

I'm not a bot

Hydrogels have gained popularity due to their unique properties and applications in various fields, including medicine, agriculture, and personal care. This guide explores hydrogel testing, focusing on quality analysis, composition, testing methods, and regulatory requirements. Hydrogel testing maintains product quality, ensures safety, and adheres to regulatory requirements across various industries. (Credit: OpenAI (2024) Hydrogels are three-dimensional polymeric networks that absorb and retain significant amounts of water. They consist of hydrophilic polymer chains, which give them the ability to hold water and maintain a gel-like structure. Due to their biocompatibility, flexibility, and tunable properties, hydrogels serve a variety of applications, including wound care, drug delivery, tissue engineering, agriculture, and personal care products. Their high water content makes them particularly suitable for biomedical applications, as they mimic the natural environment of biological tissues. Hydrogel testing includes a range of analytical processes that evaluate the physical, chemical, and mechanical properties of hydrogels. These tests ensure that hydrogels meet the requirements of their intended applications in industries like medicine, agriculture, and personal care. Hydrogel testing helps determine the properties that make these materials suitable for specific applications. In medical uses, such as wound dressings or drug delivery systems, testing ensures that the hydrogel remains biocompatible, non-toxic, and absorbs water appropriately. In agriculture, hydrogels undergo testing to verify their water retention properties, which help improve soil quality. Overall, testing confirms that hydrogels meet performance expectations and comply with industry standards and regulations. Testing of hydrogels assesses their structural, physical, and chemical characteristics to ensure they meet the desired performance criteria. Here are the key aspects of quality testing: Swelling Capacity and Tensile Strength. The swelling capacity is measured by immersing a sample in water or a specific solution, and its weight increase is calculated. The tensile strength is calculated to determine the hydrogel's mechanical stability and resistance to deformation under pressure. Tensile Testing: Tensile tests measure the hydrogel's ability to withstand stretching forces. The sample is pulled until it breaks, and the force needed to deform the hydrogel is recorded. This test determines the hydrogel's mechanical stability, or medical devices. Procedure: The hydrogel sample undergoes several mechanical tests: Compression Testing: Compression testing measures the hydrogel's ability to withstand compressive forces, such as compression, stretching, or adhesion. This is particularly important for hydrogels used in tissue engineering, wound care, or medical devices. Procedure: The hydrogel sample undergoes several mechanical tests: Compression Testing: Compression testing measures the hydrogel's ability to withstand compressive forces. The sample is pulled until it breaks, and the force required to deform the hydrogel is recorded. This test is crucial for applications where the hydrogel must remain intact under tension, such as in tissue scaffolds. Skin Adhesion Testing: For hydrogels used in wound care, skin adhesion testing measures how well the hydrogel adheres to biological surfaces. The hydrogel is applied to a simulated skin surface, and the force required to peel it off is recorded. This ensures that the hydrogel provides sufficient adhesion without causing skin irritation or damage upon removal. Biocompatibility Testing Purpose: For medical applications, it is critical that hydrogels remain non-toxic and do not cause adverse reactions when in contact with biological tissues. Procedure: Biocompatibility is assessed through in-vitro cytotoxicity tests or in-vivo animal studies, where the hydrogel's interaction with cells or tissues is monitored. Purity and composition testing confirms the chemical makeup of hydrogels and detects any impurities that might impact performance or safety. Key aspects of this type of testing include: Fourier Transform Infrared Spectroscopy (FTIR) Purpose: FTIR identifies the functional groups present in the hydrogel, helping confirm its chemical composition and detect unwanted impurities. Procedure: The hydrogel is analyzed using FTIR, and the resulting spectrum is compared to reference spectra to verify its composition. Thermogravimetric Analysis (TGA) Purpose: TGA assesses the thermal stability of hydrogels, as well as their water content and overall purity. Procedure: A hydrogel sample is gradually heated, and the changes in its weight are measured to determine the presence of water, residual solvents, and other volatile substances. Elemental Analysis Purpose: Elemental analysis determines the presence and concentration of elements like carbon, hydrogen, nitrogen, and others in the hydrogel. Procedure: The hydrogel sample is analyzed using elemental analyzers to detect and quantify key components, ensuring it meets compositional specifications. Several analytical methods test the quality and properties of hydrogels, depending on their intended applications: Rheological Testing Description: Rheological testing evaluates the viscoelastic properties of hydrogels, including their ability to flow or deform under stress. This helps us understand how the hydrogel performs in different conditions. Scanning Electron Microscopy (SEM) Description: SEM provides detailed images of the hydrogel's surface morphology. This analysis helps understand the porosity and structural integrity of the hydrogel, which is important for applications in tissue engineering or controlled drug release. Gel Fraction and Sol Fraction Analysis Description: Gel fraction analysis determines the proportion of crosslinked polymer within the hydrogel, while sol fraction analysis assesses the amount of soluble polymer that has not formed crosslinks. These tests evaluate the stability and crosslinking efficiency of hydrogels. Hydrogel testing must adhere to various regulatory requirements, depending on the application. Here are some of the major regulations that govern hydrogel testing: ISO Standards Hydrogels used in medical applications must comply with specific ISO standards to ensure quality and safety. ISO 10993, for example, provides guidelines for biocompatibility testing of medical devices, including hydrogels. Food and Drug Administration (FDA) In the United States, the FDA regulates hydrogels used in medical devices and drug delivery systems. Hydrogels must meet requirements for safety, efficacy, and biocompatibility, as outlined in FDA guidance documents for medical devices and pharmaceutical products. European Medicines Agency (EMA) The EMA oversees hydrogels used in medicinal products within the European Union. For hydrogels used in drug delivery, compliance with EMA guidelines for safety, quality, and efficacy is mandatory. Good Manufacturing Practices (GMP) Manufacturers of hydrogels must follow GMP guidelines to ensure consistent production quality. GMP includes testing raw materials, maintaining proper documentation, and adhering to standard operating procedures to guarantee product safety and efficacy. Hydrogel testing maintains product quality, ensures safety, and adheres to regulatory requirements across various industries. Quality testing, composition analysis, and performance testing help verify that hydrogels meet the necessary standards for their intended applications. Whether used in medical devices, agriculture, or personal care, rigorous testing helps provide reliable and safe products for consumers. If you are a manufacturer, supplier, or distributor of hydrogels and require assistance finding a qualified third-party testing partner, Submit a Testing Request or Contact Us for more information. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more: PMC Disclaimer | PMC Copyright Notice . 2023 Jan 13;16(2):785. doi: 10.3390/ma16020785 Synthetic tough hydrogels have received attention because they could mimic the mechanical properties of natural hydrogels, such as muscle, ligament, tendon, and cartilage. Many recent studies suggest various approaches to enhance the mechanical properties of tough hydrogels. However, directly comparing each hydrogel property in different reports is challenging because various testing specimen shapes/sizes were employed, affecting the experimental mechanical property values. This study demonstrates how the specimen geometry—the lengths and width of the reduced section—of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systematically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes with various lengths and widths of the reduced section. Unlike the rectangular specimen, which showed an inconsistent measurement of mechanical properties due to a local load concentration near the grip, the dumbbell-shaped specimen exhibited a stable fracture at the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of a numerous tough hydrogels for a fair comparison. Keywords: double-network hydrogel, tough hydrogel, tensile testing, mechanical properties Hydrogels are a significant component of the human body, consisting primarily of three-dimensional polymer networks and water. Natural hydrogels, such as muscle, ligament, tendon, cartilage, and so on, commonly suffer from mechanical damage due to repetitive exercise of tension and compression. For that reason, soft yet tough synthetic hydrogels, including double-network (DN) and poly(allylamine) (PAAm), are emerging to support/replace biological tissues (natural hydrogels) and to further bridge human-machine interfaces as adhesives and surface coating materials. Since a mechanical match between the synthetic hydrogel and surrounding tissues is one of the primary considerations in the development of the practical use of synthetic hydrogels [5,6,7,8,9], many researchers have focused on improving the hydrogel mechanical performance. The hydrogel mechanical properties are usually evaluated through tensile testing using a universal testing machine (UTM) that uses values such as the yield strength, fracture strength, elastic modulus, work of fracture, and fracture toughness. However, because previous reports indicate that hydrogels have a wide variety of specimen shapes and sizes, the improvement of hydrogel mechanical properties compared with the values in previous reports is unclear. Despite this, studies regarding the standardization of hydrogel specimens for a fair comparison of their mechanical properties are lacking. In this study, considering the hypothesis that the mechanical property values vary with the test specimen shapes/sizes, we tensile tested to investigate the influence of the specimen shapes and sizes of a tough hydrogel on the experimental tensile mechanical properties. To systematically compare the values, we prepared variously shaped alginate/polyacrylamide (Alg/PAM) double-network hydrogels with different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section—of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systematically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of a numerous tough hydrogels for a fair comparison. Keywords: double-network hydrogel, tough hydrogel, tensile testing, mechanical properties Hydrogels are a significant component of the human body, consisting primarily of three-dimensional polymer networks and water. Natural hydrogels, such as muscle, ligament, tendon, cartilage, and so on, commonly suffer from mechanical damage due to repetitive exercise of tension and compression. For that reason, soft yet tough synthetic hydrogels, including double-network (DN) and poly(allylamine) (PAAm), are emerging to support/replace biological tissues (natural hydrogels) and to further bridge human-machine interfaces as adhesives and surface coating materials. Since a mechanical match between the synthetic hydrogel and surrounding tissues is one of the primary considerations in the development of the practical use of synthetic hydrogels [5,6,7,8,9], many researchers have focused on improving the hydrogel mechanical performance. The hydrogel mechanical properties are usually evaluated through tensile testing using a universal testing machine (UTM) that uses values such as the yield strength, fracture strength, elastic modulus, work of fracture, and fracture toughness. However, because previous reports indicate that hydrogels have a wide variety of specimen shapes and sizes, the improvement of hydrogel mechanical properties compared with the values in previous reports is unclear. Despite this, studies regarding the standardization of hydrogel specimens for a fair comparison of their mechanical properties are lacking. In this study, considering the hypothesis that the mechanical property values vary with the test specimen shapes/sizes, we tensile tested to investigate the influence of the specimen shapes and sizes of a tough hydrogel on the experimental tensile mechanical properties. To systematically compare the values, we prepared variously shaped alginate/polyacrylamide (Alg/PAM) double-network hydrogels with different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section—of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systematically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of a numerous tough hydrogels for a fair comparison. Keywords: double-network hydrogel, tough hydrogel, tensile testing, mechanical properties Hydrogels are a significant component of the human body, consisting primarily of three-dimensional polymer networks and water. Natural hydrogels, such as muscle, ligament, tendon, cartilage, and so on, commonly suffer from mechanical damage due to repetitive exercise of tension and compression. For that reason, soft yet tough synthetic hydrogels, including double-network (DN) and poly(allylamine) (PAAm), are emerging to support/replace biological tissues (natural hydrogels) and to further bridge human-machine interfaces as adhesives and surface coating materials. Since a mechanical match between the synthetic hydrogel and surrounding tissues is one of the primary considerations in the development of the practical use of synthetic hydrogels [5,6,7,8,9], many researchers have focused on improving the hydrogel mechanical performance. The hydrogel mechanical properties are usually evaluated through tensile testing using a universal testing machine (UTM) that uses values such as the yield strength, fracture strength, elastic modulus, work of fracture, and fracture toughness. However, because previous reports indicate that hydrogels have a wide variety of specimen shapes and sizes, the improvement of hydrogel mechanical properties compared with the values in previous reports is unclear. Despite this, studies regarding the standardization of hydrogel specimens for a fair comparison of their mechanical properties are lacking. In this study, considering the hypothesis that the mechanical property values vary with the test specimen shapes/sizes, we tensile tested to investigate the influence of the specimen shapes and sizes of a tough hydrogel on the experimental tensile mechanical properties. To systematically compare the values, we prepared variously shaped alginate/polyacrylamide (Alg/PAM) double-network hydrogels with different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section—of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systematically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of a numerous tough hydrogels for a fair comparison. Keywords: double-network hydrogel, tough hydrogel, tensile testing, mechanical properties Hydrogels are a significant component of the human body, consisting primarily of three-dimensional polymer networks and water. Natural hydrogels, such as muscle, ligament, tendon, cartilage, and so on, commonly suffer from mechanical damage due to repetitive exercise of tension and compression. For that reason, soft yet tough synthetic hydrogels, including double-network (DN) and poly(allylamine) (PAAm), are emerging to support/replace biological tissues (natural hydrogels) and to further bridge human-machine interfaces as adhesives and surface coating materials. Since a mechanical match between the synthetic hydrogel and surrounding tissues is one of the primary considerations in the development of the practical use of synthetic hydrogels [5,6,7,8,9], many researchers have focused on improving the hydrogel mechanical performance. The hydrogel mechanical properties are usually evaluated through tensile testing using a universal testing machine (UTM) that uses values such as the yield strength, fracture strength, elastic modulus, work of fracture, and fracture toughness. However, because previous reports indicate that hydrogels have a wide variety of specimen shapes and sizes, the improvement of hydrogel mechanical properties compared with the values in previous reports is unclear. Despite this, studies regarding the standardization of hydrogel specimens for a fair comparison of their mechanical properties are lacking. In this study, considering the hypothesis that the mechanical property values vary with the test specimen shapes/sizes, we tensile tested to investigate the influence of the specimen shapes and sizes of a tough hydrogel on the experimental tensile mechanical properties. To systematically compare the values, we prepared variously shaped alginate/polyacrylamide (Alg/PAM) double-network hydrogels with different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section—of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systematically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of a numerous tough hydrogels for a fair comparison. Keywords: double-network hydrogel, tough hydrogel, tensile testing, mechanical properties Hydrogels are a significant component of the human body, consisting primarily of three-dimensional polymer networks and water. Natural hydrogels, such as muscle, ligament, tendon, cartilage, and so on, commonly suffer from mechanical damage due to repetitive exercise of tension and compression. For that reason, soft yet tough synthetic hydrogels, including double-network (DN) and poly(allylamine) (PAAm), are emerging to support/replace biological tissues (natural hydrogels) and to further bridge human-machine interfaces as adhesives and surface coating materials. Since a mechanical match between the synthetic hydrogel and surrounding tissues is one of the primary considerations in the development of the practical use of synthetic hydrogels [5,6,7,8,9], many researchers have focused on improving the hydrogel mechanical performance. The hydrogel mechanical properties are usually evaluated through tensile testing using a universal testing machine (UTM) that uses values such as the yield strength, fracture strength, elastic modulus, work of fracture, and fracture toughness. However, because previous reports indicate that hydrogels have a wide variety of specimen shapes and sizes, the improvement of hydrogel mechanical properties compared with the values in previous reports is unclear. Despite this, studies regarding the standardization of hydrogel specimens for a fair comparison of their mechanical properties are lacking. In this study, considering the hypothesis that the mechanical property values vary with the test specimen shapes/sizes, we tensile tested to investigate the influence of the specimen shapes and sizes of a tough hydrogel on the experimental tensile mechanical properties. To systematically compare the values, we prepared variously shaped alginate/polyacrylamide (Alg/PAM) double-network hydrogels with different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section—of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systematically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of a numerous tough hydrogels for a fair comparison. Keywords: double-network hydrogel, tough hydrogel, tensile testing, mechanical properties Hydrogels are a significant component of the human body, consisting primarily of three-dimensional polymer networks and water. Natural hydrogels, such as muscle, ligament, tendon, cartilage, and so on, commonly suffer from mechanical damage due to repetitive exercise of tension and compression. For that reason, soft yet tough synthetic hydrogels, including double-network (DN) and poly(allylamine) (PAAm), are emerging to support/replace biological tissues (natural hydrogels) and to further bridge human-machine interfaces as adhesives and surface coating materials. Since a mechanical match between the synthetic hydrogel and surrounding tissues is one of the primary considerations in the development of the practical use of synthetic hydrogels [5,6,7,8,9], many researchers have focused on improving the hydrogel mechanical performance. The hydrogel mechanical properties are usually evaluated through tensile testing using a universal testing machine (UTM) that uses values such as the yield strength, fracture strength, elastic modulus, work of fracture, and fracture toughness. However, because previous reports indicate that hydrogels have a wide variety of specimen shapes and sizes, the improvement of hydrogel mechanical properties compared with the values in previous reports is unclear. Despite this, studies regarding the standardization of hydrogel specimens for a fair comparison of their mechanical properties are lacking. In this study, considering the hypothesis that the mechanical property values vary with the test specimen shapes/sizes, we tensile tested to investigate the influence of the specimen shapes and sizes of a tough hydrogel on the experimental tensile mechanical properties. To systematically compare the values, we prepared variously shaped alginate/polyacrylamide (Alg/PAM) double-network hydrogels with different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section—of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systematically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of a numerous tough hydrogels for a fair comparison. Keywords: double-network hydrogel, tough hydrogel, tensile testing, mechanical properties Hydrogels are a significant component of the human body, consisting primarily of three-dimensional polymer networks and water. Natural hydrogels, such as muscle, ligament, tendon, cartilage, and so on, commonly suffer from mechanical damage due to repetitive exercise of tension and compression. For that reason, soft yet tough synthetic hydrogels, including double-network (DN) and poly(allylamine) (PAAm), are emerging to support/replace biological tissues (natural hydrogels) and to further bridge human-machine interfaces as adhesives and surface coating materials. Since a mechanical match between the synthetic hydrogel and surrounding tissues is one of the primary considerations in the development of the practical use of synthetic hydrogels [5,6,7,8,9], many researchers have focused on improving the hydrogel mechanical performance. The hydrogel mechanical properties are usually evaluated through tensile testing using a universal testing machine (UTM) that uses values such as the yield strength, fracture strength, elastic modulus, work of fracture, and fracture toughness. However, because previous reports indicate that hydrogels have a wide variety of specimen shapes and sizes, the improvement of hydrogel mechanical properties compared with the values in previous reports is unclear. Despite this, studies regarding the standardization of hydrogel specimens for a fair comparison of their mechanical properties are lacking. In this study, considering the hypothesis that the mechanical property values vary with the test specimen shapes/sizes, we tensile tested to investigate the influence of the specimen shapes and sizes of a tough hydrogel on the experimental tensile mechanical properties. To systematically compare the values, we prepared variously shaped alginate/polyacrylamide (Alg/PAM) double-network hydrogels with different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section—of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systematically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of a numerous tough hydrogels for a fair comparison. Keywords: double-network hydrogel, tough hydrogel, tensile testing, mechanical properties Hydrogels are a significant component of the human body, consisting primarily of three-dimensional polymer networks and water. Natural hydrogels, such as muscle, ligament, tendon, cartilage, and so on, commonly suffer from mechanical damage due to repetitive exercise of tension and compression. For that reason, soft yet tough synthetic hydrogels, including double-network (DN) and poly(allylamine) (PAAm), are emerging to support/replace biological tissues (natural hydrogels) and to further bridge human-machine interfaces as adhesives and surface coating materials. Since a mechanical match between the synthetic hydrogel and surrounding tissues is one of the primary considerations in the development of the practical use of synthetic hydrogels [5,6,7,8,9], many researchers have focused on improving the hydrogel mechanical performance. The hydrogel mechanical properties are usually evaluated through tensile testing using a universal testing machine (UTM) that uses values such as the yield strength, fracture strength, elastic modulus, work of fracture, and fracture toughness. However, because previous reports indicate that hydrogels have a wide variety of specimen shapes and sizes, the improvement of hydrogel mechanical properties compared with the values in previous reports is unclear. Despite this, studies regarding the standardization of hydrogel specimens for a fair comparison of their mechanical properties are lacking. In this study, considering the hypothesis that the mechanical property values vary with the test specimen shapes/sizes, we tensile tested to investigate the influence of the specimen shapes and sizes of a tough hydrogel on the experimental tensile mechanical properties. To systematically compare the values, we prepared variously shaped alginate/polyacrylamide (Alg/PAM) double-network hydrogels with different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section—of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systematically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of a numerous tough hydrogels for a fair comparison. Keywords: double-network hydrogel, tough hydrogel, tensile testing, mechanical properties Hydrogels are a significant component of the human body, consisting primarily of three-dimensional polymer networks and water. Natural hydrogels, such as muscle, ligament, tendon, cartilage, and so on, commonly suffer from mechanical damage due to repetitive exercise of tension and compression. For that reason, soft yet tough synthetic hydrogels, including double-network (DN) and poly(allylamine) (PAAm), are emerging to support/replace biological tissues (natural hydrogels) and to further bridge human-machine interfaces as adhesives and surface coating materials. Since a mechanical match between the synthetic hydrogel and surrounding tissues is one of the primary considerations in the development of the practical use of synthetic hydrogels [5,6,7,8,9], many researchers have focused on improving the hydrogel mechanical performance. The hydrogel mechanical properties are usually evaluated through tensile testing using a universal testing machine (UTM) that uses values such as the yield strength, fracture strength, elastic modulus, work of fracture, and fracture toughness. However, because previous reports indicate that hydrogels have a wide variety of specimen shapes and sizes, the improvement of hydrogel mechanical properties compared with the values in previous reports is unclear. Despite this, studies regarding the standardization of hydrogel specimens for a fair comparison of their mechanical properties are lacking. In this study, considering the hypothesis that the mechanical property values vary with the test specimen shapes/sizes, we tensile tested to investigate the influence of the specimen shapes and sizes of a tough hydrogel on the experimental tensile mechanical properties. To systematically compare the values, we prepared variously shaped alginate/polyacrylamide (Alg/PAM) double-network hydrogels with different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section—of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systematically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#7) with various lengths and widths of the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of a numerous tough hydrogels for a fair comparison. Keywords: double-network hydrogel, tough hydrogel, tensile testing, mechanical properties Hydrogels are a significant component of the human body, consisting primarily of three-dimensional polymer networks and water. Natural hydrogels, such as muscle, ligament, tendon, cartilage, and so on, commonly suffer from mechanical damage due to repetitive exercise of tension and compression. For that reason, soft yet tough synthetic hydrogels, including double-network (DN) and poly(allylamine) (PAAm), are emerging to support/replace biological tissues (natural hydrogels) and to further bridge human-machine interfaces as adhesives and surface coating materials. Since a mechanical match between the synthetic hydrogel and surrounding tissues is one of the primary considerations in the development of the practical use of synthetic hydrogels [5,6,7,8,9], many researchers have focused on improving the hydrogel mechanical performance. The hydrogel mechanical properties are usually evaluated through tensile testing using a universal testing machine (UTM) that uses values such as the yield strength, fracture strength, elastic modulus, work of fracture, and fracture toughness. However, because previous reports indicate that hydrogels have a wide variety of specimen shapes and sizes, the improvement of hydrogel mechanical properties compared with the values in previous reports is unclear. Despite this, studies regarding the standardization of hydrogel specimens for a fair comparison of their mechanical properties are lacking. In this study, considering the hypothesis that the mechanical property values vary with the test specimen shapes/sizes, we tensile tested to investigate the influence of the specimen shapes and sizes of a tough hydrogel on the experimental tensile mechanical properties. To systematically compare the values, we prepared variously shaped alginate/polyacrylamide (Alg/PAM) double-network hydrogels with different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes (#1–#

without a chemical cross-linker was greater than 2, the stress was quickly relaxed by creeping of the polymer chains, and the hydrogel easily broke upon application of low stress. These results suggest that the conditions for preparing tough and stretchable hydrogels require polymerization with a high monomer concentration and a minute amount of cross-linker. Some papers have reported that as-prepared hydrogels designed using unique strategies exhibit high toughness; however, most of them do not exhibit the mechanical properties of swollen hydrogels after equilibrium swelling in aqueous media. In addition, the mechanical properties of swollen hydrogels are typically utilized in aqueous media. Compression and tensile tests of swollen PAAm hydrogels demonstrated that their fracture strain and stress decreased after equilibrium swelling in aqueous media. The water content of the swollen PAAm hydrogels after equilibrium swelling decreased with increasing cross-linker content (Fig. S2). It should be noted that the swollen PAAm hydrogels prepared with a higher AAm concentration had a lower water content than those prepared with a lower AAm concentration even though they were prepared with the same cross-linker content. This means that polymerization with high monomer concentrations is likely to induce polymer chain entanglements in the resulting hydrogel networks. The decreased fracture stress and strain of swollen hydrogels are caused by an increase in the water content (Fig. S3). Because polymer chains are expanded in swollen hydrogels, they cannot be expanded further by applying stress. In addition, entanglements as physical cross-links are partially loosened during the swelling of hydrogels in aqueous media. Thus, swollen hydrogels break under a smaller strain than as-prepared hydrogels because the applied stress is not effectively dissipated. However, the swollen PAAm hydrogels prepared under polymerization conditions of a high monomer concentration and low cross-linker content retain their high toughness despite equilibrium swelling (Figs. S2 and S3). For the swollen hydrogels with a 0.005 mol% cross-linker content, even if a large strain of more than 90% is applied during compression tests or applied during tensile tests, these hydrogels do not fracture despite the high water content of more than 90%, and they recover to their original shape after the stress is released (Fig. 2b, Figs. S2, S3 and Movie S3b). Of note, the swollen hydrogels prepared with a monomer concentration of 0.005 mol% and a cross-linker content of 0.005 mol% cannot be cut with a knife despite their swollen state (Fig. 2b and Movie S3b). Thus, the as-prepared and swollen PAAm hydrogels prepared with a high monomer concentration and a low cross-linker content demonstrate high mechanical toughness and high stretchability. Relationships between the cross-linked structure and toughness of PAAm hydrogels To elucidate the mechanism by which hydrogels become tough and stretchable, we determined the toughness of PAAm hydrogels from the stress-strain curves during tensile tests. In general, the fracture energy of polymeric materials is determined from the stress-strain curve of notched samples^{6,32,33}. However, we were not able to notch the PAAm hydrogels synthesized in this study because they were very tough. In this study, we defined toughness for the area under the tensile stress-strain curve of an unnotched sample. The toughness is larger than the fracture energy determined using a notched sample because the toughness includes energies not used for growing cracks but also for notching. The PAAm hydrogels prepared with cross-linker content of more than 0.1 mol% have a much lower toughness than those prepared with a cross-linker content less than 0.1 mol% (Fig. 3a). An increase in the monomer content of the polymerization considerably enhanced the toughness of the swollen hydrogels. Of note, the PAAm hydrogel prepared with a monomer concentration of 0.005 mol% exhibited the maximum toughness of 1.6 MJ/m³, although the toughness could not be directly compared with the fracture energy of tough hydrogels prepared by different strategies^{3,15,33,34}. Fig. 3: Toughness of PAAm hydrogels with various cross-linked structures. a Relationship between the cross-linker content and toughness of as-prepared PAAm gels prepared under various preparation conditions. The gels were prepared at AAm concentrations of 1.0 (○), 2.5 (●), and 5.0 mol/L (■). b Effect of the cross-linker content on the cross-linking ratio between the experimental and theoretical cross-linking densities ($\omega_{\text{exp}}/\omega_{\text{theo}}$) of the PAAm gels prepared under various conditions. c Relationship between $\omega_{\text{exp}}/\omega_{\text{theo}}$ and toughness of the PAAm gels prepared under various conditions. In general, the experimental cross-linking density (ω_{exp}) of hydrogels can be determined from their elastic modulus. For example, the ω_{exp} of the as-prepared PAAm hydrogels prepared with an AAm concentration of 1.0 mol/L increased gradually with an increase in the cross-linker content (Fig. S4). Although it is natural that an increase in the cross-linker content results in increasing ω_{exp} of the resulting PAAm hydrogels, not only chemical cross-links based on MBAA but also physical cross-links based on entanglements are included in the ω_{exp} determined from the elastic modulus. To evaluate the chemical and physical cross-links based on MBAA and entanglements, respectively, we determined the theoretical cross-linking density (ω_{theo}) and ω_{exp} of the PAAm hydrogels prepared under various conditions. If the ratio of experimental to theoretical cross-linking densities ($\omega_{\text{exp}}/\omega_{\text{theo}}$) is less than one, unreacted polymerizable groups of MBAA remain in the PAAm hydrogels, and not all MBAA is involved in chemical cross-links. The PAAm hydrogels with $\omega_{\text{exp}}/\omega_{\text{theo}}$ ratios greater than one contained polymer chain entanglements in addition to chemical cross-links based on MBAA. The $\omega_{\text{exp}}/\omega_{\text{theo}}$ ratio of the PAAm hydrogels monotonically decreased with an increase in the cross-linker content (Fig. 3b). The PAAm hydrogel prepared with a cross-linker content of approximately 0.1 mol% has a $\omega_{\text{exp}}/\omega_{\text{theo}}$ ratio of one, which means that the cross-linking density determined from the elastic modulus is equal to that based on a chemical cross-linker. Specifically, the PAAm hydrogels prepared with a cross-linker content of less than 0.1 mol% have physical cross-links that are based on entanglements because they have $\omega_{\text{exp}}/\omega_{\text{theo}}$ ratios greater than one, while the PAAm hydrogels with $\omega_{\text{exp}}/\omega_{\text{theo}}$ ratios less than one have a very low toughness, and the toughness increases considerably with an increase in $\omega_{\text{exp}}/\omega_{\text{theo}}$ to greater than one (Fig. 3c). These results suggest that the entanglement of polymer chains contributes to the high toughness of the PAAm hydrogel with a monomer concentration of 5.0 mol/L and a cross-linker content of 0.005 mol%. In polymer networks with many entanglements, because the applied stress is dissipated by creeping of the polymer chains entangled in the networks, the hydrogels become tough and stretchable. In fact, we observed creeping of the hydrogel prepared with AAm concentrations of 5.0 and 10 mol/L after they were elongated up to strains of 7 and 4, respectively (Fig. S5). Our strategy for preparing tough hydrogels uses the viscous characteristic to allow the applied stress to be relaxed by energy dissipation. In this strategy, a decrease in the cross-linker content enhances the contribution of the viscous characteristic to the mechanical properties of the hydrogels. Dynamic mechanical analysis is useful for evaluating the contribution of the elastic and viscous characteristics to the mechanical properties of hydrogels. We carried out dynamic mechanical analysis of PAAm hydrogels prepared with an AAm concentration of 2.5 mol/L and various cross-linker contents. When the cross-linker content of the PAAm hydrogels decreased, their storage modulus (G') decreased, and the loss modulus (G'') increased (Fig. 4). As a result, the loss factor $\tan\delta$, which is the ratio of G''/G' , increased (Fig. 4a). The $\omega_{\text{exp}}/\omega_{\text{theo}}$ ratio of the PAAm hydrogels with a cross-linker content of less than 0.1 mol% was greater than one, revealing that the entanglements of the polymer chains increased in the hydrogel networks. Therefore, an increase in $\tan\delta$ coincides with an increase in $\omega_{\text{exp}}/\omega_{\text{theo}}$. In addition, the constant G'' in the regime of $\omega_{\text{exp}} > \omega_{\text{theo}}$, as shown in Fig. 4a, indicates that the storage modulus of the PAAm hydrogels is determined by the density of the trapped entanglements. This implies that the PAAm hydrogels in the regime of $\omega_{\text{exp}} > \omega_{\text{theo}}$ were mainly cross-linked by the polymer chain entanglement. Although Fig. 4 might not be strong evidence, we think that an increase in G'' plays an important role in making hydrogels tough despite the slight increase in $\tan\delta$. From these results, we propose a possible mechanism by which the polymer chain entanglements enhance the contribution of the viscous characteristic, which enables energy dissipation, to the mechanical properties of the hydrogels. As a result, tough and stretchable hydrogels can be easily prepared by tuning the conditions for the preparation of networks with many entanglements. Further works about dynamic mechanical analysis and homogeneity of the networks will be performed to clarify the detailed mechanism. Fig. 4: Dynamic mechanical properties of PAAm hydrogels with various cross-linked structures. Effect of the cross-linker content on the storage modulus (G') (a), loss modulus (G'') (b), and loss factor ($\tan\delta$) (c) of the as-prepared PAAm hydrogels prepared at an AAm concentration of 2.5 mol/L and various cross-linker contents. Tough and stretchable zwitterionic polymer hydrogels To demonstrate that the use of a high monomer concentration and low cross-linker content is a universal method for easily making hydrogels tough and stretchable, we used 2-methacryloyloxyethyl phosphorylcholine (MPC), which has been widely used as a biocompatible zwitterionic polymer in the biomedical field, instead of AAm to prepare hydrogels. In general, MPC has been widely utilized to prepare biocompatible polymers. Although hydrogels based on MPC have many potential applications in contact lenses, artificial joints, and other biomaterials³⁶, they have a considerable disadvantage of low mechanical strength (i.e., they are brittle and weak). We tried to prepare tough and stretchable hydrogels using MPC by only tuning the preparation conditions of high monomer concentration and low cross-linker content. To optimize the conditions to prepare hydrogel networks with many entanglements, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) hydrogels were prepared by the copolymerization of MPC and MBAA with a wide range of monomer concentrations and cross-linker contents. Similar to PAAm hydrogels, the PMPC hydrogels with a high cross-linker content easily broke upon application of a low stress in compression tests; however, the PMPC hydrogels with a cross-linker content of less than 0.1 mol% did not break at up to a 95% strain and 6-MPa stress (Fig. 5a, c and Movie S4). Of note, the PMPC hydrogel with a cross-linker content of 0.1 mol% could not be cut with a knife (Fig. 5d and Movie S5). In tensile tests, the PMPC hydrogels with many entanglements underwent large elongations and exhibited the highest fracture strain, differing from the general MPC-based hydrogels (Fig. 5b, e and Movie S6). The Young's modulus of the PMPC hydrogels prepared with MPC concentrations of 2.5, 5, and 10 mol/L and with the same cross-linker content of 0.1 mol% were determined to be 16.6, 60.4, and 74.0 kPa from the initial slopes of the stress-strain curves, respectively. It should be noted that the PMPC hydrogel prepared with a higher MPC concentration exhibited a greater Young's modulus than that prepared with a lower MPC concentration even though the PMPC hydrogels were prepared using the same cross-linker content. Similar to the formation of the PAAm networks, the preparation conditions with a high monomer concentration and a low cross-linker content resulted in the formation of networks with many entanglements of PMPC chains rather than chemical cross-links based on MBAA. Therefore, we conclude that preparation with a high monomer concentration and low cross-linker content is a universal method for preparing tough and stretchable hydrogels because the resulting networks have many physical cross-links based on polymer chain entanglements that act as mobile cross-links for energy dissipation. Thus, tough and stretchable hydrogels can be easily prepared by optimizing the preparation conditions to form many polymer chain entanglements without using complicated methods. Fig. 5: Mechanical properties of PMPC hydrogels prepared under various conditions. a Stress-strain curves of as-prepared PMPC hydrogels with various cross-linker contents during compression tests. The hydrogels were prepared using a cross-linker content of 0.1 mol%. b Stress-strain curves of as-prepared PMPC hydrogels with MPC concentrations of 2.5, 5, and 10 mol/L during tensile tests. The hydrogels were prepared using a cross-linker content of 0.1 mol%. c Photographs of as-prepared PMPC hydrogels with cross-linker contents of (i) 0.1 and (ii) 1.0 mol% during compression tests. The hydrogels were prepared under an MPC concentration of 2.5 mol/L. d Photographs of the as-prepared PMPC hydrogel during tensile tests. The hydrogel was prepared under an MPC concentration of 5.0 mol/L and a cross-linker content of 0.1 mol%. In summary, we have demonstrated a simple and versatile strategy for producing tough and stretchable hydrogels by free radical polymerization of standard hydrophilic monomers. Our strategy is to only tune the polymerization conditions without introducing a special structure or using complicated methods; we can optimize the network structures, which have many polymer chain entanglements for energy dissipation by polymerization conditions with a high monomer concentration and a low cross-linker content. The hydrogels prepared under the optimized conditions have a $\omega_{\text{exp}}/\omega_{\text{theo}}$ ratio greater than one, indicating that the hydrogels contain physical cross-links based on polymer chain entanglements in addition to chemical cross-links based on MBAA. The toughness of the hydrogels increased considerably with an increase in $\omega_{\text{exp}}/\omega_{\text{theo}}$ above than one. Although our strategy uses neither a special structure nor a complicated method, the hydrogels prepared using our strategy exhibited high toughness. Tough and stretchable nonionic PAAm and zwitterionic PMPC prepared under optimized polymerization conditions undergo large elongations, exhibit high fracture strain and cannot be cut with a knife because of the many entanglements as physical cross-links. Our strategy is applicable to preparing tough and stretchable hydrogels from a variety of polymers. Structural design using polymer chain entanglements for energy dissipation to overcome the limitation of low mechanical performance will lead to many practical uses of hydrogels. Hoffmann, A. S. Hydrogels for biomedical applications. *Adv. Drug Deliv. Rev.* 54, 3-12 (2002). Article CAS Google Scholar Peppas, N. A., Hilt, Z., Khademhosseini, A. & Langer, R. Hydrogels: biology and medicine: from molecular principles to biomedical applications. *Adv. Mater.* 18, 1345-1360 (2006). Article CAS Google Scholar Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. *Nat. Rev. Mater.* 1, 1-17 (2016). Article CAS Google Scholar Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. *Science* 356, eaaf3621 (10pp) (2017). Buwalda, S. J., Vermonen, T. & Hemink, G. H. Hydrogels for therapeutic delivery: current developments and future directions. *BioMacromolecules* 18, 516-530 (2017). Article CAS Google Scholar Lake, G. J. & Thomas, A. G. The art of hydrogels. *Prog. Polym. Sci.* 3, 300, 106-119 (1978). Article CAS Google Scholar Lake, G. J. Fatigue and fracture of elastic rubber. *J. Appl. Polym. Sci.* 68, 439-460 (1995). Article CAS Google Scholar Lake, G. J. & Thomas, A. G. Evaluation by dynamic mechanical analysis. *J. Appl. Polym. Sci.* 51, 11-16 (1993). Article CAS Google Scholar Okamura, Y. & Ito, K. The polyacrylate gel: a topological gel with a framework of eight cross-links. *Adv. Mater.* 13, 495-497 (2001). Article CAS Google Scholar Noda, Y., Hayashi, Y. & Ito, K. From topological gels to slide-ring materials. *J. Appl. Polym. Sci.* 131, 40509 (2014). (6pp). Article CAS Google Scholar Haraguchi, K. & Takehisa, T. Novel composite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. *Adv. Mater.* 14, 1120-1124 (2002). Article CAS Google Scholar Gong, J. P., Katsuyama, Y., Kurokawa, T. & Ossuda, Y. Doubly network hydrogels with extremely high mechanical strength. *Adv. Mater.* 15, 1155-1158 (2003). Article CAS Google Scholar Gong, J. P. Why are double network hydrogels so tough? *Soft Matter* 6, 2583-2590 (2010). Article CAS Google Scholar Nakajima, T. Generalization of the sacrificial bond principle for gel and elastomer toughening. *Polym. J.* 49, 447-483 (2017). Article CAS Google Scholar Sun, J.-Y. et al. Highly stretchable and tough hydrogels. *Nature* 489, 133-136 (2012). Article CAS Google Scholar Ducrot, E., Chen, Y., Bulters, M., Sijbesma, R. P. & Creton, C. Toughening elastomers with sacrificial bonds and watching them break. *Science* 344, 186-189 (2014). Article CAS Google Scholar Imran, A. B. et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. *Nat. Commun.* 5, 5124 (2014). (8pp). Article CAS Google Scholar Sun, G., Li, Z., Liang, R., Weng, L.-T. & Zhang, L. Super stretchable hydrogel achieved by non-aggregated spherulites with diameters