from the tab widget and its pane.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

32

4.4.6. Calibration

BLOCK SUMMARY

Name Calibration Layer Windows

Version 1.03

Related files

Top source file
Source/Windows/Device/calibrationwnd.cpp
Top header file
Source/Windows/Device/calibrationwnd.h
Top UI file
Source/Windows/Device/calibrationwnd.ui

The CalibrationWnd class provide controls for configuring and updating calibration parameters used

in the ADU. This window provides the user with a convenient way to manually enter or revise correction

and gain values that are essential for accurate electrical measurements such as voltage, current, and

consumption. This windows layout is presented on Figure 4.13.

Figure 4.13 - Calibration Window Layout

When the window is shown via the showWnd method, it populates a set of editable fields with the

current values stored in a CalibrationData structure. These include: the ADC voltage reference, current

correction factor, current gain, current shunt resistance, voltage offset, voltage correction factor, and voltage-

to-current offset. This structure is passed to the class using the setCalibrationData method, which stores a

pointer to the externally managed CalibrationData instance, allowing the window to act directly upon the

live configuration data used elsewhere in the application.

Upon pressing the “Submit” button, the window reads the content of each input field and updates

the underlying CalibrationData structure with the new user-provided values. Once the updated values are

committed, the class emits a sigCalibrationDataUpdated signal, notifying any connected components (such

as data processors or configuration savers) that new calibration data is now in effect. This mechanism allows

for a decoupled and responsive integration of UI and backend logic.

These calibration parameters are directly consumed by the DataProcessing class, particularly within

the onNewSampleBufferReceived function, which is responsible for converting raw ADC data into real-

world physical quantities. For example, the adcVoltageRef is used to calculate the voltage increment per

ADC unit, while currentShunt and currentGain are involved in transforming raw current readings into

calibrated current values in milliamps. The voltageOff parameter compensates for static voltage offsets, and

voltageCurrOffset allows correction of voltage readings influenced by current flow.

The formula for calculating current reflects several layers of calibration logic. The raw ADC value

is scaled by a gain and shunt resistance, then adjusted with the current correction factor to account for known

deviations or hardware inaccuracies. This ensures that small mismatches in hardware (e.g., non-ideal resistor

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

33

values or amplifier gains) are corrected in software, yielding high-quality, consistent results regardless of

board-to-board variation. Equations (E.1) and (E.2) are used to calculate final voltage value.

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑐 = (
𝑉𝑟𝑒𝑓

2𝑅𝑒𝑠
)

(E.1)

𝐼 = (
𝑟𝑎𝑤𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ∙ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑐 − 𝑉𝑜𝑓𝑓𝑠𝑒𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑅𝑠ℎ𝑢𝑛𝑡 ∙ 𝐺𝑎𝑚𝑝
) ∙ 1000 ∙ 𝐾𝑐𝑢𝑟𝑟𝑒𝑛𝑡

(E.2)

Similarly, voltage data is compensated using a combination of offset and linear scaling based on the

supplied correction values. The calibrated voltage is then checked against minimum and maximum values

to support statistical analysis, which will later be reported or visualized. The processed values are stored in

circular buffers and used to derive instantaneous as well as cumulative statistics like average voltage, peak

current, and total energy consumption. Equations (E.3) and (E.4) are used to calculate final voltage value.

𝑣𝑜𝑙𝑡𝑎𝑔𝑒𝐼𝑛𝑐 = (
𝑉𝑟𝑒𝑓

2𝑅𝑒𝑠
) ∙ 𝐾𝑣𝑜𝑙𝑡𝑎𝑔𝑒

(E.3)

𝑉 = 𝑉𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑟𝑎𝑤𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∙ 𝑣𝑜𝑙𝑡𝑎𝑔𝑒𝐼𝑛𝑐

(E.4)

The calibration has a significant impact on downstream processing. For instance, the accuracy of

cumulative consumption measurements (expressed in mAh) depends on how precisely the current readings

are corrected and integrated over time. Inaccurate gain or shunt values would distort the integration result,

leading to underestimated or overestimated energy consumption. This is particularly critical in battery-

driven applications, where fine-grained consumption data is vital for energy management.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

34

5. BUILD AND RUN INSTRUCTIONS
To successfully build and run the OpenEPT application, the Qt development environment must be

installed and configured with the appropriate dependencies. The following steps guide you through the full

setup process.

Step 1: Download and install Qt and relevant packages

The Qt framework should be obtained from the official Qt website. Once the installer is downloaded

and executed, users will be prompted to complete the sign-up process. Following successful

registration, the installer will proceed to the component selection stage. For proper compilation and

execution of the GUI application, the following components must be selected:

Qt - Qt 5.15.2 - MSVC 2019-64bit

 - Qt Debug Information Files

 - Build Tools - Qt Creator <latest version>

 - Qt Creator <latest version> CDB Debugger Support

 - Debugging tools for Windows

 - Qt Creator <latest version> Debug Symbols

 - Qt Creator <latest version> Plugin Development

 - CMake 3.30.5

The Figure 5.1 illustrates the selected components that must be enabled before proceeding to the

next step in the installation process. These selections ensure that all necessary libraries and tools

required for building and running the GUI application are properly installed.

Figure 5.1 - Qt Installer Component Selector with selected components required for OpenEPT GUI application

If Qt has been successfully installed, the application named Qt Creator should be launchable

without issues. Upon starting Qt Creator, Welcome page will be displayed, which provides quick

https://www.qt.io/

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

35

access to recent projects, examples, tutorials, and version control options. This interface should

resemble what is shown in the corresponding Figure 5.2.

Figure 5.2 - Qt Creator Welcome Page

Step 2: Clone project from official GitHub account

There are two primary methods for downloading the project from the official GitHub repository. The

first method is using a dedicated Git console, such as Git Bash, which allows cloning the repository

directly via the command line. The second method involves navigating to the repository's GitHub

page and clicking the green Code button, then selecting the Download ZIP option. This will

download the project files as a compressed archive. The latter method is visually illustrated in the

corresponding Figure 5.3.

Figure 5.3 - Download project from official GitHub repository

2

1

https://github.com/OpenEPT/GUI
https://git-scm.com/downloads

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

36

Step 3: Import and configure project inside QtCreator

After successfully launching Qt Creator, the first step is to open the project. On the left-hand sidebar,

click on the Welcome tab (1) to access the start page. From there, click the Open Project button (2).

These two steps are presented on Figure 5.4.

After clicking the Open Project button, a file browser window will appear, allowing you to navigate

to the directory where the OpenEPT project was downloaded. Inside this directory, locate the main

project file with the .pro extension (Source/OpenEPT.pro). Selecting this file and confirming the

action will prompt Qt Creator to load the project. Open File dialog with selected project’s .pro file

is presented on Figure 5.5.

When the project is successfully loaded for the first time, Qt Creator will automatically open the

initial project configuration dialog. In this step, you are required to choose an appropriate build kit

and associated settings, which define how the project will be compiled and run. For the OpenEPT

project, it is essential to select the kit labelled "Qt 5.12.2 MSVC 2019 64-bit", as this version ensures

2

1

Figure 5.4 – Welcome page and Open project button

Figure 5.5 - Navigate to .pro file within Open File dialog

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

37

compatibility with the codebase and required libraries. Selecting the correct kit at this stage is critical

to avoid compilation errors and ensure stable application behavior. Once the correct kit is selected,

just as illustrated in Figure 5.6, click on Configure Project to proceed. This action finalizes the setup

and prepares the development environment for building and running the OpenEPT application.

Step 4: Build and Run the project

Once the project has been successfully loaded into Qt Creator, the next step involves selecting the

desired build configuration (1). At the bottom-left of the Qt Creator interface, users can choose

between Debug and Release modes. The Debug configuration is typically used during development

for troubleshooting and includes additional debugging symbols, while the Release configuration is

optimized for performance and is generally used for deployment.

Figure 5.7 - Select Build configuration, Build and Run

After selecting the desired build configuration (either Debug or Release), the next step is to compile

the project (2). This is achieved by clicking the Build button (represented by a hammer icon) located

in the lower-left corner of the Qt Creator interface, or by navigating through the top menu via Build

> Build Project. Qt Creator will then begin compiling all necessary project files according to the

selected configuration and the chosen development kit.

1

2

3

Figure 5.6 - Development Kit Selection Prompt Upon First Project Load

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

38

Once the build process completes successfully and without errors, the application can be launched

(3). If the Debug configuration is selected, the application should be started by clicking the Run

button that includes a small briefcase icon, which initiates a full debugging session. For a Release

configuration, the standard Run button (green play icon) next to the configuration selector should be

used, or alternatively via Build > Run from the menu.

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

39

LIST OF FIGURES
FIGURE 2.1 – ACQUISITION DEVICE’S FIRMWARE ... 5
FIGURE 2.2 - DEVICE CONTAINER'S ELEMENTS ... 5
FIGURE 3.1 - OPENEPT ORGANIZATION ON GITHUB AND GUI REPOSITORY ... 7
FIGURE 3.2 – OPENEPT SOURCE DIRECTORY STRUCTURE ... 8
FIGURE 4.1 - OVERVIEW OF THE OPENEPT GUI CLASSES THAT PROCESS AND VISUALIZE ENERGY POINTS 14
FIGURE 4.2 - SIGNALS INSIDE DATAPROCESSING CLASS .. 17
FIGURE 4.3 - PARSING STREAM MESSAGE INSIDE STREAM LINK .. 18
FIGURE 4.4 - EXECUTECOMMAND METHOD DEFINITION .. 20
FIGURE 4.5 - ONNEWCONNECTIONADDED SLOT DEFINITION .. 21
FIGURE 4.6 - INITIAL PROCESSING OF ENERGY DEBUGGING MESSAGES INSIDE EDLINK CLASS ... 22
FIGURE 4.7 - ADD DEVICE WINDOWS LAYOUT .. 23
FIGURE 4.8 – CONSOLE WINDOW LAYOUT .. 24
FIGURE 4.9 - CONSOLE AUTOCOMPLETE OPTION ... 25
FIGURE 4.10 - DATA ANALYZER WINDOW LAYOUT ... 26
FIGURE 4.11 - DEVICE WINDOW LAYOUT.. 28
FIGURE 4.12 - DATA STATISTICS WINDOW LAYOUT ... 30
FIGURE 4.13 - CALIBRATION WINDOW LAYOUT .. 32
FIGURE 5.1 - QT INSTALLER COMPONENT SELECTOR WITH SELECTED COMPONENTS REQUIRED FOR OPENEPT GUI APPLICATION

 ... 34
FIGURE 5.2 - QT CREATOR WELCOME PAGE ... 35
FIGURE 5.3 - DOWNLOAD PROJECT FROM OFFICIAL GITHUB REPOSITORY ... 35
FIGURE 5.4 – WELCOME PAGE AND OPEN PROJECT BUTTON .. 36
FIGURE 5.5 - NAVIGATE TO .PRO FILE WITHIN OPEN FILE DIALOG ... 36
FIGURE 5.6 - DEVELOPMENT KIT SELECTION PROMPT UPON FIRST PROJECT LOAD ... 37
FIGURE 5.7 - SELECT BUILD CONFIGURATION, BUILD AND RUN .. 37

 OPENEPT GRAPHICAL USER INTERFACE DEVELOPER GUIDE

40

REFERENCES
[1] OpenEPT, Energy Profiler Probe – Firmware Developer Guide, 2025

[2] Turkmanović, H.; Karličić, M.; Rajović, V.; Popović, I. High Performance Software Architectures for

Remote High-Speed Data Acquisition. Electronics 2023, 12, 4206.

[3] OpenEPT Organization Code Repository, GitHub.

https://www.mdpi.com/2079-9292/12/20/4206
https://www.mdpi.com/2079-9292/12/20/4206
https://github.com/OpenEPT/GUI

	1. Introduction
	2. Architecture
	3. Source Code Organization
	4. Classes
	4.1. Top Level
	4.1.1. Device
	4.1.2. Device container

	4.2. Processing
	4.2.1. File processing
	4.2.2. Energy Point processing
	4.2.3. Data processing

	4.3. Links
	4.3.1. Stream Link
	4.3.2. Control Link
	4.3.3. Status Link
	4.3.4. Energy Debugging Link

	4.4. Windows
	4.4.1. Add Device
	4.4.2. Console
	4.4.3. Data Analyzer
	4.4.4. Device
	4.4.5. Data Statistics
	4.4.6. Calibration

	5. Build and Run Instructions
	List of Figures
	References

