
FDUSD - V2

Executive Summary
This audit report was prepared by Quantstamp, the leader in blockchain security.

Type Stablecoin

Timeline 2025-12-01 through 2025-12-04

Language Solidity

Methods
Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification None

Source Code FD-121/fd-stablecoin #PR 4

Auditors
Cameron Biniamow Auditing Engineer

Ibrahim Abouzied Auditing Engineer

Hytham Farah Auditing Engineer

Documentation quality Medium

Test quality Medium

Total Findings 2 Acknowledged: 2

High severity findings 0

Medium severity findings 0

Low severity findings 1 Acknowledged: 1

Undetermined severity
findings

0

Informational findings 1 Acknowledged: 1

Summary of Findings
FDUSD is an upgradeable ERC20 token with an account-freeze feature preventing token transfers, EIP-712 signatures for gasless transactions,
and EIP-7598 functionality for authorized transfers, which can be enabled or disabled by the contract owner.

The audit for the StablecoinV2 contract reveals two vulnerabilities and seven suggestions to improve code quality and adhere to best
practices.

The most critical issue identified is that the initializeV2 function is public and can be manipulated by any caller, as it is protected only by
a reinitializer(2) modifier (FDUSD-1). This allows a malicious actor to front-run the initialization and alter critical state variables. It is
recommended to restrict access to this function using a modifier such as onlyOwner , or to ensure it is called atomically via
upgradeToAndCall . Another notable concern is the risk of front-running when disabling EIP-7598 functionality (FDUSD-2).

Auditor suggestions include implementing backward compatibility for authorization methods, fixing misleading comments about storage slot
availability, adding input validations, removing unused code, and fixing a typo.

Update: All issues and suggestions have been acknowledged or fixed. FDUSD-1 and FDUSD-2 have been acknowledged but not fixed, with the
client providing explanations for both. Of the suggestions, three (S1, S2, and S6) have been successfully addressed through code changes, while
S3 and S5 were acknowledged without changes. S4 is mitigated as only one of the points was fixed.

ID DESCRIPTION SEVERITY STATUS

FDUSD-1 initializeV2() Can Be Front-Run by Arbitrary Callers • Low Acknowledged

FDUSD-2 Disabling EIP-7598 Can Be Front-Run • Informational Acknowledged

Assessment Breakdown
Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best
practices.

https://quantstamp.com/
https://github.com/FD-121/fd-stablecoin/pull/4
https://github.com/FD-121/fd-stablecoin/pull/4/commits/da4553585ffe89713f5d4c58bb19a7dbefd1aa6b

Disclaimer
Only features that are contained within the repositories at the commit hashes specified on the front page of the report are within the
scope of the audit and fix review. All features added in future revisions of the code are excluded from consideration in this report.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence
Timestamp dependence
Mishandled exceptions and call stack limits
Unsafe external calls
Integer overflow / underflow
Number rounding errors
Reentrancy and cross-function vulnerabilities
Denial of service / logical oversights
Access control
Centralization of power
Business logic contradicting the specification
Code clones, functionality duplication
Gas usage
Arbitrary token minting

Methodology

1. Code review that includes the following
1. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and

functionality of the smart contract.
2. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
3. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions

provided to Quantstamp describe.
2. Testing and automated analysis that includes the following:

1. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is
exercised when we run those test cases.

2. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.
3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and

control based on the established industry and academic practices, recommendations, and research.
4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Scope
Files Included

Repo: https://github.com/sgmaoben/fd-stablecoin

Included Paths: src

Operational Considerations
1. Transfer authorizations are only valid in the open interval (validAfter, validBefore), meaning transactions submitted exactly at boundary

timestamps will fail.
2. EIP-1271 smart contract wallet signatures are supported, requiring the from address to implement isValidSignature() if it is a

contract.
3. Authorization nonces use bytes32, allowing flexible strategies, but integrators must ensure unique nonce generation to prevent collisions.
4. The transferWithAuthorization() function is susceptible to front-running; integrators requiring atomic execution should use

receiveWithAuthorization() instead.
5. Signed authorizations remain valid until used or explicitly canceled, even across contract pauses or EIP-7598 disable/enable cycles.
6. The cancelAuthorization() function works regardless of EIP-7598-enabled state, allowing users to revoke pending authorizations even

when the feature is disabled.
7. Block timestamp is used for authorization validity checks, which has ~15 second variance on Ethereum mainnet.
8. Contract upgrades via proxy must call initializeV2() with the correct token name to properly initialize the EIP-712 domain.
9. Frozen accounts cannot receive token transfers, including authorized transfers.

10. The StablecoinV2 contract is upgradeable. Before upgrading the contract, the new contract should be audited to ensure a proper storage
layout.

Key Actors And Their Capabilities
Owner

Inherits from OpenZeppelin's Ownable2StepUpgradeable with a two-step transfer mechanism.

Responsibility: Token supply management, account freezing, emergency pause, EIP-7598 feature control.

Trust Assumption: Expected to be a multisig. Has complete control over token economics and can censor any user by freezing accounts or
pausing the contract.

Exclusive Functions:

StablecoinV2.sol:

mint() - Mint tokens to any non-frozen address
enableEIP7598() - Enable transfer authorization feature
disableEIP7598() - Disable transfer authorization feature

Stablecoin.sol (Inherited):

mint() - Mint tokens to the owner's address
burn() - Burn tokens from the owner's address
freeze() - Block all transfers/approvals for an account
unfreeze() - Restore account functionality
pause() - Halt all token operations globally
unpause() - Resume normal operation
transferOwnership() - Initiate ownership transfer

Proxy Admin

External contract controlling the transparent upgradeable proxy.

Responsibility: Upgrade contract implementation.

Trust Assumption: Separate from Owner, controlled by multisig. Will only upgrade to audited implementations.

Exclusive Functions:
upgrade() - Upgrade to new implementation
upgradeAndCall() - Upgrade and initialize atomically

Findings
FDUSD-1 initializeV2() Can Be Front-Run by Arbitrary Callers • Low Acknowledged

Update
The client acknowledged the issue and provided the following explanation:

Considering on some operation related thing, we chose to use proxyAdmin.upgradeAndCall(proxy,
address(newImpl), initData) to upgrade. This should have avoided the issue mentioned

File(s) affected: src/StablecoinV2.sol

Description: initializeV2() is public and only protected by reinitializer(2) , allowing any externally owned account to invoke it
once after the proxy upgrade. If the upgrade is performed via upgradeTo() (without calldata) or there is a delay before the admin submits the
initializer, a malicious user can frontrun the call, choose an arbitrary _name , and permanently toggle eip7598EnableFlag . Because
__EIP712_init persists the domain separator used for permits and authorizations, attacker-controlled initialization corrupts the signed

domain and invalidates existing signatures.

Recommendation: Restrict initializeV2() to a trusted role (e.g., add onlyOwner) or ensure the upgrade always calls it atomically via
upgradeToAndCall() so untrusted parties cannot race the initializer.

FDUSD-2 Disabling EIP-7598 Can Be Front-Run • Informational Acknowledged

Update
The client acknowledged the issue and provided the following explanation:

acknowledge

File(s) affected: src/StablecoinV2.sol

Description: The contract owner can call disableEIP7598() to prevent calls to transferWithAuthorization() or
receiveWithAuthorization() . However, a user can front-run the disableEIP7598() and execute some EIP-7598 function calls before

the feature is disabled.

Recommendation: If it is important to prevent front-running disableEIP7598() , be sure to pause the contract before submitting the
disableEIP7598() transaction.

Auditor Suggestions
S1 Add Backwards Compatibility for receiveWithAuthorization() Fixed

Update
Fixed by the client in commit 464bd7b04e943467148caac727b030e998fde3ec .

File(s) affected: src/StablecoinV2.sol

Description: transferWithAuthorization() is backwards compatible, as it supports both a EIP-712 and EIP-1271 signatures. However,
receiveWithAuthorization() only accepts the new EIP-1271 signatures, and is not backwards compatible.

Recommendation: Add backwards compatibility by implementing the following function:

function receiveWithAuthorization(
 address from,
 address to,
 uint256 value,
 uint256 validAfter,
 uint256 validBefore,
 bytes32 nonce,
 uint8 v,
 bytes32 r,
 bytes32 s
)

S2 Storage Gap Can Be More Lenient Fixed

Update
Fixed by the client in commit 464bd7b04e943467148caac727b030e998fde3ec .

File(s) affected: src/StablecoinV2.sol

Description: The storage gap is declared as follows:

/**
* @dev Gap for future upgrades
* Total storage slots: 50 - 1 (mapping) = 49
*/
uint256[48] private __gap;

The __gap has 2 storage slots decremented from the full capacity of 50. However, this is unnecessary as StablecoinV2 inherits from
Stablecoin . So long as Stablecoin 's storage is not changed, the storage slots assigned for StablecoinV2 will be iterative and will not

collide with Stablecoin .

Recommendation: If a storage gap of 50 is desired, it can be assigned without consequences.

S3 Missing Input Validation Acknowledged

Update
The client acknowledged the suggestion and provided the following explanation:

since freeze() and unfreeze is an owner only operation, it is relatively safe, we decide not to make
code changes for this version.

File(s) affected: src/Stablecoin.sol

Description: It is important to validate inputs, even if they only come from trusted addresses, to avoid human error. The following instances could
benefit from greater input validation:

1. Stablecoin.freeze() : Validate account is not the zero address.
2. Stablecoin.unfreeze() : Validate account is not the zero address.

Recommendation: Validate the inputs.

S4 Unused Code Mitigated

Update
The client fixed point (2) in commit 464bd7b04e943467148caac727b030e998fde3ec . Point (1) is partially fixed as the
ECDSAUpgradeable and AddressUpgradeable imports were removed, but the libraries are still present in the contract:

// StablecoinV2.sol

using ECDSAUpgradeable for bytes32;
using AddressUpgradeable for address;

File(s) affected: src/StablecoinV2.sol , src/libraries/EIP7598Constants.sol

Description:
1. The StablecoinV2 contract imports ECDSAUpgradeable.sol and AddressUpgradeable.sol , even though it never uses them.
2. In EIP7598Constants , two constants are defined but never used in the codebase:

ERC1271_MAGIC_VALUE (0x1626ba7e)
EIP7598_INTERFACE_ID (0x00000000 - placeholder)

Recommendation: Remove the unused code.

S5 Redundant Events Acknowledged

Update
The client acknowledged the suggestion and provided the following explanation:

it is on purpose. If you check USDC's smart contract, it is the same.

File(s) affected: src/Stablecoin.sol , src/StablecoinV2.sol

Description: The mint() function emits the Mint event, which is redundant since _mint() already emits a Transfer event with the
same data. Similarly, burn() emits the event Burn that contains the same data as the Transfer event in _burn() .

Recommendation: Remove the redundant events.

S6 Typo in Error Message Fixed

Update
Fixed by the client in commit 464bd7b04e943467148caac727b030e998fde3ec .

File(s) affected: src/StablecoinV2.sol

Description: In StablecoinV2.sol on line 32, "disalbed" should be "disabled".

require(eip7598EnableFlag, "EIP7598 is disalbed");

Recommendation: Fix the typo: "EIP7598 is disabled"

Definitions
High severity – High-severity issues usually put a large number of users' sensitive information at risk, or are reasonably likely to lead to
catastrophic impact for client's reputation or serious financial implications for client and users.

Medium severity – Medium-severity issues tend to put a subset of users' sensitive information at risk, would be detrimental for the client's
reputation if exploited, or are reasonably likely to lead to moderate financial impact.

Low severity – The risk is relatively small and could not be exploited on a recurring basis, or is a risk that the client has indicated is low
impact in view of the client's business circumstances.

Informational – The issue does not pose an immediate risk, but is relevant to security best practices or Defence in Depth.

Undetermined – The impact of the issue is uncertain.

Fixed – Adjusted program implementation, requirements or constraints to eliminate the risk.

Mitigated – Implemented actions to minimize the impact or likelihood of the risk.

Acknowledged – The issue remains in the code but is a result of an intentional business or design decision. As such, it is supposed to be
addressed outside the programmatic means, such as: 1) comments, documentation, README, FAQ; 2) business processes; 3) analyses
showing that the issue shall have no negative consequences in practice (e.g., gas analysis, deployment settings).

Appendix
File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise,
after the security review. You are cautioned that a different SHA-256 hash could be (but is not necessarily) an indication of a changed condition
or potential vulnerability that was not within the scope of the review.

Files

Repo: https://github.com/sgmaoben/fd-stablecoin

174...525 ./src/Stablecoin.sol

c91...c68 ./src/StablecoinV2.sol

c6e...f38 ./src/libraries/EIP7598Constants.sol

Test Suite Results
Tests were run using forge test . The test suite produced 56 passing test cases.

Analysing contracts...
Running tests...

Ran 1 test for test/DeployStablecoin.t.sol:DeployStablecoinTest
[PASS] test_Initialize() (gas: 55339)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 229.31ms (74.38ms CPU time)

Ran 13 tests for test/EIP7598.t.sol:EIP7598Test
[PASS] testRevert_CancelAuthorization_NotAuthorizer() (gas: 23100)
[PASS] testRevert_ReceiveWithAuthorization_EIP7598Disabled() (gas: 67651)
[PASS] testRevert_TransferWithAuthorization_AlreadyUsed() (gas: 117605)
[PASS] testRevert_TransferWithAuthorization_EIP7598Disabled() (gas: 46938)
[PASS] testRevert_TransferWithAuthorization_Expired() (gas: 43155)
[PASS] testRevert_TransferWithAuthorization_Frozen() (gas: 106108)
[PASS] testRevert_TransferWithAuthorization_NotYetValid() (gas: 46909)
[PASS] testRevert_TransferWithAuthorization_Paused() (gas: 103150)
[PASS] test_CancelAuthorizatioWhenEIP7598Disabled() (gas: 55359)
[PASS] test_CancelAuthorization() (gas: 49680)
[PASS] test_ReceiveWithAuthorization() (gas: 134149)
[PASS] test_TransferWithAuthorization() (gas: 125290)
[PASS] test_TransferWithAuthorizationVRS() (gas: 124721)
Suite result: ok. 13 passed; 0 failed; 0 skipped; finished in 266.48ms (218.28ms CPU time)

Ran 42 tests for test/Stablecoin.t.sol:StablecoinTest
[PASS] testRevert_ExpiredPermit() (gas: 41056)
[PASS] testRevert_FreezeApprove() (gas: 72902)
[PASS] testRevert_FreezeTransfer() (gas: 73009)
[PASS] testRevert_FreezeTransferFrom() (gas: 132413)
[PASS] testRevert_InvalidBurnAmount() (gas: 24322)
[PASS] testRevert_InvalidBurnOwner() (gas: 19239)
[PASS] testRevert_InvalidFreezeOwner() (gas: 21192)
[PASS] testRevert_InvalidMintOwner() (gas: 19217)
[PASS] testRevert_InvalidNonce() (gas: 68708)
[PASS] testRevert_InvalidOwner() (gas: 21312)
[PASS] testRevert_InvalidPauseOwner() (gas: 18606)
[PASS] testRevert_InvalidPendingOwner() (gas: 49713)
[PASS] testRevert_InvalidSigner() (gas: 71716)
[PASS] testRevert_InvalidUnFreezeOwner() (gas: 21170)
[PASS] testRevert_InvalidUnpauseOwner() (gas: 18565)
[PASS] testRevert_PauseApprove() (gas: 50102)
[PASS] testRevert_PauseDecreaseAllowance() (gas: 84346)
[PASS] testRevert_PauseIncreaseAllowance() (gas: 52667)
[PASS] testRevert_PauseTransfer() (gas: 50142)
[PASS] testRevert_PauseTransferFrom() (gas: 84327)
[PASS] testRevert_ResumePauseDecreaseAllowance() (gas: 70120)
[PASS] testRevert_SignatureReplay() (gas: 111180)
[PASS] test_Approve() (gas: 56148)
[PASS] test_Burn() (gas: 31061)
[PASS] test_CancelPendingOwnership() (gas: 41205)
[PASS] test_DecreaseAllowance() (gas: 63568)
[PASS] test_EIP7598Enabled() (gas: 25720)
[PASS] test_Freeze() (gas: 84170)
[PASS] test_IncreaseAllowance() (gas: 56635)
[PASS] test_Mint() (gas: 40775)
[PASS] test_MintTo() (gas: 92678)
[PASS] test_Pause() (gas: 38166)
[PASS] test_Permit() (gas: 105488)
[PASS] test_ResumePause() (gas: 102712)
[PASS] test_ResumePauseApprove() (gas: 66023)
[PASS] test_ResumePauseIncreaseAllowance() (gas: 66378)
[PASS] test_RevertInvalidAllowance() (gas: 104415)
[PASS] test_RevertInvalidBalance() (gas: 110751)
[PASS] test_TransferFromLimitedPermit() (gas: 121841)
[PASS] test_TransferFromMaxPermit() (gas: 138554)
[PASS] test_TransferOwnership() (gas: 76643)
[PASS] test_Unfreeze() (gas: 50835)
Suite result: ok. 42 passed; 0 failed; 0 skipped; finished in 266.79ms (556.89ms CPU time)

Ran 3 test suites in 318.10ms (762.58ms CPU time): 56 tests passed, 0 failed, 0 skipped (56 total tests)

Code Coverage
Code coverage was generated by running forge coverage . While code coverage is high for the in-scope contracts, the audit team
recommends improving the test suite to achieve 100% coverage in StablecoinV2.sol , particularly by increasing branch coverage.

File % Lines % Statements % Branches % Funcs

script/DeployStablecoin.s.sol 0.00% (0/8) 0.00% (0/9) 100.00% (0/0) 0.00% (0/2)

script/UpgradeStablecoin.s.s
ol

0.00% (0/8) 0.00% (0/8) 100.00% (0/0) 0.00% (0/2)

src/Stablecoin.sol
100.00%
(30/30)

100.00%
(20/20)

100.00% (2/2)
100.00%
(10/10)

src/StablecoinV2.sol
92.68%
(38/41)

93.55%
(29/31)

81.25% (13/16) 91.67% (11/12)

File % Lines % Statements % Branches % Funcs

test/utils/SigUtils.sol 100.00% (8/8) 100.00% (5/5) 100.00% (0/0) 100.00% (3/3)

Total
80.00%
(76/95)

73.97%
(54/73)

83.33% (15/18)
82.76%
(24/29)

Changelog
2025-12-04 - Initial report
2025-12-08 - Final report

About Quantstamp
Quantstamp is a global leader in blockchain security. Founded in 2017, Quantstamp’s mission is to securely onboard the next billion users to Web3
through its best-in-class Web3 security products and services.

Quantstamp’s team consists of cybersecurity experts hailing from globally recognized organizations including Microsoft, AWS, BMW, Meta, and
the Ethereum Foundation. Quantstamp engineers hold PhDs or advanced computer science degrees, with decades of combined experience in
formal verification, static analysis, blockchain audits, penetration testing, and original leading-edge research.

To date, Quantstamp has performed more than 500 audits and secured over $200 billion in digital asset risk from hackers. Quantstamp has
worked with a diverse range of customers, including startups, category leaders and financial institutions. Brands that Quantstamp has worked
with include Ethereum 2.0, Binance, Visa, PayPal, Polygon, Avalanche, Curve, Solana, Compound, Lido, MakerDAO, Arbitrum, OpenSea and the
World Economic Forum.

Quantstamp’s collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to
work with some of the top names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:
Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos
DeFi: Curve, Compound, Maker, Lido, Polygon, Arbitrum, SushiSwap
NFT: OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, Illuvium, NBA Top Shot, Zora
Academic institutions: National University of Singapore, MIT

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated
otherwise by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you
access using the internet or other means, and assumes no obligation to update any information following publication or other making available of
the report to you by Quantstamp.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your
agreement with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized
by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp. Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are
not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for
the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or mean that
Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for determining the
extent to which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no responsibility for the
use of third-party software on any website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any
output generated by such software.

Disclaimer

The review and this report are provided on an as-is, where-is, and as-available basis. To the fullest extent permitted by law, Quantstamp
disclaims all warranties, expressed implied, in connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. You agree
that access and/or use of the report and other results of the review, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE
THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE. This report is based on the scope of materials and documentation
provided for a limited review at the time provided. You acknowledge that Blockchain technology remains under development and is subject to
unknown risks and flaws and, as such, the report may not be complete or inclusive of all vulnerabilities. The review is limited to the materials

identified in the report and does not extend to the compiler layer, or any other areas beyond the programming language, or programming aspects
that could present security risks. The report does not indicate the endorsement by Quantstamp of any particular project or team, nor guarantee
its security, and may not be represented as such. No third party is entitled to rely on the report in any way, including for the purpose of making
any decisions to buy or sell a product, service or any other asset. Quantstamp does not warrant, endorse, guarantee, or assume responsibility for
any product or service advertised or offered by a third party, or any open source or third-party software, code, libraries, materials, or information
to, called by, referenced by or accessible through the report, its content, or any related services and products, any hyperlinked websites, or any
other websites or mobile applications, and we will not be a party to or in any way be responsible for monitoring any transaction between you and
any third party. As with the purchase or use of a product or service through any medium or in any environment, you should use your best
judgment and exercise caution where appropriate.

© 2025 – Quantstamp, Inc. FDUSD - v2

