
Proof Theories and Algorithms for Abstract
Argumentation Frameworks

Sanjay Modgil, Martin Caminada

1 Introduction

Previous chapters have focussed on abstract argumentation frameworks and proper-
ties of sets of arguments defined under various extension-based semantics. The main
focus of this chapter is on more procedural, proof-theoretic and algorithmic aspects
of argumentation. In particular, Chapter 2 describes properties of extensions of a
Dung argumentation framework 〈A ,R〉 under various semantics. In this context a
number of questions naturally arise:

1. For a given semantics s, “global” questions concerning the existence and con-
struction of extensions can be addressed:

a. Does an extension exist?
b. Give an extension (it does not matter which, just give one)
c. Give all extensions.

2. For a given semantics s, “local” questions concerning the existence and construc-
tion of extensions, relative to a set A⊆A can be addressed. Note that it is often
the case that |A|= 1, in which case the member of A is called the query argument.

a. Is A contained in an extension ? (Credulous membership question.)
b. Is A contained in all extensions ? (Sceptical membership question.)
c. Is A attacked by an extension?
d. Is A attacked by all extensions?
e. Give an extension containing A.
f. Give all extensions containing A.

Sanjay Modgil
Department of Computer Science, King’s College London, e-mail: sanjay.modgil@kcl.ac.uk

Martin Caminada
Interdisciplinary Lab for Intelligent and Adaptive Systems, University of Luxembourg e-mail:
martin.caminada@uni.lu

1

2 Sanjay Modgil, Martin Caminada

g. Give an extension that attacks A.
h. Give all extensions that attack A.

In this chapter, procedures will be described for answering a selection of the
above questions with respect to finite argumentation frameworks 〈A ,R〉 (in which
A is finite). Notice that for some semantics, such as the grounded and preferred
semantics, extensions always exist, so that 1a will be answered in the positive for
any framework. Also, for the grounded semantics, at most one extension exists, so
that questions distinguished by reference to ‘an’ or ‘all’ extensions are equivalent
(e.g., questions 2a and 2b).

Sections 2 and 3 will introduce some key concepts underpinning the approaches
that we will use in the description of proof theories and algorithms. Sections 4 - 6
will focus on the core semantics defined by Dung [12]; namely grounded, preferred
and stable. In Sections 7 and 8 we then focus on the more recently defined semi-
stable [5, 6] and ideal semantics [13]1.

Broadly speaking, two approaches will be presented. Firstly, Section 2 formally
describes the argument graph labelling approach introduced in Chapter 2. This ap-
proach was originally proposed by Pollock [22], and has more recently been the
subject of renewed analysis and investigation [5, 6, 24, 26]. The basic idea is that
the status assignment to arguments defined by the framework’s extensional seman-
tics, can be directly defined through assignment of labels to the arguments (nodes)
in the framework’s corresponding argument graph. Section 2 provides formal un-
derpinnings for the definition of argument graph labelling algorithms that are used
to address a selection of the above questions in Sections 4 - 8.

Section 3 then describes a framework for argument game based proof theories
[8, 15, 17, 27]. The inherently dialectical nature of argumentation naturally lends
itself to the formulation of argument games in which a proponent starts with an
initial argument to be tested, and then an opponent and the proponent successively
attack each other’s arguments. The initial argument provably has a certain status if
the proponent has a winning strategy whereby he can win irrespective of the moves
made by the opponent. In Sections 4 - 8 we describe specific games, emphasising
the way in which the rules of each specific game correspond to the semantics they
are meant to capture.

2 Labellings

In this section the labelling approach (based on its formulation in [5, 6]) is briefly
reviewed. Given an argumentation framework AF = 〈A ,R〉, a labelling assigns

1 Recall that the grounded, preferred and stable extensions of a framework are also complete ex-
tensions. Note also that we address semi-stable and ideal semantics, because algorithms and proof
theories for these semantics can be concisely described as conservative extensions of techniques
for the core semantics, rather than because we assign pre-eminence to these semantics over other
recently defined semantics.

Proof Theories and Algorithms for Abstract Argumentation Frameworks 3

to each argument exactly one label, which can be either IN, OUT or UNDEC. The
label IN indicates that the argument is justified, OUT indicates that the argument is
overruled, and UNDEC indicates that the status of the argument is undecided.

Definition 1. Let 〈A ,R〉 be an argumentation framework.

• A labelling is a total function L : A 7→ {IN,OUT,UNDEC}
• We define: in(L) = {x|L (x) = IN}; out(L) = {x|L (x) = OUT}; undec(L)

= {x|L (x) = UNDEC}
Notice that from hereon, we may represent a labelling L as a triple of the form

(in(L), out(L), undec(L)).
We now define what it is for an argument to be assigned a legal labelling:

Definition 2. Let L be a labelling for 〈A ,R〉 and x ∈A

• x is legally IN iff x is labelled IN and every y that attacks x (yRx) is labelled
OUT

• x is legally OUT iff x is labelled OUT and there is at least one y that attacks x and
y is labelled IN

• x is legally UNDEC iff x is labelled UNDEC and not every y that attacks x is
labelled OUT, and there is no y that attacks x such that y is labelled IN

The rules defining legal labelling assignments encode one’s intuitive understand-
ing of the status assignments defined by the extension-based semantics and their use
of the reinstatement principle, as described in Chapter 2. An argument x is IN only
if all its attackers are OUT, and each attacker is OUT only if it is itself attacked by a
reinstating argument that is IN. Thus, the arguments that are IN in a legal labelling
correspond to a single extension. It is sometimes not possible to obtain a labelling
where each argument is either legally IN or legally OUT; consider for example an
argumentation framework with just a single argument that attacks itself. This is why
we need a third label UNDEC, which basically means that there is insufficient ground
to explicitly justify the argument and insufficient ground to explicitly overrule the
argument. Notice that from Definition 2 it follows that x is legally UNDEC iff it is la-
belled UNDEC, and at least one y that attacks x is labelled UNDEC, and no y attacking
x is labelled IN.

Definition 3. For l ∈ {IN,OUT,UNDEC} an argument x is said to be illegally l iff
x is labelled l, and it is not legally l.

• An admissible labelling L is a labelling without arguments that are illegally IN
and without arguments that are illegally OUT.

• A complete labelling L is an admissible labelling without arguments that are
illegally UNDEC

Notice that the additional requirement on complete labellings corresponds intu-
itively to Chapter 2’s characterisation of a complete extension as a fixed point of a
framework AF’s characteristic function FAF . Since the grounded and preferred ex-
tensions of a framework are the minimal, respectively maximal, fixed points (com-
plete extensions) of a framework, then as one would expect, grounded and preferred

4 Sanjay Modgil, Martin Caminada

labellings are given by complete labellings that minimise, respectively maximise,
the arguments that are made legally IN. A stable labelling is a complete labelling in
which all arguments are either legally IN or legally OUT, and hence no argument is
UNDEC.

Definition 4. Let L be a complete labelling. Then:

• L is a grounded labelling iff there there does not exist a complete labelling L ′
such that in(L ′) ⊂ in(L) 2

• L is a preferred labelling iff there there does not exist a complete labelling L ′
such that in(L ′) ⊃ in(L)

• L is a stable labelling iff undec(L) = /0

In [6], the following theorem is shown to hold:

Theorem 1. Let AF = 〈A ,R〉 be an argumentation framework, and E ⊆ A . For
s ∈ {admissible, complete, grounded, preferred, stable}:

E is an s extension of AF iff there exists an s labelling L with in(L) = E 3

In Sections 4 - 7 we will describe algorithms that compute labellings and so
address a subset of the questions enumerated in Section 1. We conclude this section
with an example:

Example 1. Consider the framework in Figure 1. We enumerate the labellings which
we represent as triples of the form (in(L), out(L), undec(L)). There exists
three complete labellings: 1. (/0, /0, {a,b,c,d,e}); 2. ({a}, {b}, {c,d,e}); and 3.
({b,d}, {a,c,e}, /0). 1 is the grounded labelling, 2 and 3 are preferred, and 3 is also
stable.

a b c

d

e

Fig. 1 An argumentation framework

2 Since one can guarantee a unique minimal fixed point for any framework, one could alternatively
define L to be a grounded labelling iff for each complete labelling L ′ it holds that in(L) ⊂
in(L ′)
3 Note that for s 6= admissible there is a 1-1 mapping between s extensions and s labellings. An
admissible extension may have more than one admissible labelling. For example, the admissible
extension {c}, of c→ b→ a, has two admissible labellings: ({c},{b},{a}) and ({c},{b,a}, /0).

Proof Theories and Algorithms for Abstract Argumentation Frameworks 5

3 Argument Games

In general, proof theories license the way in which pieces of information can be
articulated in order to prove a fact. They therefore provide a basis for algorithm de-
velopment, and proofs constructed according to these theories provide explanations
as to why a given fact is believed to be true. For example, a proof that argument x is
in an admissible extension, would consist of showing how one can establish the exis-
tence of such an extension, rather than simply identifying the extension. Intuitively,
one would need to show how to defend x by showing that for every argument y that
is put forward (moved) as an attacker of x, one must move an argument z that attacks
y, and then subsequently show how any such z can be reinstated against attacks (in
the same way that z reinstates x). The arguments moved can thus be organised into
a graph of attacking arguments that constitutes an explanation as to why x is in an
admissible extension.

The process of moving arguments and counter-arguments can be implemented as
an algorithm [26]. In this chapter we follow the approach of [8, 13, 15, 17, 25, 27]
and present the moving of arguments as 2-person dialogue games that provide a
natural way in which to lay out and understand the algorithms that implement them.
To be sure, the actual algorithms themselves, should, except for didactic purposes,
not be implemented as dialogue games, but rather as monological procedures (or
methods in OO-languages) that are called recursively.

A dialogue game is played by two players, PRO (for “proponent”) and OPP (for
“opponent”), each of which are referred to as the other’s ‘counterpart’. A game
begins with PRO moving an initial argument x that it wants to put to the test. OPP
and PRO then take turns in moving arguments that attack their counterpart’s last
move. From hereon:

a sequence of moves in which each player moves against its counterpart’s last
move is referred to as a dispute.

If the last move in a dispute is by player Pl, and Pl’s counterpart cannot respond
to this last move, then Pl is said to win the dispute. If a dispute with initial argument
x is won by PRO, we call the dispute a line of defense for x.

The rules of the game encode restrictions on the legality of moves in a dispute,
and different sets of rules capture the different semantics under which justification of
the initial argument x is to be shown, by effectively establishing when OPP or PRO
run out of legal moves. In general, however, a player can backtrack to a counterpart’s
previous move and initiate a new dispute. Consider the dispute aPRO−bOPP−cPRO−
dOPP− ePRO− fOPP won by OPP (xPl − yPl′ denotes player Pl′ moving argument y
against counterpart Pl’s argument x). PRO must then try and backtrack to move an
argument against either bOPP or dOPP and establish an alternative line of defense
for a. Suppose such a line of defense aPRO−bOPP−gPRO. Then OPP can backtrack
and try an alternative line of attack moving h against a, so that PRO must now try
and win the newly initiated dispute aPRO−hOPP. Thus, the ‘playing field’ of a game
— the data structure on the basis of which argument games are played — can be

6 Sanjay Modgil, Martin Caminada

represented by an argumentation framework’s induced dispute tree, in which every
branch from root to leaf is a dispute:

cab

i)

a1

b2

a3

b4 c5

a6

c7

a8

c9 b10

a11

PRO

OPP

PRO

OPP

PRO

a1

b2

a3

c5

a6

c7

a8

b10

a11

ii) iii)

Fig. 2 i) shows an argumentation framework, and ii) shows the dispute tree induced in a. iii) shows
the dispute tree induced under the assumption that OPP cannot repeat moves in the same dispute
(branch of the tree)

Definition 5. Let AF = 〈A ,R〉 be an argumentation framework, and let a∈A . The
dispute tree induced by a in AF is a tree T of arguments, such that T ’s root node is
a, and ∀x,y ∈A : x is a child of y in T iff xRy.

Figure 2i) shows an argumentation framework, and part of the tree induced by a
is shown in Figure 2ii). Notice that multiple instances of arguments are individuated
by numerical indicies. Any game played by PRO and OPP in which PRO attempts to
show that a is justified, must necessarily involve the submission of attacking argu-
ments conforming to some sub-tree of the induced tree in Figure 2ii). In particular,
PRO must show that it fully fulfills its burden of proof, in response to OPP who
fully fulfills its burden of attack. In other words, OPP moves all ys that attack an x
moved by PRO, and each such y must in turn be responded to by PRO moving at
least one x′ that attacks y. This does of course capture the reinstatement principle
used to define the extensions of an argumentation framework, and correlates with
Section 2’s definition of legal labellings and the extensions they define4. In the con-
text of a game, this is captured by the notion of a winning strategy for an argument.
Notice that in the following definition we refer to the notion of a sub-dispute d′ of a
dispute d, which, intuitively is any sub-sequence of d that starts with the same initial
argument as d.

Definition 6. Let AF = 〈A ,R〉, T the dispute tree induced by a in AF , and T ′ a
sub-tree of T . Then T ′ is a winning strategy for a iff:

1. The set DT ′ of disputes in T ′ is a non-empty finite set such that each dispute
d ∈ DT ′ is finite and is won by PRO (terminates in an argument moved by PRO)

4 Recall that x is legally IN iff all ys that attack an x are legally OUT, and each such y is legally
OUT iff there is at least one x′ attacking y that is legally IN

Proof Theories and Algorithms for Abstract Argumentation Frameworks 7

2. ∀d ∈ DT ′ , ∀d′ such that d′ is some sub-dispute of d and the last move in d′ is
an argument x played by PRO, then for any y such that yRx, there is a d′′ ∈ DT ′
such that d′− yOPP is a sub-dispute of d′′.

If PRO plays moves as described in a winning strategy sub-tree, then PRO is
guaranteed to win.

As stated earlier, the rules of a game encode restrictions on the arguments a
player can legally move in a dispute in order to attack its counterpart’s argument.
These restrictions vary according to the semantics of interest, and are encoded in a
legal move function:

Definition 7. Let AF = 〈A ,R〉, T the dispute tree induced by a in AF . Let DT be
the set of all disputes in T . Then φ is a legal move function such that φ : DT 7→ 2A .

Given a dispute tree T induced by a, the legal move function φ for a semantics
s, prunes T to obtain the sub-tree T ′ of T that we call the φ tree induced by a. T ′ is
the playing field of the game for semantics s. Thus, we define a φ -winning strategy
for a [8, 17] as a sub-tree of the φ dispute tree induced by a, in the same way as
Definition 6, except that we replace ‘for any x such that xRy’ in condition 2, with
‘for any x that OPP can φ legally move against y’. Intuitively, φ is defined such
that a is in an admissible extension that conforms to the semantics s iff there is a
φ -winning strategy for a in the φ tree induced by a, where the arguments moved by
PRO in the φ -winning strategy are conflict free (recall that an admissible extension
must contain no arguments that attack each other).

For example, consider games whose legal move function φ prohibits OPP from
repeating arguments in the same dispute. Figure 2iii) shows the φ -dispute tree that
is a sub-tree of the dispute tree induced by a (Figure 2ii). After PRO plays a6, OPP
cannot backtrack and extend the dispute d = a1− b2− a3 by moving b against a3,
since b has already been moved by OPP in d. Similarly, OPP cannot backtrack to
move c against a8 in order to extend d′ = a1− c7− a8. Note also that both DT1 =
{d1 = a1−b2−a3−c5−a6} and DT2 = {d2 = a1−c7−a8−b10−a11} are winning
strategies. In the former case, consider the sub-dispute d′1 = a1−b2−a3 of d1. OPP
can legally move c against a3, but there is a dispute in DT1 that extends d′1 (d1 itself)
in which PRO moves against OPP’s move of c.

To summarise, suppose PRO wishes to show that x is a member of an extension
E under the semantics s. The associated legal move function φ for s defines some
φ -dispute tree T that is a sub-tree of the dispute tree induced by x, and defines all
possible disputes the players can play in a game. The φ -dispute tree T should be
such that: x ∈ E iff there is a φ -winning strategy T ′ in T , such that the arguments
moved by PRO in T ′ do not attack each other (are conflict free). A φ -winning strat-
egy is a set of disputes won by PRO in which PRO has fulfilled its burden of proof
by countering all possible φ -legal moves of OPP.

8 Sanjay Modgil, Martin Caminada

4 Grounded Semantics

For any argumentation framework, there is guaranteed to be exactly one grounded
extension. Hence, questions 1b, 1c, 2c, 2d, 2e, 2f, 2g and 2h can all be addressed
by construction of a framework’s grounded extension. In Section 4.1 we present
an algorithm that generates the grounded labelling of an argumentation framework.
Section 4.2 then describes an argument game for deciding whether a given argument
is in the grounded extension, thus addressing the equivalent questions 2a and 2b.

The grounded semantics places the highest burden of proof on membership of
the extension that it defines. This equates with Chapter 2’s definition of the exten-
sion as the least fixed point of a framework AF’s characteristic function FAF (i.e.,
the smallest admissible E that contains exactly those arguments that are acceptable
w.r.t. E). The extra burden of proof is intuitively captured by the fact that in de-
fending x’s membership of the grounded extension E, one must ‘appeal to’ some
argument other than x itself. That is to say, for any y such that y attacks x, y is
attacked by at least one z1 ∈ E such that z1 6= x, and in turn, z1 must be reinstated
against any attack, by some z2 ∈ E such that z2 6= x, z2 6= z1, and so on. This property
is exploited by both the algorithm for generating the grounded labelling, and argu-
ment games for the grounded semantics. The property is relatively straightforward
to show given Chapter 2’s description of how, starting with the empty set, iteration
of the characteristic function yields the grounded extension. We have that x ∈F i

AF
iff for every attack on x, x is reinstated by some z ∈F j

AF , where z 6= x and j < i.

4.1 A labelling algorithm for the Grounded Semantics

An algorithm for generating the grounded labelling starts by assigning IN to all ar-
guments that are not attacked, and then iteratively: OUT is assigned to any argument
that is attacked by an argument that has just been made IN, and then IN to those
arguments all of whose attackers are OUT. Thus, the arguments assigned IN on each
iteration, are those that are reinstated by the arguments assigned IN on the previ-
ous iteration. The iteration continues until no more new arguments are made IN
or OUT. Any arguments that remain unlabelled are then assigned UNDEC. One can
straightforwardly show that the algorithm is sound and complete since it effectively
mimics construction of the grounded extension through iteration of a framework’s
characteristic function. The algorithm for generating the grounded labelling LG of
a framework 〈A ,R〉 is presented more formally below, in which we use Section 2’s
representation of a labelling L as a triple (in(L), out(L), undec(L)).

Algorithm Algorithm for Grounded Labelling
1. L0 = (/0, /0, /0)
2. repeat
3. in(Li+1) = in(Li) ∪ {x | x is not labelled in Li, and ∀y : if yRx then y ∈

out(Li) }

Proof Theories and Algorithms for Abstract Argumentation Frameworks 9

4. out(Li+1) = out(Li) ∪ {x | x is not labelled in Li, and ∃y : yRx and y ∈
in(Li+1) }

5. until Li+1 = Li
6. LG = (in(Li), out(Li), A− (in(Li) ∪ out(Li))

Consider the following example framework:

a→ b→ c , d À e

L1 = ({a},{b}, /0), L2 = ({a,c},{b}, /0), L3 = L2 and so LG = ({a,c},{b},{d,e}).

Finally, notice that the algorithm presented here can be made more efficient in a
number of ways. For example, when assigning IN to arguments in line 3, checking
whether all attackers are OUT can be made more efficient by giving each argument
a counter attackers-out that represents the number of attackers that are la-
belled OUT. Since all arguments are initially unlabelled, this counter is set to zero
before the actual labelling begins. Every time that an argument is labelled OUT,
it sends a message to each of the arguments that it attacks to increase its variable
attackers-out. Evidently, if this variable equals the number of attackers, the
attacked argument can be labelled IN.

4.2 Argument games for the Grounded Semantics

4.2.1 The Basic Game

We have discussed how, in defending an argument x’s membership of the grounded
extension, one must not loop back to x itself, and how the same restriction applies
to any argument moved in x’s line of defence. Intuitively, this is captured by a le-
gal move function φG1 that prohibits PRO from repeating arguments it has already
moved in a dispute.

Definition 8. Given 〈A ,R〉, a dispute d such that x is the last argument in d, and
PRO(d) the arguments moved by PRO in d, then φG1 is a legal move function such
that:

• If d is of odd length (next move is by OPP) then φG1(d) = {y | yRx }
• If d is of even length (next move is by PRO) then:

φG1(d) = {y |
1. yRx
2. y /∈ PRO(d)

}
Theorem 2. Let AF = 〈A ,R〉 be a finite argumentation framework. Then, there
exists a φG1-winning strategy T for x such that the set PRO(T) of arguments moved
by PRO in T is conflict free, iff x is in the grounded extension of AF.

10 Sanjay Modgil, Martin Caminada

One can give an intuitive proof of the above by appealing to the correspondence
between the grounded extension and grounded labelling of an argumentation frame-
work (see Theorem 1). That is to say, by showing that:

1. Let T be a φG1-winning strategy for x such that PRO(T) is conflict free.
Then there is a grounded labelling L with L (x) = IN.

2. Let L be a labelling with L (x) = IN. Then there exists a φG1-winning
strategy for x such that PRO(T) is conflict free.

Proof sketch:

1. ..

2. ..

dc

e

i)

a1

c3

d4

e6 c5

d7

d8

c10

d11

PRO

OPP

PRO

OPP

PRO

ii) iii)

b

a
b2

OPP

e9

a1

c3

d4

e6

d8

c10

b2

e9

iv)

abd c e

Fig. 3 i) shows an argumentation framework and ii) shows the dispute tree induced in a. iii) shows
the φG1 -dispute tree induced by a and the φG1 winning strategy encircled. The φG1 winning strategy
for a, in the framework in iv), consists of two disputes.

Consider the example framework in Figure 3i). Part of the dispute tree induced by
a is shown in Figure 3ii), and the φG1 dispute tree induced by a is shown in Figure
3iii). Observe that {(a1− b2− c3− d4− e6)} is a φG1-winning strategy for a (a is
in the grounded extension {a,c,e}). Finally, consider the example framework in

Proof Theories and Algorithms for Abstract Argumentation Frameworks 11

Figure 3iv). In this case the φG1-winning strategy for a consists of two disputes:
{(aPRO−bOPP−dPRO),(aPRO− cOPP− ePRO)}

4.2.2 More efficient games

Some gain in efficiency can be obtained by a legal move function φG2 that addition-
ally prohibits PRO from moving a y that is itself attacked by the x that PRO moves
against (i.e., augmenting 1 and 2 in Definition 8 with ¬(xRy)). This is because if
PRO moves such a y against x, then OPP can simply repeat x and move against y,
and then PRO will be prevented from repeating y. The φG2 game is instantiated by
Prakken and Sartor for their argument-based system of prioritized extended logic
programming [23]. Amgoud and Cayrol [1] do the same for their argument based
system for inconsistency handling in propositional logic. The following soundness
and completeness result:

Let AF = 〈A ,R〉 be a finite argumentation framework. Then, there exists a
φG2-winning strategy T for x such that the set PRO(T) of arguments moved
by PRO in T is conflict free, iff x is in the grounded extension of AF

can be proved as a straightforward generalisation of proofs for the specific systems
in [23, 1]. Such a generalised proof can be found in [4].

Since the arguments moved by PRO in a winning strategy are required to be con-
flict free, it is obvious to see that shorter proofs may also be obtained by preventing
PRO from moving arguments in a dispute d that attack themselves or attack or are
attacked by arguments that PRO has already moved in d.

Definition 9. Let POSS(d) = {y | ¬(yRy) and ∀z ∈ PRO(d), ¬(zRy) and ¬(yRz)}.

One can then further restrict PRO’s moves in Definition 8, by adding the condition
that y ∈ POSS(d), thus obtaining the legal move function φG3 .

Finally, further gains in efficiency can be obtained by noticing that if T is a
φG1 , φG2 or φG3 winning strategy, then PRO(T) is conflict free. Thus, one need
not instigate the conflict free check on winning strategies suggested by the above
soundness and completeness results. To see why, notice that φG1 , φG2 and φG3 make
no restrictions on moves by OPP, and we can show that:

Let T be a φ winning strategy such that φ makes no restrictions on moves by
OPP. Then PRO(T) is conflict free.

The above follows from the fact that: if PRO(T) is not conflict free (xPRO and
yPRO are moves in T where yRx), then there must be an infinite dispute in T , con-
tradicting T being a φ winning strategy. We sketch a proof by induction on the
disputes DT = {d1, . . . ,dn} in T :

Base case: Suppose DT = {d}, where d = . . .xPRO . . .yPRO, and yRx. Since T is

12 Sanjay Modgil, Martin Caminada

φ winning, and there are no restrictions on OPP, then xPRO must have a reply
yOPP which in turn must have a reply x′PRO (where x′Ry), and so yPRO is replied
to by x′OPP, which in turn has a reply y′PRO. We thus have d = . . .xPRO − yOPP −
x′PRO . . .yPRO−x′OPP−y′PRO. We have shown that if d = . . .xPRO . . .yPRO, where yRx,
then xPRO has a child x′PRO and yPRO has a child y′PRO such that y′Rx′, contradicting
the finiteness of d.
Suppose DT = {d1, . . . ,dn}, and by inductive hypothesis PRO({d1, . . . ,dn−1}) is
conflict free.
General case: dn = . . .yPRO . . . and some dispute in DT contains xPRO, where yRx.
Since T is φ winning, and there are no restrictions on OPP, then:

∃d j ∈ DT , d j = . . .xPRO− yOPP− x′PRO . . . (where x′Ry).
Hence, dn = . . .yPRO . . . must be extended by x′OPP in some dispute in DT .
Suppose j = n. Then dn = . . .xPRO− yOPP− x′PRO . . .yPRO− x′OPP− y′PRO . . ., or dn =
. . .yPRO− x′OPP− y′PRO . . .xPRO− yOPP− x′PRO . . ., where y′Rx′.
Suppose j 6= n. Then dn = . . .yPRO− x′OPP− y′PRO . . . since dn = . . .yPRO . . . cannot
be extended by x′OPP in some dispute in PRO({d1, . . . ,dn−1}) since we would then
have yPRO and xPRO in PRO({d1, . . . ,dn−1}) contradicting the inductive hypothesis.
We have thus shown that if in DT there is a dispute d with yPRO and d′ with xPRO
where yRx, then yPRO has a child y′PRO in d, and xPRO a child x′PRO in d′ such that
y′Rx′, contradicting the finiteness of d and d′.
Now notice that the same reasoning used in the above proof can be applied to show
the base and general cases where xRy rather than yRx.

5 Preferred Semantics

For any argumentation framework, existence of a preferred extension is guaranteed,
and there can be more than one preferred extension. Hence, the decision questions
2a (credulous membership) and 2b (sceptical membership) are distinct. In Section
5.2 we describe argument games for addressing the credulous membership ques-
tion. Section 5.3 then describes argument games for addressing the more difficult
sceptical membership question. Solution-orientated questions 2c - 2h require proce-
dures for identifying one or all preferred extensions. Such questions become rele-
vant when end-users would like to be informed about the reasons as to how and why
an argument is justified or overruled, and can be addressed by labelling algorithms
that compute one or all preferred labellings. We describe labelling algorithms in the
following section.

Proof Theories and Algorithms for Abstract Argumentation Frameworks 13

5.1 A Labelling Algorithm for the Preferred Semantics

In this Section we review Caminada’s work on labelling algorithms [6]. Theorem
1 in Section 2 establishes an equivalence between an argumentation framework’s
preferred extensions and the framework’s preferred labellings. In [5] it is shown
that:

L is a preferred labelling iff L is an admissible labelling such that for no ad-
missible labelling L ′ is it the case that in(L ′)⊃ in(L). (R1)

Hence, a framework’s preferred extensions can be identified by algorithms that
compute admissible labellings that maximise the number of arguments that are
legally IN. In [6], admissible labellings are generated by starting with a labelling
that labels all arguments IN and then iteratively, selects arguments that are illegally
IN and applies a transition step to obtain a new labelling, until a labelling is reached
in which no argument is illegally IN.

Definition 10. Let L be a labelling for 〈A ,R〉 and x an argument that is illegally
IN in L . A transition step on x in L consists of the following:

1. the label of x is changed from IN to OUT
2. for every y ∈ {x}∪{z|xRz}, if y is illegally OUT, then the label of y is changed

from OUT to UNDEC (i.e., any argument made illegally OUT by 1 is changed to
UNDEC)

In what follows, we assume a function transition step that takes as input x and L ,
and applies the above operations to yield a labelling L ′. We then define a transition
sequence as follows:

A transition sequence is a list [L0, x1, L1, x2, . . ., xn, Ln] (n ≥ 0), where for i =
1 . . .n, xi is illegally IN in Li−1, and Li = transition step(Li−1, xi).
A transition sequence is said to be terminated iff Ln does not contain any argument
that is illegally IN.

Let us examine a transition sequence that starts with the initial labelling L0 in
which all arguments are labelled IN (from hereon any such labelling is referred
to as an ‘all-in’ labelling and we assume that any initial labelling L0 is an all-in
labelling). Any labelling containing an argument x that is illegally IN cannot be a
candidate admissible labelling (since not all of x’s attackers are OUT and so x is not
reinstated against all attackers), and so must be relabelled OUT. One might expect
that the second part of the transition step relabels to IN, those arguments that are
made illegally OUT by the first step. However this may not only result in a loop,
but would also ‘overcommit’ arguments to membership of an admissible labelling
(and so extension); just because an argument may be acceptable w.r.t. an admissible
extension E does not mean that it must be in E.

For finite frameworks it can be shown that:

For any terminated transition sequence [L0, x1, L1, x2, . . ., xn, Ln], it holds
that Ln is an admissible labelling. (R2)

14 Sanjay Modgil, Martin Caminada

To see why, observe that L0 contains no arguments that are illegally OUT, and it
is straightforward to show that a transition step preserves the absence of arguments
that are illegally OUT. Hence, since the terminated sequence contains no arguments
that are illegally IN, then by Definition 3, Ln is admissible.

In [6], it is also shown that:

For any preferred labelling L , it holds that there exists a terminated transition
sequence [L0, x1, L1, x2, . . ., xn, Ln], where Ln = L . (R3)

The above results R1, R2 and R3, imply that terminated transition sequences whose
final labellings maximise the arguments labelled IN are exactly the preferred la-
bellings. Before presenting the algorithm for generating such sequences, let us con-
sider how admissible labellings are generated for the argumentation framework in
Figure 4i). Starting with the initial all-in labelling L0 = ({a,b,c}, /0, /0), then select-
ing a on which to perform a transition step obtains L1 = ({b,c},{a}, /0). Now only c
is illegally IN, and relabelling it to OUT results in a being illegally OUT, and so L2
= ({b},{c},{a}). Now b is illegally IN, and relabelling b to OUT results in both b
and c being illegally OUT, so that they are both labelled UNDEC. Thus, the transition
sequence terminates with the labelling L3 = (/0, /0,{a,b,c}) in which all arguments
are UNDEC. It is easy to verify that irrespective of whether a, b or c is selected on
the first transition step, every terminated transition sequence will result in L3.

Consider now the framework in Figure 4ii). Starting with the initial all-in la-
belling L0 = ({a,b,c}, /0, /0), we observe that B and C are illegally IN:

1. Selecting b for the first transition step obtains the terminated sequence [L0, b,
L1 = ({a,c},{b}, /0)]. L1 is an admissible and complete labelling, yielding the
admissible and complete extension {a,c}.

2. Selecting c for the first transition step obtains the terminated sequence [L0, c,
L1 = ({a,b},{c}, /0), b, L2 = ({a},{b},{c})], yielding the admissible extension
{a}

a b

ii)

ca

b

c

i)

Fig. 4 Two argumentation frameworks

Notice that in the second sequence, the label of c is changed from OUT to UNDEC
since c is made illegally OUT by the second transition step’s assignment of OUT
to the illegally IN b. L2 is an admissible but not complete labelling, since c is

Proof Theories and Algorithms for Abstract Argumentation Frameworks 15

illegally UNDEC. To help avoid non-complete labellings, one can guide the choice
of arguments on which to perform transition steps: choose an argument that is super-
illegally IN, if such an argument is available.

Definition 11. An argument x in L that is illegally IN, is also super-illegally IN iff
it is attacked by a y that is legally IN in L , or UNDEC in L .

Thus, b would preferentially be selected according to the above strategy, since b
and not c is super-illegally IN in ({a,b,c}, /0, /0). As shown in [6], both the results
R2 and R3 are preserved under such a strategy.

We now describe the algorithm for generating preferred labellings listed below.
The main procedure find labellings starts with the all-in labelling, and then
iteratively applies transitions steps in an attempt to generate terminated transition
sequences that update the global variable candidate-labellings. The algo-
rithm preferentially selects from amongst super-illegal arguments for performing
transition steps, if such arguments are available. If at any stage in the generation of
a transition sequence, the arguments that are IN in the labelling Li thus far obtained,
are a strict subset of in(L ′) for some L ′ ∈ candidate-labellings, then no
further transition steps on Li can result in a preferred labelling (that maximises the
arguments that are IN). This follows from the result that during the course of a tran-
sition sequence, the set of IN labelled arguments monotonically decreases (as shown
in [6]). Thus, any further transition steps on Li will only reduce the arguments that
are IN. In such cases, the algorithm backtracks to Li−1 and, if possible, selects an-
other argument on which to perform a transition step. In the case that a transition
sequence terminates, the obtained labelling L is compared with all labellings L ′
in candidate-labellings. If for any L ′, in(L ′) is a strict subset of in(L),
then L ′ is removed from candidate-labellings. Thus, given a finite argu-
mentation framework 〈A ,R〉, the algorithm calculates the preferred labellings and
so preferred extensions.

16 Sanjay Modgil, Martin Caminada

Algorithm Algorithm for Preferred Labellings
1. candidate-labellings := /0;
2. find labellings(all-in);
3. print candidate-labellings;
4. end.
5. .
6. .
7. procedure find labellings(L)
8. .
9. # if L is worse than an existing candidate labelling then prune the search tree
10. # and backtrack to select another argument for performing a transition step
11. if ∃L ′ ∈ candidate-labellings: in(L) ⊂ in(L ′) then return;
12. .
13. # if the transition sequence has terminated
14. if L does not have an argument that is illegally IN then;
15. for each L ′ ∈ candidate-labellings;
16. # if L ′’s IN arguments are a strict subset of L ’s IN arguments
17. # then remove L ′
18. if in(L ′) ⊂ in(L);
19. then candidate-labellings :=
20. candidate-labellings − {L ′};
21. endif
22. endfor
23. # add L as a new candidate
24. candidate-labellings := candidate-labellings∪ {L };
25. return; # we are done, so try the next possibility
26. else
27. if L has an argument that is super-illegally IN
28. then
29. x := some argument that is super-illegally IN in L ;
30. find labellings(transition step(L , x));
31. else
32. for each x that is illegally IN in L
33. find labellings(transition step(L , x));
34. endfor
35. endif
36. endif
37. endproc

Proof Theories and Algorithms for Abstract Argumentation Frameworks 17

5.2 Argument Games for the Credulous Preferred Semantics

5.2.1 The Basic Game

Since the admissible extensions of a framework form a complete partial order with
respect to set inclusion (and so every admissible extension is a subset of a preferred
extension), then for argument games addressing the credulous membership question,
it suffices to show an admissible extension containing the argument in question. In
contrast with the grounded semantics, x’s membership of an admissible extension
E can now ‘appeal to’ x itself, in the sense that in defending x’s membership of E,
and membership of all subsequent defenders, one can loop back to x itself. This then
means, that to prevent infinite disputes, it is now OPP, rather than PRO, that should
not be allowed to repeat an argument y it has already moved in a dispute, since y can
then be attacked by PRO repeating the argument it moved against OPP’s first move
of y.

Consider the framework in Figure 5i), and the dispute tree induced in a in Figure
5ii). In both disputes (branches) PRO is allowed to repeat its arguments (c5 and d9).
OPP repeats its arguments, and the disputes continue with PRO repeatedly fulfilling
its burden of proof w.r.t. c (d). It is of course sufficient that PRO fulfill its burden of
proof only once. Hence, as well as preventing PRO from introducing a conflict into a
dispute, the following legal move function prohibits OPP from repeating arguments.

dc

i)

a1

c3

d4

c5

d6

d7

c8

d9

b2

c10

PRO

OPP

PRO

OPP

PRO

ii) iii)

a1

c3

d4

c5

d7

c8

d9

b2

b

a

OPP

iv)

a1

c3 d7

b2

Fig. 5 i) shows an argumentation framework and ii) shows the dispute tree induced in a. iii) and
iv) respectively shows the φPC1 and φPC2 dispute trees induced by a.

Definition 12. Given 〈A ,R〉, a dispute d such that x is the last argument in d, and
OPP(d) the arguments moved by OPP in d, then φPC1 is a legal move function such
that:

• If d is of odd length (next move is by OPP) then:

18 Sanjay Modgil, Martin Caminada

φPC1(d) = {y |
1. yRx
2. y /∈ OPP(d)

}
• If d is of even length (next move is by PRO) then:

φPC1(d) = {y |
1. yRx
2. y ∈ POSS(d)

}
Notice that φPC1 mirrors Section 4.2’s grounded game function φG3 (that aug-

ments φG1 to restrict PRO to moving arguments in POSS(d)). They differ only in
that φPC1 prevents repetition by OPP, and φG3 prevents repetition by PRO.

Consider again the framework in Figure 5i). The φPC1 dispute tree induced by a
is shown in Figure 5iii), and both disputes in the tree individually constitute φPC1
winning strategies. Notice that for the example framework in Figure 3iv), the φPC1-
winning strategy for a consists of two disputes: {(aPRO − bOPP − dPRO),(aPRO −
cOPP− ePRO)}.

The following states the soundness and completeness result for φPC1 games:

Theorem 3. Let AF = 〈A ,R〉 be a finite argumentation framework. Then, there
exists a φPC1-winning strategy T for x such that the set PRO(T) of arguments moved
by PRO in T is conflict free, iff x is in an admissible (and hence preferred) extension
of AF.

One can give an intuitive proof of the above by using the correspondence be-
tween admissible extensions and admissible labellings of an argumentation frame-
work (see Theorem 1). That is, it suffices to prove that:

1. Let T be a φPC1-winning strategy for x such that PRO(T) is conflict free.
Then there exists an admissible labelling L with L (x) = IN.

2. Let L be an admissible labelling with L (x) = IN. Then there exists a
φPC1 -winning strategy for x such that PRO(T) is conflict free.

Proof sketch:

1. Let L be the labelling that labels all PRO moves (including x) IN, all OPP
moves OUT and all other arguments UNDEC. We first prove that in(L and
out(L) do not overlap, and that therefore L is well-defined. Suppose
there is an argument (say y) that is moved by both PRO and OPP. The fact
that y is moved by OPP means that y attacks a PRO move z. But since y
and z are both PRO moves, it holds that PRO’s moves are not conflict free.
Contradiction.
We now prove that every argument that is labelled IN is also legally IN. Let
y be an argument that is labelled IN. Then y is a PRO move. In the winning
strategy, OPP will then respond with all possible attackers of y as children

Proof Theories and Algorithms for Abstract Argumentation Frameworks 19

of y (minus the attackers that it has already played earlier). Therefore all
attackers of y will be labelled OUT in L , so y is legally IN.
We now prove that every argument that is labelled OUT is also legally OUT.
Let y be an argument that is labelled OUT. In our winning strategy, this
means that y has been an OPP move. Therefore, it is replied to by a PRO
move, which is then labelled IN in L . Therefore, y has an attacker that is
labelled IN, so y is legally OUT.

2. Let L be an admissible labelling with x ∈ in(L . We now build a winning
strategy top-down, by induction. The root of the winning strategy will be
x. It now holds that:
(i) as long as PRO makes only moves that are labelled IN in L , OPP can
only make moves that are OUT in L (this follows directly from the fact
that L is an admissible labelling)
(ii) as long as OPP makes only moves that are labelled OUT in L , PRO
can always make a move that is labelled IN in L .
With (i) and (ii) we can then inductively deepen the tree. The process stops
when OPP cannot make any moves anymore (this is because (ii) guarantees
that PRO can always add a new argument to any discussion where the last
move was that of OPP) because at some point OPP will have run out of
moves (because it cannot repeat itself). So every dispute in the resulting
tree ends with a PRO move. Moreover, the tree can be built in such a way
that the children of each PRO move consists of all possible OPP moves. In
such a tree, the set of PRO moves will be conflict free (otherwise L would
not have been an admissible labelling). Therefore, the result is a winning
strategy T , with x as root, where PRO(T) is conflict free.

5.2.2 More efficient games

Table 1 shows the range of possible moves in an argument game. The rows list
moves that are made with respect to a dispute d; for example cell 6 denotes OPP
moving an argument that attacks an argument moved by PRO in d, and cell 1 denotes
an argument moved by PRO that repeats an argument moved by PRO in d. For
reasons already discussed, the moves in cells 3, 4, 5 and 9 should be prohibited (as
captured by φPC1).

Move PRO OPP
Repeat PRO 1 2
Repeat OPP 3 4
Attack PRO 5 6
Attack OPP 7 8

Attacked by PRO 9 10
Attacked by OPP 11 12

Table 1 Possible moves in a credulous dialogue game.

20 Sanjay Modgil, Martin Caminada

Observe that the spectrum of outcomes would not be changed by a function φPC2
that augments φPC1 by prohibiting moves in cell 10. That is, prohibiting OPP from
moving any argument y (and not just a y already moved by OPP) that is attacked by
an argument x in PRO(d). This is because PRO can then simply move x against y,
and if yRx, prohibiting repetition by OPP will mean that y cannot be moved against
this second move of x by PRO. Notice that if 10 is prohibited then one cannot have a
dispute of the form (. . .yPRO . . .xOPP−yPRO . . .) in which PRO repeats an argument,
since 10 would prevent the move xOPP. Hence, shorter proofs can be obtained by
a function φPC2 that augments φPC1 with prohibitions on moves of type 1 and 10.
Indeed, [8] prove that:

Let AF = 〈A ,R〉 be a finite argumentation framework. Then, there exists a
φPC2-winning strategy for x such that the set PRO(T) of arguments moved by
PRO in T is conflict free, iff a is in a preferred extension of AF .

Figure 5iv) shows the φPC2 dispute tree induced by a for the framework in Figure
5i), where both disputes in the tree are φPC2 winning strategies. However, notice that
neither dispute fully fulfills the remit of a proof to explain the credulous membership
of a, since neither demonstrates the reinstatement of c, respectively d, against its
attacker d, respectively c, and so provides an explanation for the admissibility of
{a,c}, respectively {a,d}. This illustrates a more general point that efficiency gains
often come at the expense of explanatory power.

Finally, note that unlike games for the grounded semantics, checking that the
arguments moved by PRO in a φPC1 (or φPC2) winning strategy are conflict free, is
required. This is because φPC1 and φPC2 games place restrictions on moves by OPP
(and hence the result concluding Section 4.2 does not hold). For example, consider
that a is not in an admissible, and hence preferred, extension of the framework in
Figure 6. Now, {(aPRO−bOPP−cPRO−dOPP−gPRO),(aPRO−eOPP− fPRO−gOPP−
dPRO)} is a φPC1 winning strategy since OPP cannot legally extend either dispute.
However, the arguments moved by PRO are not conflict free (PRO has moved g and
d).

c b ad
e

f
g

Fig. 6 Argument a is not in an admissible and so preferred extension of the above framework.

Proof Theories and Algorithms for Abstract Argumentation Frameworks 21

5.3 Argument Games for the Sceptically Preferred Semantics

The question of whether an argument is sceptically preferred is much harder to an-
swer than the credulously preferred membership problem. To understand why, it
may first help to realise that the credulous membership problem only requires us to
point at one extension, while the sceptical membership problem requires us to prove
something about all possible extensions. Thus, the credulously preferred member-
ship problem is an existence problem while the sceptically preferred membership
problem is a verification problem. To understand better why verification is hard in
this case, we recall the definition of sceptically preferred membership: an argument
a is sceptically preferred iff it is a member of all preferred extensions. The crux of
the problem is that we have to verify whether there exists preferred extensions that
do not contain a. In so doing, it is not immediately clear where to begin to search
for such extensions.

The following result establishes a connection between a and preferred exten-
sions that might possibly exclude a. It basically ensures that the search space for the
sceptical decision problem is confined to elements that are indirectly connected to
defense sets of a.

Theorem 4 (Complement lemma). An argument a, is sceptically preferred if and
only if for every admissible extension B, there is an admissible extension A, contain-
ing a, that is consistent with B.

Thus, conversely, a is not sceptically preferred if there exists an admissible exten-
sion B that conflicts with all admissible extensions around a. Because such an ex-
tension B blocks sceptically preferred membership, such an extension is called a
block.

Proof. Consider the following six statements:

1. The argument a is not contained in all preferred extensions.
2. There is a preferred extension, Q, such that a /∈ Q.
3. There is a preferred extension, Q, such that every admissible extension A that

contains a conflicts with Q.
4. There is an admissible extension, B, such that every admissible extension A

around a conflicts with B.
5. There is an admissible extension, B, such that every minimally admissible exten-

sion A that contains a conflicts with B.

The equivalence (1)⇔ (2) is rather straightforward.

(2)⇒ (3) If A would be consistent with Q, then Q∪A would be admissible and
strictly larger than Q. Contradiction.

(3)⇒ (2) If a ∈ Q, then Q would be inconsistent with Q. Contradiction.
(3)⇒ (4) A fortiori, since every preferred extension is admissible.
(4)⇒ (3) Let Q be the largest admissible extension such that B ⊆ Q. Then Q is

preferred. Obviously, every admissible extension A that conflicts with B conflicts
with Q as well.

22 Sanjay Modgil, Martin Caminada

(4)⇒ (5) A fortiori, since every minimally admissible extension is admissible.
(5)⇒ (4) True, because every admissible extension A around a must contain a

minimally admissible extension A that contains a.

By negating both ends of the equivalence we obtain the desired result.

With the help of Theorem 4 we may now formulate an abstract and inefficient, but
conceptually correct proof procedure to determine sceptical membership. This pro-
cedure works by falsification, as follows. Try to construct a block B. If this attempt
fails, we may, with the help of Theorem 4 conclude that a is sceptically preferred.

The procedure to block a can be described as an argument game that we infor-
mally describe here. The difference with the games described earlier, is that the play-
ers exchange entire admissible extensions rather than single arguments. The game
works as follows. Suppose PRO’s goal is to show that a is sceptically preferred.
To this end, PRO starts by constructing an admissible extension, A{1} around a.
Since A{1} is the only admissible extension known at this stage, it follows that at
this stage a is sceptically preferred. To invalidate this temporary conclusion, the
burden of proof shifts to OPP who must show that a is not sceptically preferred.
By virtue of Theorem 4 it suffices for OPP to show that there exists an admissible
extension that conflicts with A{1}. If OPP does not manage to construct such an
extension, the procedure ends and OPP has lost. Suppose OPP manages to produce
A{1,1} as a response to A{1}. Thus, A{1,1} is an admissible extension that con-
flicts with A{1}. Once A{1,1} is advanced, a is no longer sceptically preferred, be-
cause A{1,1} conflicts with every admissible extension around a constructed thus
far, viz. A{1}. To invalidate this temporary conclusion, the burden of proof shifts
back to PRO who must now show that there exists another admissible extension
around a that does not conflict with A{1,1}. If PRO fails to do so (and PRO’s search
was adequate and exhaustive), it follows that A{1,1} conflicts with all admissible
extensions around A, so that a is not sceptically preferred. Suppose otherwise, i.e,
suppose that PRO is able to construct an admissible extension, A{1,1,1}, that does
not conflict with A{1,1}. OPP must now either extend A{1,1} such that it also con-
flicts with A{1,1,1} or else drop A{1,1} to start all over to attack another member
of A{1}. Continuing this way (including backtracking), OPP is busy with extending
an admissible extension until either PRO is unable to produce another admissible
extension around a, or else until OPP’s admissible extension cannot be further ex-
tended (on pain of becoming inconsistent).

More generally, we may suppose that A{1}, . . . ,A{n} are possible begin moves of
PRO, and A{i1, . . . , ik,m}, k ≥ 1 is the mth possible response of either PRO or OPP
to A{i1, . . . , ik}. Naturally, all the A{ī} are admissible extensions. The following
constraints hold:

1. Every extension advanced by PRO must contain the main argument, a.
2. Every response of PRO must be consistent with the extension that is previously

advanced by OPP.
3. Every response of OPP must attack PRO’s immediately preceding extension.
4. Within one branch, every extension advanced by OPP must be an extension of

OPP’s previous extension in the same branch.

Proof Theories and Algorithms for Abstract Argumentation Frameworks 23

5. Both parties may backtrack and construct alternative replies.
6. OPP has won if it is able to move last; else PRO has won.

If OPP has won this means that OPP was able to create a block B = A{i1, . . . , i2k},
where k≥ 1 (note that we have ‘2k’ since all moves by OPP have an even number of
indices). With B, OPP is able to move last in the particular branch where that block
was created and all sub-branches emanating from the main branch. It must be noted
that all this only works in finitary argument systems, i.e., argument systems where
all arguments have a finite number of attackers. Algorithms for non-finitary argu-
ment systems require additional constraints such as fairness which must guarantee
that every possibility is enumerated eventually.

The above ideas are taken from earlier work on the sceptically preferred mem-
bership problem, notably that of Doutre et al. [11] and Dung et al. [14]. In [11],
the procedure to find a possible block is presented as a so-called meta-acceptance
dialogue. As above, moves in this dialogue are extensions (hence the meta), and a
dialogue is won by OPP if it is able to move last in at least one branch. In Dung et
al. [14] the procedure to construct a “fan” of admissible extensions around A that
together represent all preferred extensions is called generating a complete base for
a. A base for a is a set of admissible extensions, B, such that every preferred exten-
sion around a includes at least one element of B. A complete base for a, then, is a
set of admissible extensions, B, such that every preferred extension includes at least
one element of B. In line with Theorem 4, Dung et al. proceed to show that a base
B is incomplete if and only if there exists a preferred extension that attacks every
element of B. Their proof procedure is a combination of a so-called BG-derivation
(base generation derivation) followed by a CB-verification (complete base verifica-
tion). With BG a base for a is generated, such that every preferred extension around
a contains an element of B. Such a base always exists, but not every base may serve
as a representant of sceptical membership. To check whether B indeed represents
sceptical membership, it is checked for completeness, which effectively means that
it must hold out against every candidate block that might undermine B. Again, all
decision procedures only work in finitary argument systems.

6 Stable Semantics

Stable semantics are, what one might call ‘xenophobic’, since every argument out-
side of a stable extension is attacked by an argument in the stable extension. Unlike
the preferred semantics, existence of a stable extension is not guaranteed; consider
that a framework consisting of a single argument that attacks itself has no stable ex-
tension. However, as in the case of the preferred semantics, there may be more than
one extension, and so decision questions 2a (credulous membership) and 2b (scep-
tical membership) are distinct. These questions, questions 1b, 1c, and the solution-
orientated questions 2c - 2h can be addressed by an algorithm (taken from [6])
that generates all stable extensions of a framework. Since a stable labelling makes
all arguments either OUT or IN, one can straightforwardly adapt the algorithm for

24 Sanjay Modgil, Martin Caminada

preferred labellings in Section 5.1, so as to only yield labellings without UNDEC
labelled arguments. Thus, line 11 in the algorithm is replaced by:
if undec(L) 6= /0 then return;
Furthermore, we do not have to compare the arguments made IN by other candidate
labellings, and so we can remove lines 15 to 22. The result is an algorithm that cal-
culates all stable extensions of a finite framework.

Argument games for stable semantics have only recently been studied. In [27],
the authors study coherent argumentation frameworks, in which every preferred ex-
tension is also stable (meaning that the preferred and stable extensions coincide,
since each stable extension is by definition also a preferred extension). Thus, for
coherent argumentation frameworks, one can simply apply existing games for the
preferred semantics to decide membership under stable semantics.

For the general case, where one is not restricted to coherent argumentation frame-
works, the situation is more complex, but can still be expressed in terms of the credu-
lous games defined in Section 5.2. Given a framework 〈A ,R〉, and letting PRO(T),
respectively OPP(T), denote the arguments moved by PRO, respectively OPP, in a
dispute tree T , then an argument x is in a stable extension iff there exists a set S of
φPC1 winning strategies such that:

1. at least one winning strategy in S is for x.
2.

⋃{PRO(T)|T ∈ S} is conflict free.
3.

⋃{PRO(T)∪OPP(T)|T ∈ S} = A

This can be seen as follows. First of all, each φPC1 winning strategy corresponds
to an admissible labelling. A set of winning strategies that do not attack each other
(point 2) again corresponds to an admissible labelling. If this resulting admissible
labelling spans the entire argumentation framework (each argument is either IN or
OUT) then this labelling is also stable (point 3). Then, if x is IN in this labelling,
then x is labelled IN in at least one stable labelling (point 1).

It is also possible to define a single dispute game that determines credulous ac-
ceptance w.r.t. stable semantics. Such a game has recently been stated by Caminada
and Wu [7]. One particular feature of their approach, which builds on the work of
Vreeswijk and Prakken [27], is that they do not use the concept of a winning strat-
egy. Instead, for an argument x to be in a stable extension, it suffices to have at least
one game for x that is won by PRO. Caminada and Wu are able to do this by first
defining a game for credulous preferred in which PRO may repeat its own moves,
but not the moves of OPP, and in which OPP may repeat PRO’s moves but not its
own moves. Moreover, PRO has to react to the directly preceding move of OPP,
whereas OPP is free to react either to the directly preceding move of PRO, or to
a previous PRO move. A dispute is won by PRO iff OPP cannot move. A dispute
is won by OPP iff PRO cannot move, or if OPP managed to repeat one of PRO’s
moves.

Basically, the game can be understood in terms of PRO and OPP building an
admissible labelling in which PRO makes IN moves, and OPP makes OUT moves.
This game can be altered to implement stable semantics by introducing a third kind

Proof Theories and Algorithms for Abstract Argumentation Frameworks 25

of move, which is called QUESTION. By uttering QUESTION x, OPP asks PRO for
an explicit opinion on argument x. PRO is then obliged to reply with either IN x or
with IN y, where y is an attacker of x. Caminada and Wu show that this game indeed
models credulous acceptance under the stable semantics.

Once a procedure for credulous acceptance w.r.t. stable semantics has been de-
fined, the issue of sceptical acceptance w.r.t. stable semantics becomes relatively
straightforward: an argument x is in all stable extensions iff one fails to establish
credulous membership of any attacker of x. For the left to right half, observe that if
x is in all stable extensions, then all attackers of x are attacked by all such extensions
(an argument y is attacked by an extension if it is attacked by an argument in that
extension), and so no attacker of x can be in any such extension, since each such
extension is conflict free. For the right to left half, observe that if any attacker of x
does not belong to any stable extension, then it is attacked by all such extensions.
Thus every extension contains an argument that reinstates x, and so contains x.

7 Semi-stable Semantics

Caminada has recently proposed semi-stable semantics [5, 6], that unlike the stable
semantics, guarantees that every framework has at least one semi-stable extension.
In the case that there exists at least one stable extension for a framework, semi-stable
semantics yield the same extensions as stable semantics. From the perspective of ar-
gument labellings, semi-stable semantics select those labellings in which the set of
UNDEC arguments is minimal. Referring to Definition 4, this can be expressed as
follows:

Let L be a complete labelling. Then L is a semi-stable labelling iff there
does not exist a complete labelling L ′ such that undec(L ′) ⊂ undec(L)

For example, consider the framework in Figure 4ii) augmented by an additional
argument d that attacks itself. The augmented framework has no stable extension,
but {a,c} is the single semi-stable extension equating with the semi-stable labelling
({a,c},{b},{d}). Notice that although {a,c} is also the single preferred extension,
in general not every preferred extension is a semi-stable extension since not every
preferred extension minimises UNDEC. However, every semi-stable extension is a
preferred extension, which suggests that we can adapt Section 5.1’s algorithm for
preferred labellings in order to compute semi-stable labellings.

In [6] it is also shown that:

L is a semi-stable labelling iff L is an admissible labelling such that for no
admissible labelling L ′ is it the case that undec(L ′) ⊂ undec(L).

(R1′)

Since every semi-stable extension is a preferred extension then R3 in Section
5.1 also holds for semi-stable labellings L . This result, together with R1′ and R2 in

26 Sanjay Modgil, Martin Caminada

Section 5.1, implies that terminated transition sequences whose final labellings min-
imise the arguments labelled UNDEC are exactly the semi-stable labellings. Hence,
one can adapt Section 5.1’s algorithm by replacing line 11 by:

if ∃L ′ ∈ candidate-labellings: undec(L ′) ⊂ undec(L) then return;

In other words, if at any stage in the generation of a transition sequence, the
UNDEC arguments of the labelling Li thus far obtained, are a strict superset of
undec(L ′) for some L ′ ∈ candidate-labellings, then no further tran-
sition steps on Li can result in a semi-stable labelling, and so one can backtrack
to perform a transition step on another choice of argument. This follows from the
result that during the course of a transition sequence, the set of UNDEC labelled ar-
guments monotonically increases (as shown in [6]). Finally, we replace line 18 with:

if undec(L) ⊂ in(L ′);

and we are done. We have an algorithm that calculates the semi-stable labellings of
a finite argumentation framework.

8 Ideal Semantics

The ideal semantics [13] defines an ideal extension as an admissible extension that
is a subset of every preferred extension. It is shown to be less sceptical than the
grounded semantics, but may be more sceptical than the preferred semantics. Con-
sider the framework in Figure 5i) augmented by the arguments e and f , where e
attacks itself, and e and f attack each other. The grounded extension of the aug-
mented framework is /0, and a, f are sceptically justified under the preferred seman-
tics. However, { f} is the maximal ideal extension since {a, f} is not admissible.
Notice that since every framework has a preferred extension, then trivially, /0 is an
ideal extension of any framework.

An advantage of the ideal semantics is that is easier to compute ideal extensions
than to compute the arguments sceptically justified under the preferred semantics. In
[13], procedures for computing ideal extensions are defined for abstract argumenta-
tion frameworks, and for frameworks instantiated by the assumption based approach
to argumentation [3]. [13] show the following result:

An admissible extension E is an ideal extension iff for each argument x that
attacks an argument in E there exists no admissible extension containing x.

One can therefore make use of argument games for credulous membership of
preferred extensions to define a procedure for deciding membership of an ideal ex-
tension. Recall that soundness and completeness holds for φPC-winning strategies
(Section 5.2) and that the arguments moved by PRO in a φPC-winning strategy con-
stitutes an admissible extension. Thus, if a is the root node of such a strategy T , then

Proof Theories and Algorithms for Abstract Argumentation Frameworks 27

the arguments moved by PRO — PRO(T) — constitute an ideal extension contain-
ing a, if there does not exist a φPC-winning strategy for any argument x that attacks
an argument in PRO(T). Notice that the procedure differs from the procedure to de-
termine sceptical membership of the stable / preferred extensions of coherent frame-
works described in Section 6. Consider the framework in Figure 5i), and the disputes
in the tree in Figure 5iii), each of which is a φPC1 winning strategy for a. There is no
φPC1 winning strategy for a’s single attacker b, and so a is in the intersection of the
preferred / stable extensions. However, for the admissible set of arguments {a,c}
moved by PRO in the left hand dispute, we have that d is moved by OPP, and there
is a φPC1 winning strategy for d. Thus, {a,c} is not an ideal extension, and a is not
a member of an ideal extension.

9 Conclusions

In this chapter we have described labelling algorithms and argument game proof
theories for various argumentation semantics. Labellings and argument games can
be seen as alternatives to the extension-based approach to specifying argumentation
semantics described in Chapter 2. We conclude with some further reflections on
these different ways of specifying argumentation semantics.

One of the original motivations for developing the labelling approach was to pro-
vide an easy and intuitive account of formal argumentation. After all, principles like
”In order to accept an argument, one has to be able to reject all its counterargu-
ments” and ”In order to reject an argument, one has to be able to accept at least one
counterargument” are easy to explain and have therefore been used as the basis of
the labelling approach. Also, our teaching experiences indicate that students who
are new to argumentation tend to find it easier to understand the labelling approach
rather than the extension-based approach to argumentation. In fact, it is often easier
for them to understand the extension-based approach after having been introduced
to the labelling approach.

Another advantage of the labelling approach is that it allows one to specify a
number of relatively small and simple properties, each of which can be individu-
ally satisfied or not, and that collectively define the argumentation semantics. This
modular approach can be of assistance when constructing formal proofs. Also, by
explicitly distinguishing between IN, OUT and UNDEC (instead of merely speci-
fying the set of IN-labelled arguments as in the extension-based approach) one is
provided with more detailed information. For instance, Section 5.1’s algorithm for
generating all preferred extensions, would be much more difficult to specify using
the extension-based approach.

Finally, we note that the labelling approach essentially identifies a graph or ‘net-
work’ labelling problem, suggesting that the approach more readily lends itself to
extensions of argument frameworks that accommodate: different types of relation
between arguments (e.g. support [9] and collective attack [21]); attacks on attacks
[20]; multi-valued and quantitative valuations of arguments [2, 10], and so on. In

28 Sanjay Modgil, Martin Caminada

essence, these extensions of Dung’s abstract argumentation framework can be un-
derstood as instantiating a more general network reasoning model in which the val-
uations of nodes (arguments) is determined by propagating the valuations of the
connected nodes, as mediated by the semantics of the connecting arcs. Algorithms
for determining these valuations will thus generalise the three value labelling algo-
rithms described in this chapter.

With regard to the argument game approach, we recall that Dung’s abstract ar-
gumentation semantics can be understood as a semantics for a number of non-
monotonic and defeasible logics [3, 12, 16], in the sense that:

α is an inference from a theory ∆ in a logic L , iff α is the conclusion of a
justified argument of the argumentation framework 〈A ,R〉 defined by ∆ and
L .

The argument game approach places an emphasis on the dialectical nature of
argumentation, in the sense that the approach appeals more directly to an inter-
subjective notion of truth: truth becomes that which can be defended in a rational
exchange and evaluation of interacting arguments. Thus, what accounts for the cor-
rectness of an inference is that it can be shown to rationally prevail in the face of
arguments for opposing inferences, where it is application of the reinstatement prin-
ciple that encodes logic neutral, rational means for establishing such standards of
correctness. This account of argumentation as a semantics, contrasts with model-
based semantics for formal entailment that appeal to an objective notion of truth:
true is that which holds in every possible model. Notice that dialectical semantics
are not unique to formal argumentation. For instance, Lorenzen and Lorenz [18, 19]
have proposed dialectical devices as a method of demonstration in formal logic.

An advantage of dialectical semantics is that they are able to relate formal en-
tailment to something most people are familiar with in everyday life: debates and
discussions. Argument games of the type described in this chapter are therefore use-
ful not only for providing guidelines and principles for the design of algorithms, but
also for bridging the gap between formal and informal reasoning.

Finally, we note that the dialectical view also accords with our understanding of
reasoning as an incremental process. Rather than have all the arguments and their
attacks defined from the outset, we incrementally acquire knowledge in order to con-
struct arguments required to counter-argue existing arguments. At any stage in this
incremental process we can evaluate the status of arguments, which in turn motivates
acquisition of further knowledge for construction and submission of arguments. Ar-
gument games allow one to model such processes. Provided that there is a well
understood notion of what constitutes an attack between any two arguments, one
can then formalise the games described in this chapter, without reference to a pre-
existing framework. This also allows one to acknowledge that reasoning agents are
resource bounded, and suggests that bounds on reasoning resources may be charac-
terised by bounds on the breadth and depth of the dispute trees constructed in order
to prove the claim of the argument under test.

Proof Theories and Algorithms for Abstract Argumentation Frameworks 29

Acknowledgements The authors would like to thank Gerard Vreeswijk for his con-
tributions to the contents of this chapter. Thanks also to Nir Oren for commenting
on a draft of the chapter.

References

1. L. Amgoud and C. Cayrol. A reasoning model based on the production of acceptable argu-
ments. Annals of Mathematics and Artificial Intelligence, 34(1-3):197–215, 2002.

2. H. Barringer, D. M. Gabbay, and J. Woods. Temporal dynamics of support and attack net-
works: From argumentation to zoology. In Mechanizing Mathematical Reasoning, pages 59–
98, 2005.

3. A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract, argumentation-theoretic
approach to default reasoning. Artificial Intelligence, 93:63–101, 1997.

4. M. Caminada. For the sake of the Argument. Explorations into argument-based reasoning.
Doctoral dissertation Free University Amsterdam, 2004.

5. M. Caminada. On the issue of reinstatement in argumentation. In European Conference on
Logic in Artificial Intelligence (JELIA), pages 111–123, 2006.

6. M. Caminada. An algorithm for computing semi-stable semantics. In European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), pages
222–234, 2007.

7. M. Caminada and Y. Wu. Towards an argument game for stable semantics. In Copmutational
Models of Natural Argument, page To appear, 2008.

8. C. Cayrol, S. Doutre, and J. Mengin. On Decision Problems related to the preferred semantics
for argumentation frameworks. Journal of Logic and Computation, 13(3):377–403, 2003.

9. C. Cayrol and M. Lagasquie-Schiex. On the acceptability of arguments in bipolar argumen-
tation frameworks. In European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU), pages 378–389, 2005.

10. C. Cayrol and M.-Ch. Lagasquie-Schiex. Graduality in argumentation. Journal of Artificial
Intelligence Research, 23:245–297, 2005.

11. S. Doutre and J. Mengin. On sceptical vs credulous acceptance for abstract argument systems.
In Ninth European Conference on Logics in Artificial Intelligence (JELIA 2004), pages 462–
473, 2004.

12. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

13. P.M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artificial
Intelligence Journal, 171(10-15):642–674, 2007.

14. P.M. Dung and P.M. Thang. A sound and complete dialectical proof procedure for sceptical
preferred argumentation. In Proc. of the LPNMR-Workshop on Argumentation and Nonmono-
tonic Reasoning (ArgNMR07), pages 49–63, 2007.

15. P.E. Dunne and T.J.M. Bench-Capon. Two party immediate response disputes: Properties and
efficiency. Artificial Intelligence Journal, 149(2):221–250, 2003.

16. G. Governatori, M. J. Maher, G Antoniou, and D. Billington. Argumentation semantics for
defeasible logic abstract. Journal of Logic and Computation, 5:675–702, 2004.

17. H. Jakobovits and D. Vermeir. Dialectic semantics for argumentation frameworks. In Journal
of Logic and Computation, pages 53–62. ACM Press, 1999.

18. P. Lorenzen. Dialectical foundations of logical calculi. Constructive Philosophy, 1987.
19. P. Lorenzen and K.Lorenz. Dialogische logik. Wissenschaftliche Buchgesellschaft, Darm-

stadt, 1978.
20. S. Modgil. An abstract theory of argumentation that accommodates defeasible reasoning about

preferences. In European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU), pages 648–659, 2007.

30 Sanjay Modgil, Martin Caminada

21. S. Nielsen and S. Parsons. A generalization of dung’s abstract framework for argumentation:
Arguing with sets of attacking arguments. In Third International Workshop on Argumentation
in Multiagent Systems (ArgMAS 2006), pages 54–73, 2006.

22. J. L. Pollock. Cognitive Carpentry. A Blueprint for How to Build a Person. MIT Press,
Cambridge, MA, 1995.

23. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible pri-
orities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

24. B. Verheij. A labeling approach to the computation of credulous acceptance in argumentation.
In International Joint Conference on Aritificial Intelligence (IJCAI), pages 623–628, 2007.

25. G. A. W. Vreeswijk. Defeasible dialectics: A controversy-oriented approach towards defeasi-
ble argumentation. Journal of Logic and Computation, 3:3–27, 1993.

26. G. A. W. Vreeswijk. An algorithm to compute minimally grounded and admissible defence
sets in argument systems. In Proc. 1st International Conference on Computational Models of
Argument, pages 109–120, UK, 2006.

27. G. A. W. Vreeswijk and H. Prakken. Credulous and sceptical argument games for preferred
semantics. In Proc. 7th European Workshop on Logic for Artificial Intelligence, pages 239–
253, 2000.

