

Mark Scheme

Q1.

Α

[1]

Q2.

Α

[1]

Q3.

(a) (i) for X: (P = VI gives) 24 = 12I and I = 2 A (1) for Y 18 = 6I and I = 3 A (1)

2

- (b) (i) 12 V **(1)**
 - (ii) voltage across R_2 (= 12 6) = 6 (V) (1) I = 3 (A) (1) (V = IR gives) 6 = $3R_2$ and $R_2 = 2\Omega$ (1) (allow C.E. for I and V from (a) and (b)(i))

[or
$$V = I(R_y + R_2)$$
 (1) 12 = 3(2 + R_2) (1) $R_2 = 2\Omega$ (1)]

- (iii) current = 2(A) + 3(A) = 5A (1) (allow C.E. for values of the currents)
- (iv) $27 (V) 12 (V) = 15 V across R_1$ (1)
- (v) for R_1 , 15 = 5 R_1 and R_1 = 3 Ω (1) (allow C.E. for values of I and V from (iii) and (iv)

[9]

Q4.

- (a) (i) 5 V (1)
 - (ii) $R_T = 36 (\Omega)$ (use of V = IR gives) 15 = $I \times 36$ and I = 0.42 A (1)

3

- (b) (i) equivalent resistance of the two lamps $\frac{1}{R} = \frac{1}{12} \times \frac{1}{12} = \frac{1}{6}$ (1) $R_T = 6 + 12 = 18$ (Ω) and $15 = I \times 18$ (1) (to give I = 0.83 A)
 - (ii) current divides equally between lamps (to give I = 0.42 A) (or equivalent statement) (1)

(c) same brightness (1) (because) same current (1)

3

2 [8]

Q5.

(a) (i)
$$6.0 (\Omega) (1)$$

1

(ii) 4.5 (V) **(1)**

1

(iii) (use of I = V/R)

$$I = 4.5/6.0 = 0.75$$
 (A) (1)

current through cell A = 0.75/2 = 0.375 (A) (1)

2

(iv) charge = $0.375 \times 300 = 112.5$ (1) C (1)

2

(b) cells C and D will go flat first or A and B last longer (1)

current/charge passing through cells C and D (per second) is double/more than that passing through A or B (1)

energy given to charge passing through cells **per second** is double or more than in cells C and D (1) or in terms of power

3

Q6.

(b)
$$R = 1.5/0.66 = 2.3(\Omega) (2.27) \checkmark$$

1

[9]

(c) (use of V = IR) $I = 1.5/(22 + 1.2) = 0.065 \checkmark (A) (0.0647) \checkmark$

1

(d) current in R₁ = 0.66 - 0.0647 = 0.595 (A) \checkmark CE from 4.2/4.3

1

resistance of R₁ and probe = 1.5/0.595 = 2.52 (Ω) \checkmark

alternative method: $1/2.3 = 1/23.2 + 1/(R_{probe} + 2.4)$ \checkmark

1

resistance of probe = $2.52 - 2.4 = 0.12 (\Omega) \checkmark$

correct rearrangement ✓

range 0.1 – 0.15 ✓

accept 1 sig. fig. for final answer

1

(f) ANY TWO FROM correct reference to lost volts OR terminal pd OR reduced current ✓ reference to resistors not changing OR resistors constant ratio ✓ reference to voltmeter having high/infinite resistance (so not affecting circuit) ✓ reference to pd between AB being (very) small (due to closeness of resistance ratios in each arm) ✓ voltmeter (may not be) sensitive enough ✓

[7]

1

Q7.

[1]