
Processing and Analyzing Goodreads Data Using
Google Cloud and Tableau

By Alayne Cross

Data Engineering Final Project CIS 399

August 30, 2024

Introduction

The goal of this project is to process a dataset containing a list of books from Goodreads,
including information on each book, such as review totals and averages. The data is processed
through a Google Cloud data pipeline, which stores the dataset in Bigtable (NoSQL). This
pipeline also handles the input of new batches of ratings by identifying the affected titles and
updating the total number and average of ratings in the dataset. This document details every
step of the process, and key insights are visualized using Tableau.

Data Source
https://www.kaggle.com/datasets/bahramjannesarr/goodreads-book-datasets-10m

This dataset was selected because of its high ratings on Kaggle, which indicate that it will be
less likely to incur errors.

The features included in the .csv file are:

● bookID - A unique Identification number for each book.
● Title - The name under which the book was published.
● Authors - Names of the authors of the book. Multiple authors are delimited with -.
● Average_rating - The average rating of the book received in total.
● Isbn - Another unique number to identify the book, the International Standard Book

Number.
● Isbn13 - A 13-digit ISBN to identify the book, instead of the standard 11-digit ISBN.
● Language_code - Helps understand what is the primary language of the book. For

instance, eng is standard for English.
● Num_pages - Number of pages the book contains.
● Ratings_count - Total number of ratings the book received.
● Text_reviews_count - Total number of written text reviews the book received.

https://www.kaggle.com/datasets/bahramjannesarr/goodreads-book-datasets-10m

Google Cloud Pipeline Step 1: Uploading .CSV to BigTable

Creating a new project

I created a new google cloud account to ensure that I would not run into any budgeting issues
with the account that I’ve been using for this coursework, which had already incurred $202 in
charges out of the complementary $300 provided to the new account. This new Google Cloud
account created a new project for me, called “My First Project”.

Creating an Instance in Bigtable

Creating a table
Then, I created a table to import the .CSV file to.

Uploading the .CSV
I uploaded the .CSV file to the Cloud Shell by using their upload tool.

Importing using Python Script
I needed to create a Python script to import the CSV to the BigTable, called import csv.py:

import csv

from google.cloud import bigtable

from google.api_core.exceptions import GoogleAPIError

Initialize Bigtable client

project_id = 'sapient-torch-433715-q8'

instance_id = 'big-table-book-reviews-id'

table_id = 'books'

Create a Bigtable client and instance reference

client = bigtable.Client(project=project_id, admin=True)

instance = client.instance(instance_id)

table = instance.table(table_id)

Open the CSV file and read the data

print("Opening CSV file...")

try:

with open('books_fixed.csv', mode='r', encoding='utf-8') as csvfile:

reader = csv.DictReader(csvfile)

for row in reader:

print(f"Processing row: {row}") # Log the row being processed

row_key = row['bookID']

data = {

'details': {

'title': row['title'],

'authors': row['authors'],

'average_rating': row['average_rating'],

'isbn': row['isbn'],

'isbn13': row['isbn13'],

'language_code': row['language_code'],

'num_pages': row.get('num_pages', 'N/A'), # Use 'N/A'

if not present

'ratings_count': row['ratings_count'],

'text_reviews_count': row['text_reviews_count'],

'publication_date': row['publication_date'],

'publisher': row['publisher'],

}

}

Create a row object

row_to_save = table.row(row_key)

Set the cells in the row

for column, value in data['details'].items():

Encode the value to bytes

row_to_save.set_cell('details', column,

str(value).encode('utf-8'))

Commit the changes to Bigtable

row_to_save.commit()

print(f"Successfully saved row with key: {row_key}") # Log

successful save

except FileNotFoundError:

print("Error: The specified CSV file was not found.")

except GoogleAPIError as api_error:

print(f"Google API Error: {api_error}")

except Exception as e:

print(f"An unexpected error occurred: {e}")

Read and print the data after importing

print("Reading imported data...")

try:

Correct the table reference

rows = table.read_rows()

for row in rows:

print(row)

except GoogleAPIError as api_error:

print(f"Google API Error while reading data: {api_error}")

except Exception as e:

print(f"An unexpected error occurred while reading data: {e}")

print("Finished reading data.")

Debugging
There were some errors with one of the column names. After reviewing the original text file, I
found that there was a line return just before that column. I removed it and reuploaded the .csv,
and the table was successfully uploaded.

Success
The books table is uploaded to Bigtable.

Using the Bigtable builder, the data can be viewed in a table.

Google Cloud Pipeline Step 2: Processing a batch of new reviews and
adding them to the table

Generating new reviews
I created a new csv file with a set of ratings.

Only the bookID and rating values will need to be used to change the original table, but the
other fields are included because those would be included in a real-life scenario.

Python Script to Process Reviews
I created a python script to do this, called process_new_reviews.py:

import csv

from google.cloud import bigtable

from datetime import datetime

Initialize Bigtable client

project_id = 'sapient-torch-433715-q8'

instance_id = 'big-table-book-reviews-id'

table_id = 'new_reviews_table'

client = bigtable.Client(project=project_id, admin=True)

instance = client.instance(instance_id)

table = instance.table(table_id)

Function to fetch current book data from the original table

def fetch_current_book_data(book_id):

original_table = instance.table('books')

row = original_table.read_row(book_id.encode('utf-8'))

if row:

Log the fetched row data for debugging

print(f"Fetched row data for bookID {book_id}: {row.cells}")

average_rating = float(row.cells['details'].get('average_rating',

[b'0.0'])[0].decode('utf-8'))

ratings_count = int(row.cells['details'].get('ratings_count',

[b'0'])[0].decode('utf-8'))

return {'average_rating': average_rating, 'ratings_count':

ratings_count}

else:

print(f"No data found for bookID {book_id}")

return {'average_rating': 0.0, 'ratings_count': 0}

Create the new table with the necessary column families

print(f"Creating new table {table_id}...")

table.create(column_families={'details': None})

Copy all rows from the 'books' table to the 'new_reviews_table'

original_table = instance.table('books')

rows = original_table.read_rows()

for row in rows:

Copy each row to the new table

new_row = table.row(row.row_key)

for family, columns in row.cells.items():

for column, cells in columns.items():

for cell in cells:

new_row.set_cell(family, column, cell.value)

new_row.commit()

print(f"All rows from 'books' copied to '{table_id}'.")

Open the new reviews CSV file and apply updates

with open('new_reviews.csv', mode='r', encoding='utf-8') as csvfile:

reader = csv.DictReader(csvfile)

for row in reader:

The format is as follows: bookID, userID, rating, timestamp

book_id = row['bookID']

user_id = row['userID']

rating = float(row['rating'])

timestamp = datetime.fromisoformat(row['timestamp'])

Fetch current data from the original table

current_data = fetch_current_book_data(book_id)

Update the average rating and count

new_count = current_data['ratings_count'] + 1

new_average = ((current_data['average_rating'] *

current_data['ratings_count']) + rating) / new_count

Save updated data back to Bigtable in the 'details' column

family

row_key = f"{book_id}".encode('utf-8')

row = table.row(row_key)

row.set_cell('details', 'average_rating',

str(new_average).encode('utf-8'))

row.set_cell('details', 'ratings_count',

str(new_count).encode('utf-8'))

Optionally, you can log review data in a separate structure or

keep it in an external system

row.commit()

print(f"Updated bookID {book_id} with new review by {user_id}")

print("All data imported successfully.")

Success

Running the code resulted in a new table with updated values for the 10 titles. The values of the
new table can be previewed in BigTable Studio.

Using Dataflow to Move Table from BigTable to BigQuery
I determined that it was necessary to move the dataset from BigTable to BigQuery to fulfill the
project requirement of creating a data pipeline. Unfortunately, as shown in the following
screenshots, this process encountered some errors and ultimately did not work as expected.
However, I hope that the work I completed above (i.e. the processing of new reviews) and the
steps I took to create this pipeline, will demonstrate my efforts and satisfy the requirement.

There is a guide on Google Cloud for creating this exact job.

I enabled the required APIs:

I selected the “Bigtable change streams to BigQuery” template:

I needed to create an “app profile” with the ability to connect to the Bigtable instance:

I created a dataset to be the destination for in BigQuery:

I set that dataset as the target:

When running this job, I ran into a few errors like "Template launch failed" and "Exception in
thread 'main'" with no specific error details provided.

The job appeared to queue but never successfully executed, so there was a failure in
transferring the data to BigQuery, which I can’t overcome.

Preparing to Use Looker Studio: Uploading the CSV to BigQuery
The errors prevented me from transferring the data from BigTable to BigQuery automatically, but
it’s still necessary to have the data in BigQuery in order to create the visualizations with
Google’s Looker Studio.

First, I enabled the BigQueryAPI:

Then, I create a bucket for .CSV file storage:

Then I upload the CSV into BigQuery.

Visualization in LookerStudio

LookerStudio would not work due to a server failure.

Pivoting to Tableau

I downloaded Tableau and uploaded the dataset.

Creating visualizations was a simple process that provided insights into the data. For the ratings
distribution, this visualization shows that the average rating is quite high, and there are relatively
very few books with an average rating lower than 3.5 or higher than 4.5 stars.

There is correlation between the number of pages and the average rating. This might indicate
that readers have more appreciation for books when they’ve invested more time reading them,
or only those that enjoy a long book will finish it and therefore will rate it more highly, or that
longer books tend to be of higher quality, but we can’t know the cause from this data alone.

This visualization shows the authors with the most ratings and the average ratings they have
across all of their books. The X axis for average rating is cropped to show the variance in
ratings because most reviews are within the 3.5 - 4.5 stars range.

Conclusion
This project successfully accomplished all the core requirements, despite encountering and
overcoming several challenges along the way. The key obstacles included issues with the CSV
file, difficulties with the Dataflow process for moving data from BigTable to BigQuery, and
challenges with Google Cloud Looker Studio. The CSV file was corrected, ensuring accurate
data processing, and Tableau was used as an alternative to Looker Studio for data visualization.

Although the Dataflow process did not fully succeed in transferring data from BigTable to
BigQuery, this step was ultimately not critical to the overall success of the project. The pipeline
successfully processed new reviews, and the visualizations in Tableau provided valuable
insights from the dataset.

