
BitDCA
Staking contracts

Ackee Blockchain Security

18.9.2025

https://ackeeblockchain.com

Contents
1. Document Revisions. 4

2. Overview . 5

2.1. Ackee Blockchain Security . 5

2.2. Audit Methodology . 6

2.3. Finding Classification. 7

2.4. Review Team . 9

2.5. Disclaimer . 9

3. Executive Summary . 10

Revision 1.0 . 10

Revision 1.1. 11

Revision 2.0. 12

4. Findings Summary . 13

Report Revision 1.0 . 16

Revision Team . 16

System Overview. 16

Trust Model . 16

Findings . 16

Report Revision 1.1 . 55

Revision Team . 55

System Overview . 55

Trust Model . 55

Findings . 55

Report Revision 2.0 . 57

Revision Team . 57

System Overview . 57

Trust Model . 57

Ackee Blockchain Security 2 of 59

Appendix A: How to cite . 58

Ackee Blockchain Security 3 of 59

1. Document Revisions
1.0-draft Draft Report 03.07.2025

1.0 Final Report 16.07.2025

1.1 Fix Review 15.08.2025

2.0 Final Report 18.09.2025

Ackee Blockchain Security 4 of 59

2. Overview
This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain Security
Ackee Blockchain Security is an in-house team of security researchers

performing security audits focusing on manual code reviews with extensive

fuzz testing for Ethereum and Solana. Ackee is trusted by top-tier

organizations in web3, securing protocols including Lido, Safe, and Axelar.

We develop open-source security and developer tooling Wake for Ethereum

and Trident for Solana, supported by grants from Coinbase and the Solana

Foundation. Wake and Trident help auditors in the manual review process to

discover hardly recognizable edge-case vulnerabilities.

Our team teaches about blockchain security at the Czech Technical

University in Prague, led by our co-founder and CEO, Josef Gattermayer, Ph.D.

As the official educational partners of the Solana Foundation, we run the

School of Solana and the Solana Auditors Bootcamp.

Ackee’s mission is to build a stronger blockchain community by sharing our

knowledge.

Ackee Blockchain a.s.

Rohanske nabrezi 717/4

186 00 Prague, Czech Republic

https://ackee.xyz

hello@ackee.xyz

Ackee Blockchain Security 5 of 59

https://github.com/Ackee-Blockchain/wake
https://github.com/Ackee-Blockchain/trident
https://ackee.xyz/school-of-solana
https://ackee.xyz/solana-auditors-bootcamp
https://ackee.xyz
mailto:hello@ackee.xyz

2.2. Audit Methodology
1. Verification of technical specification

The audit scope is confirmed with the client, and auditors are onboarded

to the project. Provided documentation is reviewed and compared to the

audited system.

2. Tool-based analysis

A deep check with Solidity static analysis tool Wake in companion with

Solidity (Wake) extension is performed, flagging potential vulnerabilities

for further analysis early in the process.

3. Manual code review

Auditors manually check the code line by line, identifying vulnerabilities

and code quality issues. The main focus is on recognizing potential edge

cases and project-specific risks.

4. Local deployment and hacking

Contracts are deployed in a local Wake environment, where targeted

attempts to exploit vulnerabilities are made. The contracts' resilience

against various attack vectors is evaluated.

5. Unit and fuzz testing

Unit tests are run to verify expected system behavior. Additional unit or

fuzz tests may be written using Wake framework if any coverage gaps are

identified. The goal is to verify the system’s stability under real-world

conditions and ensure robustness against both expected and unexpected

inputs.

Ackee Blockchain Security 6 of 59

https://getwake.io
https://marketplace.visualstudio.com/items?itemName=AckeeBlockchain.tools-for-solidity
https://getwake.io
https://getwake.io

2.3. Finding Classification
A Severity rating of each finding is determined as a synthesis of two sub-

ratings: Impact and Likelihood. It ranges from Informational to Critical.

If we have found a scenario in which an issue is exploitable, it will be assigned

an impact rating of High, Medium, or Low, based on the direness of the

consequences it has on the system. If we haven’t found a way, or the issue is

only exploitable given a change in configuration (system settings or

parameters, such as deployment scripts, compiler configurations, using multi-

signature wallets for owners, etc.) or given a change in the codebase, then it

will be assigned an impact rating of Warning or Info.

Low to High impact issues also have a Likelihood, which measures the

probability of exploitability during runtime.

The full definitions are as follows:

Severity

Likelihood

High Medium Low N/A

Impact

High Critical High Medium -

Medium High Medium Low -

Low Medium Low Low -

Warning - - - Warning

Info - - - Info

Table 1. Severity of findings

Ackee Blockchain Security 7 of 59

Impact

• High - Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

• Medium - Code that activates the issue will result in consequences of

serious substance.

• Low - Code that activates the issue will have outcomes on the system that

are either recoverable or don’t jeopardize its regular functioning.

• Warning - The issue cannot be exploited given the current code and/or

configuration, but could be a security vulnerability if these were to

change slightly. If we haven’t found a way to exploit the issue given the

time constraints, it might be marked as a "Warning" or higher, based on our

best estimate of whether it is currently exploitable.

• Info - The issue is on the borderline between code quality and security.

Examples include insufficient logging for critical operations. Another

example is that the issue would be security-related if code or

configuration was to change.

Likelihood

• High - The issue is exploitable by virtually anyone under virtually any

circumstance.

• Medium - Exploiting the issue currently requires non-trivial preconditions.

• Low - Exploiting the issue requires strict preconditions.

Ackee Blockchain Security 8 of 59

2.4. Review Team
The following table lists all contributors to this report. For authors of the

specific revision, see the “Revision team” section in the respective “Report

revision” chapter.

Member’s Name Position

Jan Kalivoda Lead Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.5. Disclaimer
We’ve put our best effort to find all vulnerabilities in the system, however our

findings shouldn’t be considered as a complete list of all existing issues. The

statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

Ackee Blockchain Security 9 of 59

3. Executive Summary
BitDCA is a protocol that enables automatic micro-savings for card payments.

Staking contracts is a subcomponent of BitDCA that allows users to stake

BDCA tokens and earn rewards.

Revision 1.0
BitDCA engaged Ackee Blockchain Security to perform a security review of

BitDCA Staking contracts with a total time donation of 6 engineering days in a

period between June 23 and July 3, 2025, with Jan Kalivoda as the lead

auditor.

The audit was performed on the commit c62d3dd[1] in the private repository

and the scope was the following:

• Staking.sol

• StakingNFT.sol

We began our review using static analysis tools, including Wake. We then took

a deep dive into the logic of the contracts. For testing and fuzzing, we

involved Wake testing framework. The Staking contract had an integration

with an out-of-scope contract (Presale.sol) which was treated as a black box

for the review purposes. During the review, we paid special attention to:

• ensuring the arithmetic of the system is correct;

• checking the fairness of the reward distribution;

• ensuring the staking process matches the expected behavior;

• detecting possible reentrancies in the code;

• ensuring access controls are not too relaxed or too strict; and

• looking for common issues such as data validation.

Ackee Blockchain Security 10 of 59

https://getwake.io
https://getwake.io

Our review resulted in 24 findings, ranging from Info to High severity. The

most severe one is the H2 issue, which causes the reward distribution to be

malformed. Several mechanisms in the code need to be completely reworked

(such as the internal accounting, or NFT management), thus the codebase is

not ready for deployment.

Ackee Blockchain Security recommends BitDCA:

• address all identified issues;

• create documentation for the codebase;

• create a comprehensive test suite; and

• perform another audit of the codebase.

See Report Revision 1.0 for the system overview and trust model.

Revision 1.1
BitDCA engaged Ackee Blockchain Security to perform a fix review of the

findings from the previous revision.

The review was performed between August 14 and August 15, 2025 on the

commit 522ad96[2]. The scope was fixes of the previous revision. All the

findings were addressed and the codebase is significantly improved.

However, the distribution function is still flawed and instead of Presale

contract integration, there was introduced PancakeSwap V2 router for price

calculation, which can also cause problems on distribution (see W7 price

manipulation issue).

Ackee Blockchain Security recommends BitDCA:

• use oracles for price calculation during rewards distribution;

• define a specification for the distribution function and adjust the logic to

match it; and

Ackee Blockchain Security 11 of 59

• perform an audit of the new changes before deployment.

See Report Revision 1.1 for more information about the revision.

Revision 2.0
BitDCA engaged Ackee Blockchain Security to perform a reaudit of BitDCA

Staking contracts with a total time donation of 1 engineering days to address

unresolved issues from the previous revision. The audit was performed on the

commit c05674c[3].

The issues were addressed and resolved. It is important to note that the

protocol functioning is heavily dependent on the behavior of the privileged

roles. Namely, the distribution of rewards and the protocol parameters

configuration.

Ackee Blockchain Security recommends BitDCA:

• write a comprehensive test suite; and

• simulate distribution transactions before executing them.

See Report Revision 2.0 for more information about the revision.

[1] full commit hash: c62d3dda6db241dd4be5088d410971b23db43c5e

[2] full commit hash: 522ad9645069128cd6fc55258f46478586a40262

[3] full commit hash: c05674ce62418572d1fb393efd7fcfe205c93259

Ackee Blockchain Security 12 of 59

4. Findings Summary
The following section summarizes findings we identified during our review.

Unless overridden for purposes of readability, each finding contains:

• Description

• Exploit scenario (if severity is low or higher)

• Recommendation

• Fix (if applicable).

Summary of findings:

Critical High Medium Low Warning Info Total

0 3 2 6 7 7 25

Table 2. Findings Count by Severity

Findings in detail:

Finding title Severity Reported Status

H1: Inverted logic in NFT

transfer hook

High 1.0 Fixed

H2: The distributeRewards

function is flawed

High 1.0 Fixed

H3: The project is not

compatible with smart

accounts

High 1.0 Fixed

M1: Hardcoded Decimal

Assumptions

Medium 1.0 Fixed

M2: Stake amount

restriction can be bypassed

Medium 1.0 Fixed

Ackee Blockchain Security 13 of 59

Finding title Severity Reported Status

L1: Unsafe ERC20 Operations Low 1.0 Fixed

L2: Inconsistent Access

Control

Low 1.0 Fixed

L3: Max stake amount can

be exceeded

Low 1.0 Fixed

L4: Missing Events for

Critical State Changess

Low 1.0 Fixed

L5: Missing Pause Modifier

on Reward Distribution

Low 1.0 Fixed

L6: Mint function is

performing safe mint

Low 1.0 Fixed

W1: Affiliate program

integration

Warning 1.0 Fixed

W2: Insufficient Data

Validation

Warning 1.0 Fixed

W3: Potential lack of funds Warning 1.0 Acknowledged

W4: Potential reentrancy

due to NFT hook

Warning 1.0 Fixed

W5: Uninitialized variables

and roles

Warning 1.0 Fixed

W6: Unknown swap

conditions

Warning 1.0 Fixed

I1: Code duplication Info 1.0 Fixed

I2: Division by Zero in Reward

Calculation

Info 1.0 Fixed

Ackee Blockchain Security 14 of 59

Finding title Severity Reported Status

I3: Ambiguous error

messages

Info 1.0 Fixed

I4: Use of magic numbers Info 1.0 Fixed

I5: Missing documentation Info 1.0 Fixed

I6: Typos Info 1.0 Fixed

I7: Unused variables Info 1.0 Fixed

W7: Potential price

manipulation on rewards

distribution

Warning 1.1 Fixed

Table 3. Table of Findings

Ackee Blockchain Security 15 of 59

Report Revision 1.0

Revision Team

Member’s Name Position

Jan Kalivoda Lead Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

System Overview
The protocol implements a staking system with NFT-based positions and

tiered rewards. It allows users to lock their BDCA tokens for predefined

periods in exchange for bonuses. There is also an option for additional bonus

distribution during the staking period in USDT and BDCA.

Trust Model
The admin has excessive powers across all contracts, creating a potential

single point of failure. The admin can change critical parameters,

pause/unpause at will, modify tier parameters that affect user funds, and

withdraw all tokens at any time via the rescueToken function. Also the

contracts can be upgraded to different implementations.

Findings
The following section presents the list of findings discovered in this revision.

For the complete list of all findings, Go back to Findings Summary

Ackee Blockchain Security 16 of 59

H1: Inverted logic in NFT transfer hook

High severity issue

Impact: High Likelihood: Medium

Target: StakingNFT.sol Type: Logic error

Description

In the _beforeTokenTransfer hook, the code checks if the receiver has code

and sets it as the last wallet owner (_lastWalletOwners) if it does.

Listing 1. Excerpt from StakingNFT

141 {
142 uint32 size;
143
144 assembly {
145 size := extcodesize(to)
146 }
147
148 if(size > 0) {
149 _lastWalletOwners[firstTokenId] = to;
150 }
151
152 super._beforeTokenTransfer(from, to, firstTokenId, batchSize);
153 }

This variable is used in the currentRealOwner function. The function checks if

the NFT owner has code and returns the last wallet owner if it does.

Listing 2. Excerpt from StakingNFT

92 function currentRealOwner(uint256 _tokenId) public virtual view returns
 (address) {
93 uint32 size;
94 address addr = ownerOf(_tokenId);
95
96 assembly {
97 size := extcodesize(addr)

Ackee Blockchain Security 17 of 59

98 }
99
100 if(size > 0) {
101 return _lastWalletOwners[_tokenId];
102 }
103
104 return addr;
105 }

The intended logic tracks EOA holders in case the NFT is temporarily held by a

contract. However, the current implementation causes rewards to be

distributed to the holding contract instead of the EOA owner. As a result, the

currentRealOwner function always returns the same value as the ownerOf

function, which violates the intended logic.

Exploit scenario

Alice, a user, decides to list the NFT representing her staking position on a

marketplace while continuing to receive rewards in the meantime. However,

due to the inverted hook logic, the rewards are distributed to the

marketplace contract instead of Alice’s EOA address.

Recommendation

If the intended logic should be preserved, the hook must set the last wallet

owner only when the receiver does not have code. However, this logic is also

problematic because users with smart accounts will not be eligible for

rewards (see H3). If this solution is intended only for EOA holders, it must be

clearly communicated to users.

Fix 1.1

The relevant code is removed.

Go back to Findings Summary

Ackee Blockchain Security 18 of 59

H2: The distributeRewards function is flawed

High severity issue

Impact: Medium Likelihood: High

Target: Staking.sol Type: Logic error

Description

The distributeRewards function contains several logic flaws that can lead to:

• unfair distribution of rewards;

• loss of rewards; and

• denial of service.

First, rewards can only be distributed within specific ranges. These ranges

could be very large, either because of the number of participants in staking

or because malicious stakers want to prevent rewards from being distributed.

Large ranges can lead to denial of service, and rewards must then be

distributed in smaller chunks. Depending on the conditions, this can be very

costly for the distributor, or some staking participants will not receive any

rewards.

Second, another problem arises when the distributeRewards function is called

multiple times over the same token holders, since there are no updates to the

accounting. Before iterating over the token holders, the usdtTotalShareAmount

is calculated as the balance of USDT in the contract. Then bonuses are

calculated based on the available USDT amount and staking ratio. BDCA and

USDT are transferred during the iteration without updates to the accounting,

and thus the USDT or BDCA amounts can potentially be emptied before

distribution completes.

Last but not least, the total staked amount includes expired NFT locks. Once

Ackee Blockchain Security 19 of 59

someone stakes after their lock expires, they will not receive any more

rewards but generally cause fewer rewards to be distributed because they

own a percentage of the share.

The function needs to be completely reworked.

Listing 3. Excerpt from Staking

409 uint256 usdtTotalShareAmount = usdtToken.balanceOf(address(this));
410
411 for(uint256 i = _fromNftId; i <= _tillNftId; i++) {
412 if(_eligibleNftId(i)) {
413 address tokenOwner = stakingNft.currentRealOwner(i);
414 uint256 stakedAmount = nftLockedAmount[i];
415 // calculate both BDCA and USDT bonuses
416 (bdcaBonus, usdtBonus) = calculateBonuses(
417 usdtTotalShareAmount,
418 totalStaked,
419 stakedAmount,
420 nftTier[i]
421);
422
423 // Distribute BDCA and USDT bonuses to NFT owner
424 if(bdcaBonus > 0) {
425 bdcaToken.safeTransfer(tokenOwner, bdcaBonus);
426 }
427
428 if(usdtBonus > 0) {
429 usdtToken.safeTransfer(tokenOwner, usdtBonus);
430 }

Exploit scenario

Bob, the distributor, calls the distributeRewards function over a large range of

token IDs. The function runs out of gas and reverts, forcing him to call it again

with smaller ranges. However, only the first call results in the intended

distribution according to the deposited amount. All subsequent calls

distribute fewer rewards as the contract’s USDT balance decreases.

Ackee Blockchain Security 20 of 59

Recommendation

Rewrite the distributeRewards function to use a pull-based design pattern. It

will not directly send tokens to all recipients, but instead, it will perform

changes in the contract’s accounting and users will be able to claim their

rewards on their own. This approach will prevent huge gas requirements and

potential denial of service. Then it is important to specify the business

requirements for the distribution of rewards. According to that, state

variables representing the inner state should be created that will allow

changing the accounting fairly and efficiently. There are multiple options for

making rewards available to users without expired locks. Rewards can be

streamed continuously, in a time-based manner, made available for

redemption in epochs, or distributed through other mechanisms.

Update 1.1

The distributeRewards function has been updated; however, it still contains

some flaws. The function continues to loop over the stakeholders, which is

inefficient. Additionally, new logic involving rounds has been introduced, but

its purpose is unclear. This logic does not prevent double distributions across

multiple calls and also allows the total distributed amount in a round to be

exceeded through separate distribution amounts.

Fix 2.0

The function is reworked to operate according to the clarified specification

and is functioning as intended. However, correct parameter settings by the

distributor are now essential to achieve the desired distribution.

Go back to Findings Summary

Ackee Blockchain Security 21 of 59

H3: The project is not compatible with smart
accounts

High severity issue

Impact: High Likelihood: Medium

Target: StakingNFT.sol, Staking.sol Type: Logic error

Description

The function for reward distribution uses the currentRealOwner function to

get the owner of the NFT.

Listing 4. Excerpt from Staking

411 for(uint256 i = _fromNftId; i <= _tillNftId; i++) {
412 if(_eligibleNftId(i)) {
413 address tokenOwner = stakingNft.currentRealOwner(i);

Listing 5. Excerpt from StakingNFT

92 function currentRealOwner(uint256 _tokenId) public virtual view returns
 (address) {
93 uint32 size;
94 address addr = ownerOf(_tokenId);
95
96 assembly {
97 size := extcodesize(addr)
98 }
99
100 if(size > 0) {
101 return _lastWalletOwners[_tokenId];
102 }
103
104 return addr;
105 }

The currentRealOwner function uses the _lastWalletOwners variable to get the

Ackee Blockchain Security 22 of 59

EOA owner of the NFT. However, if the stake function is called with an account

that has code from the beginning, it can result in the currentRealOwner

returning the zero address. In that case, once distributeRewards is called, it

sends rewards to the zero address.

Exploit scenario

Alice, a user, uses a Safe account to stake BDCA. She holds the stake position

in the Safe account for years, while not receiving any rewards, because they

are sent to the zero address.

Recommendation

Change the way distribution works (see H3) to solve the issue. Otherwise,

avoid recognizing EOAs and smart contracts, since after the latest hardfork

(EIP-7702), it does not make sense to build logic upon that.

Fix 1.1

The relevant code is removed.

Go back to Findings Summary

Ackee Blockchain Security 23 of 59

M1: Hardcoded Decimal Assumptions

Medium severity issue

Impact: High Likelihood: Low

Target: Staking.sol Type: Arithmetics

Description

The Staking.sol contract uses hardcoded decimal assumptions for the BDCA

and USDT tokens (both 18 decimals). While the BDCA token is custom and

deployment is intended only for the BSC network, where USDT also has 18

decimals, this approach is safe. However, these tokens must always have 18

decimals, or they must be correctly handled with different decimals. On other

chains, such as Ethereum, USDT commonly has 6 decimals.

Listing 6. Excerpt from Staking

408 uint256 usdtBonus;
409 uint256 usdtTotalShareAmount = usdtToken.balanceOf(address(this));
410
411 for(uint256 i = _fromNftId; i <= _tillNftId; i++) {
412 if(_eligibleNftId(i)) {
413 address tokenOwner = stakingNft.currentRealOwner(i);
414 uint256 stakedAmount = nftLockedAmount[i];
415 // calculate both BDCA and USDT bonuses
416 (bdcaBonus, usdtBonus) = calculateBonuses(
417 usdtTotalShareAmount,
418 totalStaked,
419 stakedAmount,
420 nftTier[i]
421);

Exploit scenario

Alice, the contract admin, decides to deploy the Staking contract on the

Ethereum network. Since USDT has 6 decimals on Ethereum, the conversion

Ackee Blockchain Security 24 of 59

rate becomes malformed and leads to a loss of funds.

Recommendation

Ensure the tokens always have 18 decimals, or implement correct handling for

tokens with different decimals.

Fix 1.1

The USDT token has been replaced with a custom token that can be set

arbitrarily; however, the number of decimals for this token is now explicitly

specified and handled in the contract during value conversion between the

BDCA token and the custom token in the calculateBonuses function.

Go back to Findings Summary

Ackee Blockchain Security 25 of 59

M2: Stake amount restriction can be bypassed

Medium severity issue

Impact: Medium Likelihood: Medium

Target: Staking.sol Type: Logic error

Description

The stakeBonusAmount function does not have any restrictions on the stake

amount like the other stake functions have.

Listing 7. Excerpt from Staking

287 function stakeBonusAmount(address _staker, uint256 _amount, uint8 _tier)
288 external
289 virtual
290 notPaused
291 onlyRole(BONUS_PROVIDER_ROLE)
292 {
293 LockDuration storage currentTierLockDuration = tierLockDuration[_tier];
294
295 require(currentTierLockDuration._years > 0
296 || currentTierLockDuration._months > 0
297 || currentTierLockDuration._days > 0, "Tier does not exist");
298
299 bdcaToken.safeTransferFrom(msg.sender, address(this), _amount);

Additionally, it also allows staking within private tiers.

Exploit scenario

Alice, a user, encounters a situation where the maximum stake amount is

reached. Alice calls the stakeBonusAmount function (through CCIP relayer) and

exceeds the maximum amount.

Alternatively, Bob, another user, sets the minimum amount. Bob calls the

stakeBonusAmount function (through CCIP relayer) with a stake amount equal

Ackee Blockchain Security 26 of 59

to 1 wei. As a result, NFT emission is spammed to prevent the distribution of

rewards.

Recommendation

Implement proper stake amount restrictions in the stakeBonusAmount function

to match the validation applied to other staking functions. Also, if staking to

private tiers is not desired, there should be additional restrictions on that.

Fix 1.1

The _validateStakeParameters function is implemented and is now

consistently called in all staking operations.

Go back to Findings Summary

Ackee Blockchain Security 27 of 59

L1: Unsafe ERC20 Operations

Low severity issue

Impact: Low Likelihood: Low

Target: Staking.sol Type: Data validation

Description

The contract uses direct transferFrom and transfer methods instead of using

SafeERC20 library methods consistently. Some ERC20 tokens don’t return

boolean values or return false on failure, which could lead to silent failures.

While SafeERC20 library is imported, it’s not used consistently throughout the

contract, creating potential for silent transfer failures with non-standard

ERC20 tokens.

Listing 8. Excerpt from Staking

358 bdcaToken.transferFrom(vaultAddress, address(this), parentBonus);

Listing 9. Excerpt from Staking

451 require(
452 IERC20Metadata(_token).transfer(msg.sender, balance),
453 "Token transfer failed"
454);

Exploit scenario

Alice, the contract admin, attempts to rescue tokens from the contract using

the rescueToken function with an ERC20 token that does not return boolean

values (like USDT). The direct transfer call fails but does not revert the

transaction. The contract continues execution believing the transfer

succeeded.

Ackee Blockchain Security 28 of 59

Recommendation

Use SafeERC20 library methods consistently throughout the contract instead

of direct transferFrom and transfer calls.

Fix 1.1

The SafeERC20 library is now used consistently throughout the contract.

Go back to Findings Summary

Ackee Blockchain Security 29 of 59

L2: Inconsistent Access Control

Low severity issue

Impact: Low Likelihood: Low

Target: StakingNFT.sol Type: Access control

Description

The StakingNFT contract implements a custom owner() and

transferOwnership() function alongside AccessControl, creating two parallel

permission systems. This inconsistency creates confusion about which

permission system to use and potential security gaps.

Listing 10. Excerpt from StakingNFT

83 function owner() public view returns(address) {
84 return _owner;
85 }
86
87 function transferOwnership(address newOwner) public virtual
 onlyRole(DEFAULT_ADMIN_ROLE) {
88 require(newOwner != address(0), "Ownable: new owner is the zero
 address");
89 _owner = newOwner;

The contract uses both OpenZeppelin’s AccessControl (with

DEFAULT_ADMIN_ROLE) and a custom ownership pattern, which creates

ambiguity about which system controls what functionality and could lead to

privilege escalation or access control bypass.

Exploit scenario

Alice, the current owner of the StakingNFT contract, decides to transfer

ownership to Bob, a new protocol administrator. She calls

transferOwnership(bob), which updates the _owner variable to Bob’s address.

Ackee Blockchain Security 30 of 59

However, this function does not transfer the DEFAULT_ADMIN_ROLE in the

AccessControl system, which remains with Alice.

Recommendation

Remove the custom ownership pattern and use only the AccessControl

contract.

Fix 1.1

The owner functionality is now explicitly documented as not being used for

access control.

Go back to Findings Summary

Ackee Blockchain Security 31 of 59

L3: Max stake amount can be exceeded

Low severity issue

Impact: Low Likelihood: Medium

Target: Staking.sol Type: Logic error

Description

The maxStake amount is a maximum amount of stake that can be reached.

However, the totalStaked variable is tracking the total amount of deposited

tokens, plus the bonus amount. During deposits, the maxStake amount is

validated against the new amount passed to the staking contract and not the

amount, plus bonuses. As a result, it is possible to exceed the maxStake

amount. According to current setting of staking tiers it can be up 30%, but it

may be more with different tiers.

Listing 11. Excerpt from Staking

314 function stake(uint256 _amount, uint8 _tier)
315 external
316 virtual
317 notPaused
318 nonReentrant
319 {
320 require(_amount >= minStake, "Amount is below the minimum stake");
321 uint256 stakingAmountWithBonus = calculateStakeBonus(_amount, _tier);
322
323 require(totalStaked + _amount <= maxStake, "Exceeds max total staked");

Listing 12. Excerpt from Staking

375 totalStaked += stakingAmountWithBonus;
376
377 emit Staked(msg.sender, stakingAmountWithBonus, lockDuration, tokenId);
378 }

Ackee Blockchain Security 32 of 59

Exploit scenario

The totalStaked amount is equal to 900 and the max stake amount is 1000.

Alice stakes 99 tokens, but instead of setting totalStaked to 990, it is set to

1017 (including bonus). As a result, the maxStake amount is exceeded.

Recommendation

Ensure the maxStake amount can not be exceeded. Or document intentions of

the current behavior.

Fix 1.1

The amount is now properly validated on all entrypoints.

Go back to Findings Summary

Ackee Blockchain Security 33 of 59

L4: Missing Events for Critical State Changess

Low severity issue

Impact: Low Likelihood: Medium

Target: Staking.sol, StakingNFT.sol Type: Logging

Description

Many admin functions don not emit events for critical state changes,

reducing transparency and making it harder for off-chain monitoring systems

to track important protocol changes. Missing events in Staking.sol are in

functions such as:

• pause

• unpause

• setMinStake

• setVaultAddress

• updatePresaleAddress

• updateStakingNftAddress

• updateBDCATokenAddress

• updateUSDTTokenAddress

• updateTier

• updateRevenueLanchingStatus

• rescueToken

Then in StakingNFT.sol those are:

• updateStakingAddress

• updateBaseURI

Ackee Blockchain Security 34 of 59

• transferOwnership

Exploit scenario

Alice, the contract admin, calls the pause function in Staking.sol. The function

does not emit an event for this critical state change.

Recommendation

Add events for critical state changes.

Fix 1.1

The events are now present.

Go back to Findings Summary

Ackee Blockchain Security 35 of 59

L5: Missing Pause Modifier on Reward Distribution

Low severity issue

Impact: Medium Likelihood: Low

Target: Staking.sol Type: Logic error

Description

The distributeRewards function is not protected by the notPaused modifier,

allowing it to be called even when the protocol is paused. This allows the flow

of funds in case of a pause.

Exploit scenario

Alice, the contract admin, calls the pause function in Staking.sol. The protocol

is paused paused but a off-chain bot that is responsible for triggering the

reward distribution is not aware of the pause and continues to distribute

rewards.

Recommendation

Add notPaused modifier to the distributeRewards function.

Fix 1.1

The notPaused modifier is added to the distributeRewards function.

Go back to Findings Summary

Ackee Blockchain Security 36 of 59

L6: Mint function is performing safe mint

Low severity issue

Impact: Low Likelihood: Medium

Target: StakingNFT.sol Type: Standards

violation

Description

The mint function in the StakingNFT contract has the same behavior as

expected from a safeMint function. While it is not defined in the ERC-721

standard, it is expected that the mint function skips calling the

onERC721Received function. In this case, this function is called.

Exploit scenario

Alice, the minting authority, calls the mint function where the receiver is a

contract that does not have the onERC721Received function implemented. As a

result, the transaction reverts.

Recommendation

Make a distinction between mint and safeMint functions.

Fix 1.1

Both functions are now implemented.

Go back to Findings Summary

Ackee Blockchain Security 37 of 59

W1: Affiliate program integration

Impact: Warning Likelihood: N/A

Target: Staking.sol Type: Logic error

Description

The stake function attempts to retrieve staking bonuses based on the

affiliate program in the Presale contract for all deposits above 1000 BDCA.

Since the Presale contract is out of scope, its behavior cannot be exactly

verified; however, from the perspective of the Staking contract, it allows

bonuses to be obtained for each stake.

This part of the function introduces non-trivial complexity due to the

integration with the Presale contract.

Listing 13. Excerpt from Staking

339 if(_amount >= 1000 ether) {
340 uint256 affiliatedId = presale.addressToAffiliateId(msg.sender);
341 bool isFounder = presale.isFounder(msg.sender);
342
343 if(affiliatedId > 0 && !isFounder) {
344 address parentAddress = presale.affiliateIdToAddress(
345
 presale.affiliateIdToParentAffiliateId(affiliatedId)
346);
347 uint256 parentNftbalance = stakingNft.balanceOf(parentAddress);
348
349 if(parentNftbalance > 0) {
350 for(uint256 i; i < parentNftbalance; i++) {
351 uint256 parentTokenId =
 stakingNft.tokenOfOwnerByIndex(parentAddress, i);
352
353 if(_eligibleNftId(parentTokenId)) {
354 uint256 parentBonus =
 tierAffiliateBonusPersentages[_tier] * _amount / TIER_DENOMINATOR;
355 if(parentBonus > 0) {
356 nftLockedAmount[parentTokenId] += parentBonus;

Ackee Blockchain Security 38 of 59

357 totalStaked += parentBonus;
358 bdcaToken.transferFrom(vaultAddress, address(this),
 parentBonus);
359 }
360 break;
361 }
362 }
363 }
364 }
365 }

Any revert from the Presale contract will revert the staking call and

potentially block staking.

Recommendation

Perform an audit of the Presale contract integration or remove the affiliate

logic from the Staking contract.

Fix 1.1

The Presale contract is set but is not used anywhere; therefore, this finding is

no longer relevant.

Go back to Findings Summary

Ackee Blockchain Security 39 of 59

W2: Insufficient Data Validation

Impact: Warning Likelihood: N/A

Target: Staking.sol Type: Data validation

Description

The Staking.sol contract does not sufficiently validate the data provided to

the admin setter functions. Thorough data validation is important to prevent

configuration issues and strengthen trust assumptions toward the protocol.

Exploit scenario

Recommendation

Define reasonable bounds for protocol parameters and apply checks in the

setter functions to satisfy them.

Fix 1.1

The data validation is addedd.

Go back to Findings Summary

Ackee Blockchain Security 40 of 59

W3: Potential lack of funds

Impact: Warning Likelihood: N/A

Target: Staking.sol Type: Logic error

Description

During deposits, the bonus amount is pulled from the vault. Continuous

staking and unstaking is covered until the contract receives USDT and

distribution starts. Then, if there is no mechanism for covering BDCA tokens, it

can cause a lack of funds for users who want to unstake.

Recommendation

Ensure that after rewards distribution, the contract is liquid enough to cover

all unstake operations.

Go back to Findings Summary

Ackee Blockchain Security 41 of 59

W4: Potential reentrancy due to NFT hook

Impact: Warning Likelihood: N/A

Target: Staking.sol Type: Reentrancy

Description

The staking contract performs safe minting of StakingNFT during calls to the

stake function. This triggers the onERC721Received function on recipients and

can potentially be exploited to perform reentrancy attacks. The publicly-

accessible stake function has a nonReentrant modifier, so it is not vulnerable in

this case, but other stake functions lack this protection, or it can become a

problem in future development.

Exploit scenario

Alice, a malicious user, deploys a contract that implements the

onERC721Received function. When Alice calls a stake function that lacks the

nonReentrant modifier, the contract mints an NFT to Alice’s contract. During

the minting process, the onERC721Received function is called on Alice’s

contract, which can then reenter the staking contract and potentially

manipulate state before the original transaction completes.

Recommendation

Implement the nonReentrant modifier on all stake functions and be aware of

this potential attack vector during NFT minting operations.

Fix 1.1

The nonReentrant modifier is now used on all stake functions.

Go back to Findings Summary

Ackee Blockchain Security 42 of 59

W5: Uninitialized variables and roles

Impact: Warning Likelihood: N/A

Target: Staking.sol, StakingNFT.sol Type: Logic error

Description

Several variables and roles are not initialized in the protocol during

initialization. This can lead to a partially functioning protocol, unexpected

behavior, or even loss of funds.

The MINTER and BURNER roles are not initialized in the StakingNFT contract. If the

MINTER role is set but the BURNER role is not, users can only stake but not

unstake. Additionally, the PAUSER role is not explicitly set. In the Staking

contract, the Vault address is not explicitly set, which can cause the stake

function to revert.

Exploit scenario

Alice, a user, attempts to interact with the protocol after deployment. Bob,

the protocol administrator, has not properly initialized all required variables

and roles.

Alice calls the stake function in the Staking contract and some time passes. At

some moment she is able to unstake her tokens. She calls the unstake

function but it fails. She is not able to unstake.

Recommendation

Ensure that all variables are initialized and all roles are set before users begin

interacting with the protocol to guarantee full functionality.

Fix 1.1

The values are now properly initialized.

Ackee Blockchain Security 43 of 59

Go back to Findings Summary

Ackee Blockchain Security 44 of 59

W6: Unknown swap conditions

Impact: Warning Likelihood: N/A

Target: Staking.sol Type: Logic error

Description

The ustdToBDCA function relies on the Presale (out-of-scope component)

contract’s price. The swap conditions cannot be verified for correctness and

lack proper slippage control. Since the minimum amount expected on output

is not passed as a parameter, it is impossible to guarantee from the Staking

contract that the swap will be fair.

Listing 14. Excerpt from Staking

498 function ustdToBDCA(uint256 _amount) public view returns (uint256) {
499 return presale.paidWithTokenToPresaleToken(_amount);

Recommendation

Be aware of this dependency or implement a proper slippage control from the

staking contract to guarantee the fair swap.

Fix 1.1

The Presale contract is set but is not used anywhere; therefore, this finding is

no longer relevant.

Go back to Findings Summary

Ackee Blockchain Security 45 of 59

I1: Code duplication

Impact: Info Likelihood: N/A

Target: Staking.sol Type: Code quality

Description

The stake functions could share logic in helper functions to prevent code

duplication, improve code readability, and avoid issues connected to that.

These lines of code could be extracted into a _stake function called by the

other functions at the end of execution:

Listing 15. Excerpt from Staking

367 uint256 tokenId = _mintNFT(msg.sender);
368 uint256 lockDuration = uint256(block.timestamp)
369 .addYears(currentTierLockDuration._years)
370 .addMonths(currentTierLockDuration._months)
371 .addDays(currentTierLockDuration._days);
372 nftLockExpire[tokenId] = lockDuration;
373 nftLockedAmount[tokenId] = stakingAmountWithBonus;
374 nftTier[tokenId] = _tier;
375 totalStaked += stakingAmountWithBonus;
376
377 emit Staked(msg.sender, stakingAmountWithBonus, lockDuration, tokenId);

Additionally, the validation at the beginning of the function can be separated

and called in all functions.

Recommendation

Extract the duplicated code into helper functions.

Fix 1.1

The duplicated code is significantly reduced.

Ackee Blockchain Security 46 of 59

Go back to Findings Summary

Ackee Blockchain Security 47 of 59

I2: Division by Zero in Reward Calculation

Impact: Info Likelihood: N/A

Target: Staking.sol Type: Arithmetics

Description

If _totalStakedBalance is 0 in the reward calculation, division will revert with no

explanatory error message.

Listing 16. Excerpt from Staking

485 usdtBonus = _usdtTotalShareAmount * _stakedAmount / _totalStakedBalance;

The function doesn’t validate that _totalStakedBalance is non-zero before

performing division.

Recommendation

Add explicit data validation for the variable with an explanatory error

message in case it is zero.

Fix 1.1

The calculateBonuses function now returns zero for each return value if

_totalStakedBalance is zero.

Go back to Findings Summary

Ackee Blockchain Security 48 of 59

I3: Ambiguous error messages

Impact: Info Likelihood: N/A

Target: Staking.sol Type: Logging

Description

The error messages in the modifiers for pause and unpause functions

reference the presale contract, but the pausing functionality applies to the

staking contract.

Listing 17. Excerpt from Staking

71 /**
72 * @dev Throws is the presale is paused
73 */
74 modifier notPaused()
75 {
76 require(!paused, "Presale is paused");
77 _;
78 }
79
80 /**
81 * @dev Throws is presale is NOT paused
82 */
83 modifier isPaused()
84 {
85 require(paused, "Presale is not paused");
86 _;
87 }

Recommendation

Update the error messages to accurately reflect the staking contract

context.

Fix 1.1

The error message is updated.

Ackee Blockchain Security 49 of 59

Go back to Findings Summary

Ackee Blockchain Security 50 of 59

I4: Use of magic numbers

Impact: Info Likelihood: N/A

Target: Staking.sol Type: Code quality

Description

The contracts contain hard-coded values (magic numbers) such as 1000 ether

for the minimum amount that leads to affiliate bonus. This declaration can be

misleading since it represents a specific token amount including decimals. A

declared constant, such as MIN_AFFILIATE_AMOUNT with an explanation, would

be clearer in the code.

Listing 18. Excerpt from Staking

338 if(_amount >= 1000 ether) {
339 uint256 affiliatedId = presale.addressToAffiliateId(msg.sender);

Recommendation

Replace the hard-coded numbers with constant declarations.

Fix 1.1

The magic numbers are replaced with constant declarations.

Go back to Findings Summary

Ackee Blockchain Security 51 of 59

I5: Missing documentation

Impact: Info Likelihood: N/A

Target: Staking.sol, StakingNFT.sol Type: Code quality

Description

The codebase lacks documentation and NatSpec comments for the functions

in the contracts.

Recommendation

Add comprehensive documentation of the protocol functionality and

NatSpec comments throughout the codebase.

Fix 1.1

The NatSpec comments are added.

Go back to Findings Summary

Ackee Blockchain Security 52 of 59

I6: Typos

Impact: Info Likelihood: N/A

Target: Staking.sol Type: Code quality

Description

The codebase contains typos. While these typos are used consistently, they

do not affect the functionality of the contract, but they can cause issues in

future development.

Listing 19. Excerpt from Staking

498 function ustdToBDCA(uint256 _amount) public view returns (uint256) {
499 return presale.paidWithTokenToPresaleToken(_amount);
500 }

Listing 20. Excerpt from Staking

54 mapping(uint8 => uint256) public tierBonusPersentages;
55 // Tiers affiliated bonuses
56 mapping(uint8 => uint256) public tierAffiliateBonusPersentages;

Recommendation

Fix the typos.

Fix 1.1

The typos are fixed.

Go back to Findings Summary

Ackee Blockchain Security 53 of 59

I7: Unused variables

Impact: Info Likelihood: N/A

Target: StakingNFT.sol Type: Code quality

Description

The tier and lockExpire variables are retrieved but never used in the tokenURI

function, causing gas wastage and code clarity issues. The function fetches

these values from the staking contract but does not incorporate them into

the returned URI.

Listing 21. Excerpt from StakingNFT

111 uint256 tier;
112 uint256 lockExpire;
113
114 if(address(staking) != address(0)) {
115 tier = staking.nftTier(tokenId);
116 lockExpire = staking.nftLockExpire(tokenId);
117 }

Recommendation

Remove the unused variables.

Fix 1.1

The unused variables are removed.

Go back to Findings Summary

Ackee Blockchain Security 54 of 59

Report Revision 1.1

Revision Team
Revision team is the same as in Report Revision 1.0.

System Overview
The changes in the system are focused on fixes from the previous revision.

Most of the codebase was simplified and documented. A PancakeSwap V2

router was introduced for price calculation between a custom token and the

BDCA token during rewards distribution. Due to hardcoded values, the

codebase is now deployable only on the BSC network. Also, this newly

introduced change is out of scope of this revision similarly to anything else

without a direct connection to the issues found in the previous revision.

Trust Model
The trust model remained unchanged since the previous revision.

Findings
The following section presents the list of findings discovered in this revision.

For the complete list of all findings, Go back to Findings Summary

Ackee Blockchain Security 55 of 59

W7: Potential price manipulation on rewards
distribution

Impact: Warning Likelihood: N/A

Target: Staking.sol Type: Logic error

Description

The PancakeSwap V2 Router is introduced to the contract for price

calculation between custom tokens and BDCA. The price is used for value

conversion to determine how much BDCA rewards should be paid during

rewards distribution to stakers.

However, the value conversion is based on the pool price, which can be

manipulated depending on pool liquidity. A malicious actor can spot when

rewards are being distributed to them and manipulate the pool price to

receive more rewards.

Recommendation

Implement reliable price oracles such as TWAP (Time-Weighted Average Price)

or Chainlink price feeds instead of relying solely on pool prices. Add price

validation mechanisms to detect and prevent price manipulation attempts

during reward calculations.

Fix 2.0

The issue is fixed by removing the integration.

Go back to Findings Summary

Ackee Blockchain Security 56 of 59

Report Revision 2.0

Revision Team

Member’s Name Position

Jan Kalivoda Lead Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

System Overview
The codebase is simplified and resolves issues from the previous revision.

However, the simplification places greater requirements on the privileged

roles to act responsibly and correctly.

Trust Model
The distributor role is now responsible for selecting the price conversion ratio

between the BDCA token and the custom token in the codebase

(_bdcaToCustomTokenRate). Additionally, the distributor must choose the

correct subset of the staked amounts (eligibleNFTHoldersAmount) which will

be used for calculations in the distribution and distribute to stakers

accordingly. If all these parameters are not set together correctly, the

distribution will be flawed.

Ackee Blockchain Security 57 of 59

Appendix A: How to cite
Please cite this document as:

Ackee Blockchain Security, BitDCA: Staking contracts, 18.9.2025.

Ackee Blockchain Security 58 of 59

https://ackee.xyz/

Thank You

Ackee Blockchain a.s.

Rohanske nabrezi 717/4
186 00 Prague
Czech Republic

hello@ackee.xyz

	BitDCA: Staking contracts
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain Security
	2.2. Audit Methodology
	2.3. Finding Classification
	2.4. Review Team
	2.5. Disclaimer

	3. Executive Summary
	Revision 1.0
	Revision 1.1
	Revision 2.0

	4. Findings Summary
	Report Revision 1.0
	Revision Team
	System Overview
	Trust Model
	Findings

	Report Revision 1.1
	Revision Team
	System Overview
	Trust Model
	Findings

	Report Revision 2.0
	Revision Team
	System Overview
	Trust Model

	Appendix A: How to cite

