ackee

blockchain security

Ackee Blockchain Security

https://ackeeblockchain.com

Contents

1. Document Revisions
2. Overview
2.1. Ackee Blockchain Security
2.2. Audit Methodology
2.3. Finding Classification
2.4. Review Team
2.5. Disclaimer
3. Executive Summary
Revision 1.0
Revision 1.1
Revision 2.0
4. Findings Summary
Report Revision 1.0
Revision Team
System Overview
Trust Model
Findings
Report Revision ‘1.1
Revision Team
System Overview
Trust Model
Findings
Report Revision 2.0
Revision Team
System Overview

Trust Model

© ©O© N o o o »

10
10

M
12
13
16
16
16
16
16
55
55
55
55
55
57
57
57
57

Appendix A: How to cite

o8

1. Document Revisions

1.0-draft | Draft Report 03.07.2025
1.0 Final Report 16.07.2025
11 Fix Review 15.08.2025
2.0 Final Report 18.09.2025

2. Overview

This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain Security

Ackee Blockchain Security is an in-house team of security researchers
performing security audits focusing on manual code reviews with extensive
fuzz testing for Ethereum and Solana. Ackee is trusted by top-tier

organizations in web3, securing protocols including Lido, Safe, and Axelar.

We develop open-source security and developer tooling Wake for Ethereum

and Trident for Solana, supported by grants from Coinbase and the Solana

Foundation. Wake and Trident help auditors in the manual review process to

discover hardly recognizable edge-case vulnerabilities.

Our team teaches about blockchain security at the Czech Technical
University in Prague, led by our co-founder and CEQ, Josef Gattermayer, Ph.D.
As the official educational partners of the Solana Foundation, we run the

School of Solana and the Solana Auditors Bootcamp.

Ackee’s mission is to build a stronger blockchain community by sharing our

knowledge.

Ackee Blockchain a.s.
Rohanske nabrezi 717/4

186 00 Prague, Czech Republic
https://ackee.xyz

hello@ackee.xyz

https://github.com/Ackee-Blockchain/wake
https://github.com/Ackee-Blockchain/trident
https://ackee.xyz/school-of-solana
https://ackee.xyz/solana-auditors-bootcamp
https://ackee.xyz
mailto:hello@ackee.xyz

2.2. Audit Methodoloqy

.

Verification of technical specification
The audit scope is confirmed with the client, and auditors are onboarded
to the project. Provided documentation is reviewed and compared to the

audited system.

Tool-based analysis
A deep check with Solidity static analysis tool Wake in companion with
Solidity (Wake) extension is performed, flagging potential vulnerabilities

for further analysis early in the process.

Manual code review
Auditors manually check the code line by line, identifying vulnerabilities
and code quality issues. The main focus is on recognizing potential edge

cases and project-specific risks.

Local deployment and hacking

Contracts are deployed in a local Wake environment, where targeted

attempts to exploit vulnerabilities are made. The contracts’ resilience

against various attack vectors is evaluated.

Unit and fuzz testing

Unit tests are run to verify expected system behavior. Additional unit or
fuzz tests may be written using Wake framework if any coverage gaps are
identified. The goal is to verify the system’s stability under real-world
conditions and ensure robustness against both expected and unexpected

inputs.

https://getwake.io
https://marketplace.visualstudio.com/items?itemName=AckeeBlockchain.tools-for-solidity
https://getwake.io
https://getwake.io

2.3. Finding Classification

A Severity rating of each finding is determined as a synthesis of two sub-

ratings: Impact and Likelihood. It ranges from Informational to Critical.

If we have found a scenario in which an issue is exploitable, it will be assigned
an impact rating of High, ledium, or Low, based on the direness of the
consequences it has on the system. If we haven’t found a way, or the issue is
only exploitable given a change in configuration (system settings or
parameters, such as deployment scripts, compiler configurations, using multi-
signature wallets for owners, etc.) or given a change in the codebase, then it

will be assigned an impact rating of Warning or Info.

Low to High impact issues also have a Likelihood, which measures the

probability of exploitability during runtime.

The full definitions are as follows:

Severity
Likelihood
Medium Low
High
Medium
Impact Low Medium Low Low -

Warning - - - Warning

Info - - - Info

Table 1. Severity of findings

Impact

« High - Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

« Medium - Code that activates the issue will result in consequences of

serious substance.

« Low - Code that activates the issue will have outcomes on the system that

are either recoverable or don’t jeopardize its regular functioning.

« Warning - The issue cannot be exploited given the current code and/or
configuration, but could be a security vulnerability if these were to
change slightly. If we haven’t found a way to exploit the issue given the
time constraints, it might be marked as a "Warning” or higher, based on our

best estimate of whether it is currently exploitable.

« Info - The issue is on the borderline between code quality and security.
Examples include insufficient logging for critical operations. Another
example is that the issue would be security-related if code or

configuration was to change.
Likelihood

« High - The issue is exploitable by virtually anyone under virtually any
circumstance.

« Medium - Exploiting the issue currently requires non-trivial preconditions.

« Low - Exploiting the issue requires strict preconditions.

2.4. Review Team

The following table lists all contributors to this report. For authors of the
specific revision, see the “Revision team” section in the respective “Report

revision” chapter.

Member’s Name Position

Jan Kalivoda Lead Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.5. Disclaimer

We’ve put our best effort to find all vulnerabilities in the system, however our
findings shouldn’t be considered as a complete list of all existing issues. The
statements made in this document should not be interpreted as investment
or legal advice, nor should its authors be held accountable for decisions made

based on them.

3. Executive Summary

BitDCA is a protocol that enables automatic micro-savings for card payments.
Staking contracts is a subcomponent of BitDCA that allows users to stake

BDCA tokens and earn rewards.

Revision 1.0

BitDCA engaged Ackee Blockchain Security to perform a security review of
BitDCA Staking contracts with a total time donation of 6 engineering days in a
period between June 23 and July 3, 2025, with Jan Kalivoda as the lead

auditor.

The audit was performed on the commit c62d3dd™ in the private repository
and the scope was the following:

« Staking.sol

« StakingNFT.sol
We began our review using static analysis tools, including Wake. We then took
a deep dive into the logic of the contracts. For testing and fuzzing, we
involved Wake testing framework. The Staking contract had an integration
with an out-of-scope contract (Presale.sol) which was treated as a black box
for the review purposes. During the review, we paid special attention to:

« ensuring the arithmetic of the system is correct;

« checking the fairness of the reward distribution;

« ensuring the staking process matches the expected behavior;

« detecting possible reentrancies in the code;

« ensuring access controls are not too relaxed or too strict; and

« looking for common issues such as data validation.

https://getwake.io
https://getwake.io

Our review resulted in 24 findings, ranging from Info to High severity. The
most severe one is the H2 issue, which causes the reward distribution to be
malformed. Several mechanisms in the code need to be completely reworked
(such as the internal accounting, or NFT management), thus the codebase is

not ready for deployment.

Ackee Blockchain Security recommends BitDCA:

address all identified issues;

create documentation for the codebase;

create a comprehensive test suite; and

perform another audit of the codebase.

See Report Revision 1.0 for the system overview and trust model.

Revision 1.1

BitDCA engaged Ackee Blockchain Security to perform a fix review of the

findings from the previous revision.

The review was performed between August 14 and August 15, 2025 on the
commit 522ad96=. The scope was fixes of the previous revision. All the
findings were addressed and the codebase is significantly improved.
However, the distribution function is still flawed and instead of Presale
contract integration, there was introduced PancakeSwap V2 router for price
calculation, which can also cause problems on distribution (see W7 price

manipulation issue).
Ackee Blockchain Security recommends BitDCA:

« use oracles for price calculation during rewards distribution;

« define a specification for the distribution function and adjust the logic to

match it; and

« perform an audit of the new changes before deployment.

See Report Revision 1.1 for more information about the revision.

Revision 2.0

BitDCA engaged Ackee Blockchain Security to perform a reaudit of BitDCA
Staking contracts with a total time donation of 1 engineering days to address
unresolved issues from the previous revision. The audit was performed on the

commit c05674c,

The issues were addressed and resolved. It is important to note that the
protocol functioning is heavily dependent on the behavior of the privileged
roles. Namely, the distribution of rewards and the protocol parameters

configuration.
Ackee Blockchain Security recommends BitDCA:

« write a comprehensive test suite; and

« simulate distribution transactions before executing them.

See Report Revision 2.0 for more information about the revision.

[1] full commit hash: c62d3dda6db241dd4be5088d410971b23db43c5e
[2] full commit hash: 522ad9645069128cd6f c55258f 46478586a40262

[3] full commit hash: c05674ce62418572d1f b393ef d7f cf e205c93259

4. Findings Summary

The following section summarizes findings we identified during our review.
Unless overridden for purposes of readability, each finding contains:

e Description

« Exploit scenario (if severity is low or higher)

e Recommendation

Fix (if applicable).

Summary of findings:

Critical High Medium Low Warning Info Total

Table 2. Findings Count by Severity

Findings in detail:

Finding title Severity Reported Status

H1: Inverted logic in NFT High 1.0 Fixed

transfer hook

H2: The di st ri but eRewar ds High 1.0 Fixed

function is flawed

H3: The project is not High 1.0 Fixed
compatible with smart

accounts

M1: Hardcoded Decimal Medium 1.0 Fixed
Assumptions

M2: Stake amount Medium 1.0 Fixed

restriction can be bypassed

Finding title Severity Reported Status

L1: Unsafe ERC20 Operations Low 1.0 Fixed

L2: Inconsistent Access Low 1.0 Fixed

Control

5

L3: Max stake amount can Low Fixed

be exceeded

Fixed

o

L4: Missing Events for Low

Critical State Changess

L5: Missing Pause Modifier Low 1.0 Fixed

on Reward Distribution

LB: Mint function is Low 1.0 Fixed

performing safe mint

WA1: Affiliate program Warning 1.0 Fixed
integration

W2: Insufficient Data Warning 1.0 Fixed

Validation

5

W3: Potential lack of funds Warning Acknowledged

N
o

W4: Potential reentrancy Warning Fixed

due to NFT hook

o

W5: Uninitialized variables Warning 1.0 Fixed

and roles

(@

W6: Unknown swap Warning 1.0 Fixed

conditions

Fixed

6

I1: Code duplication Info

-~
o

|2: Division by Zero in Reward Info Fixed

Calculation

Finding title Severity Reported Status

[3: Ambiguous error Info 1.0 Fixed
messages

Fixed

5

14: Use of magic numbers Info

N
o

15: Missing documentation Info Fixed

BN
(@)

I6: Tyupos Info Fixed

RN
o

|7: Unused variables Info Fixed

W7: Potential price Warning 141 Fixed

manipulation on rewards
distribution

Table 3. Table of Findings

Report Revision 1.0

Revision Team

Member’s Name Position

Jan Kalivoda Lead Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

System Overview

The protocol implements a staking system with NFT-based positions and
tiered rewards. It allows users to lock their BDCA tokens for predefined
periods in exchange for bonuses. There is also an option for additional bonus

distribution during the staking period in USDT and BDCA.

Trust Model

The admin has excessive powers across all contracts, creating a potential
single point of failure. The admin can change critical parameters,
pause/unpause at will, modify tier parameters that affect user funds, and
withdraw all tokens at any time via the rescueToken function. Also the

contracts can be upgraded to different implementations.

Findings

The following section presents the list of findings discovered in this revision.

For the complete list of all findings, Go back to Findings Summary

H: Inverted logic in NFT transfer hook

High severity issue

Impact: | High Likelihood: Medium
Target: | StakingNFT.sol Type: Logic error
Description

In the _beforeTokenTransfer hook, the code checks if the receiver has code

and sets it as the last wallet owner (_I ast Wal | et Oamner s) if it does.

Listing 1. Excerpt from StakingNFT

141 {

142 uint32 size;

143

144 assembly {

145 size := extcodesize(to)

146 }

147

148 if(size > 0) {

149 _lastWalletOwners[firstTokenId] = to;
150 }

151

152 super._beforeTokenTransfer(from, to, firstTokenId, batchSize);
153 }

This variable is used in the current Real Omer function. The function checks if

the NFT owner has code and returns the last wallet owner if it does.

Listing 2. Excerpt from StakingNFT

92 function currentRealOwner(uint256 _tokenId) public virtual view returns
(address) {

93 uint32 size;

94 address addr = ownerOf(_tokenId);
95

96 assembly {

97 size := extcodesize(addr)

if(size > 0) {
return _lastWalletOwners[_tokenId];

return addr;

The intended logic tracks EOA holders in case the NFT is temporarily held by a
contract. However, the current implementation causes rewards to be
distributed to the holding contract instead of the EOA owner. As a result, the
cur rent Real Oaner function always returns the same value as the owner O

function, which violates the intended logic.

Exploit scenario

Alice, a user, decides to list the NFT representing her staking position on a
marketplace while continuing to receive rewards in the meantime. However,
due to the inverted hook logic, the rewards are distributed to the

marketplace contract instead of Alice’s EOA address.

Recommendation

If the intended logic should be preserved, the hook must set the last wallet
owner only when the receiver does not have code. However, this logic is also
problematic because users with smart accounts will not be eligible for
rewards (see H3). If this solution is intended only for EOA holders, it must be

clearly communicated to users.

Fix 1.1

The relevant code is removed.

Go back to Findings Summary

H2: The di stri but eRewar ds function is flawed

High severity issue

Impact: | Medium Likelihood: High

Target: | Staking.sol Type: Logic error

Description

The di st ri but eRewar ds function contains several logic flaws that can lead to:

« unfair distribution of rewards;
« loss of rewards; and

« denial of service.

First, rewards can only be distributed within specific ranges. These ranges
could be very large, either because of the number of participants in staking
or because malicious stakers want to prevent rewards from being distributed.
Large ranges can lead to denial of service, and rewards must then be
distributed in smaller chunks. Depending on the conditions, this can be very
costly for the distributor, or some staking participants will not receive any

rewards.

Second, another problem arises when the di st ri but eRewar ds function is called
multiple times over the same token holders, since there are no updates to the
accounting. Before iterating over the token holders, the usdt Tot al Shar eAmount
is calculated as the balance of USDT in the contract. Then bonuses are
calculated based on the available USDT amount and staking ratio. BDCA and
USDT are transferred during the iteration without updates to the accounting,
and thus the USDT or BDCA amounts can potentially be emptied before

distribution completes.

Last but not least, the total staked amount includes expired NFT locks. Once

someone stakes after their lock expires, they will not receive any more
rewards but generally cause fewer rewards to be distributed because they

own a percentage of the share.
The function needs to be completely reworked.
Listing 3. Excerpt from Staking

uint256 usdtTotalShareAmount = usdtToken.balanceOf(address(this));

for(uint256 i = _fromNftId; i <= _tilINftId; i++) {
if(_eligibleNftId(i)) {
address tokenOwner = stakingNft.currentRealOwner(i);
uint256 stakedAmount = nftLockedAmount[il];
// calculate both BDCA and USDT bonuses
(bdcaBonus, usdtBonus) = calculateBonuses(
usdtTotalShareAmount,
totalStaked,
stakedAmount,
nftTier[i]
)i

// Distribute BDCA and USDT bonuses to NFT owner
if(bdcaBonus > 0) {
bdcaToken.safeTransfer(tokenOwner, bdcaBonus);

if(usdtBonus > 0) {
usdtToken.safeTransfer(tokenOwner, usdtBonus);

Exploit scenario

Bob, the distributor, calls the di st ri but eRewar ds function over a large range of
token IDs. The function runs out of gas and reverts, forcing him to call it again
with smaller ranges. However, only the first call results in the intended
distribution according to the deposited amount. All subsequent calls

distribute fewer rewards as the contract’s USDT balance decreases.

Recommendation

Rewrite the di stri but eRewar ds function to use a pull-based design pattern. It
will not directly send tokens to all recipients, but instead, it will perform
changes in the contract’s accounting and users will be able to claim their
rewards on their own. This approach will prevent huge gas requirements and
potential denial of service. Then it is important to specify the business
requirements for the distribution of rewards. According to that, state
variables representing the inner state should be created that will allow
changing the accounting fairly and efficiently. There are multiple options for
making rewards available to users without expired locks. Rewards can be
streamed continuously, in a time-based manner, made available for

redemption in epochs, or distributed through other mechanisms.

Update 1.1

The di st ri but eRewar ds function has been updated; however, it still contains
some flaws. The function continues to loop over the stakeholders, which is
inefficient. Additionally, new logic involving rounds has been introduced, but
its purpose is unclear. This logic does not prevent double distributions across
multiple calls and also allows the total distributed amount in a round to be

exceeded through separate distribution amounts.

Fix 2.0

The function is reworked to operate according to the clarified specification
and is functioning as intended. However, correct parameter settings by the

distributor are now essential to achieve the desired distribution.

Go back to Findings Summary

H3: The project is not compatible with smart
accounts

High severity issue

Impact: | High Likelihood: Medium
Target: | StakingNFT.sol, Staking.sol Type: Logic error
Description

The function for reward distribution uses the current Real Owmner function to

get the owner of the NFT.

Listing 4. Excerpt from Staking

411 for(uint256 i = _fromNftId; i <= _tilINftId; i++) {
412 if(_eligibleNftId(i)) {
413 address tokenOwner = stakingNft.currentRealOwner(i);

Listing 5. Excerpt from StakingNFT

92 function currentRealOwner(uint256 _tokenId) public virtual view returns
(address) {

93 uint32 size;

94 address addr = ownerOf(_tokenId);
95

96 assembly {

97 size := extcodesize(addr)

98 }

99

100 if(size > 0) {

101 return _lastWalletOwners[_tokenId];
102 }

103

104 return addr;

105 }

The current Real Omer function uses the _| ast Wl | et Onner s variable to get the

EOA owner of the NFT. However, if the st ake function is called with an account
that has code from the beginning, it can result in the current Real Owner
returning the zero address. In that case, once di stri but eRewar ds is called, it

sends rewards to the zero address.

Exploit scenario

Alice, a user, uses a Safe account to stake BDCA. She holds the stake position
in the Safe account for years, while not receiving any rewards, because they

are sent to the zero address.

Recommendation

Change the way distribution works (see H3) to solve the issue. Otherwise,
avoid recognizing EOAs and smart contracts, since after the latest hardfork

(EIP-7702), it does not make sense to build logic upon that.

Fix 1.1

The relevant code is removed.

Go back to Findings Summary

M1: Hardcoded Decimal Assumptions

Medium severity issue

Impact: | High Likelihood: Low
Target: | Staking.sol Type: Arithmetics
Description

The st aki ng. sol contract uses hardcoded decimal assumptions for the BDCA
and USDT tokens (both 18 decimals). While the BDCA token is custom and
deployment is intended only for the BSC network, where USDT also has 18
decimals, this approach is safe. However, these tokens must always have 18
decimals, or they must be correctly handled with different decimals. On other

chains, such as Ethereum, USDT commonly has 6 decimals.
Listing 6. Excerpt from Staking

uint256 usdtBonus;
uint256 usdtTotalShareAmount = usdtToken.balanceOf(address(this));

for(uint256 i = _fromNftId; i <= _tilINftId; i++) {
if(_eligibleNftId(i)) {
address tokenOwner = stakingNft.currentRealOwner(i);
uint256 stakedAmount = nftLockedAmount[il];
// calculate both BDCA and USDT bonuses
(bdcaBonus, usdtBonus) = calculateBonuses(
usdtTotalShareAmount,
totalStaked,
stakedAmount,
nftTier[i]

Exploit scenario

Alice, the contract admin, decides to deploy the Staking contract on the

Ethereum network. Since USDT has 6 decimals on Ethereum, the conversion

rate becomes malformed and leads to a loss of funds.

Recommendation

Ensure the tokens always have 18 decimals, or implement correct handling for

tokens with different decimals.

Fix 1.1

The USDT token has been replaced with a custom token that can be set
arbitrarily; however, the number of decimals for this token is now explicitly
specified and handled in the contract during value conversion between the

BDCA token and the custom token in the cal cul at eBonuses function.

Go back to Findings Summary

M2: Stake amount restriction can be bypassed

Medium severity issue

Impact: | Medium Likelihood: Medium
Target: | Staking.sol Type: Logic error
Description

The st akeBonusAmount function does not have any restrictions on the stake

amount like the other st ake functions have.
Listing 7. Excerpt from Staking

function stakeBonusAmount(address _staker, uint256 _amount, uint8 _tier)
external
virtual
notPaused
onlyRole(BONUS_PROVIDER_ROLE)

LockDuration storage currentTierLockDuration = tierLockDuration[_tier];
require(currentTierLockDuration._years > 0
|| currentTierLockDuration._months > 0

|| currentTierLockDuration._days > @, "Tier does not exist");

bdcaToken.safeTransferFrom(msg.sender, address(this), _amount);

Additionally, it also allows staking within private tiers.

Exploit scenario

Alice, a user, encounters a situation where the maximum stake amount is
reached. Alice calls the st akeBonusAnount function (through CCIP relayer) and

exceeds the maximum amount.

Alternatively, Bob, another user, sets the minimum amount. Bob calls the

st akeBonusAnount function (through CCIP relayer) with a stake amount equal

to 1 wei. As a result, NFT emission is spammed to prevent the distribution of
rewards.
Recommendation

Implement proper stake amount restrictions in the st akeBonusAnount function
to match the validation applied to other staking functions. Also, if staking to

private tiers is not desired, there should be additional restrictions on that.

Fix 1.1

The _val i dat eSt akePar anet er s function is implemented and is now

consistently called in all staking operations.

Go back to Findings Summary

L1: Unsafe ERC20 Operations

Low severity issue

Impact: | Low Likelihood: Low

Target: | Staking.sol Type: Data validation

Description

The contract uses direct transf er Fromand transf er methods instead of using
SafeERC20 library methods consistently. Some ERC20 tokens don’t return
boolean values or return false on failure, which could lead to silent failures.
While SafeERC20 library is imported, it’s not used consistently throughout the
contract, creating potential for silent transfer failures with non-standard

ERC20 tokens.
Listing 8. Excerpt from Staking

bdcaToken.transferFrom(vaultAddress, address(this), parentBonus);

Listing 9. Excerpt from Staking

require(
IERC20Metadata(_token).transfer(msg.sender, balance),
"Token transfer failed"

)

Exploit scenario

Alice, the contract admin, attempts to rescue tokens from the contract using
the rescueToken function with an ERC20 token that does not return boolean
values (like USDT). The direct transfer call fails but does not revert the
transaction. The contract continues execution believing the transfer

succeeded.

Recommendation

Use SafeERC20 library methods consistently throughout the contract instead

of direct transfer Fromand transfer calls.

Fix 1.1

The Saf eERC20 library is now used consistently throughout the contract.

Go back to Findings Summary

L2: Inconsistent Access Control

Low severity issue

Impact: | Low Likelihood: Low

Target: | StakingNFT.sol Type: Access control

Description

The StakingNFT contract implements a custom owner () and
transf er Omer shi p() function alongside AccessControl, creating two parallel
permission systems. This inconsistency creates confusion about which

permission system to use and potential security gaps.
Listing 10. Excerpt from StakingNFT

function owner() public view returns(address) {
return _owner;

}

function transferOwnership(address newOwner) public virtual
onlyRole(DEFAULT_ADMIN_ROLE) {

require(newOwner !'= address(@), "Ownable: new owner is the zero
address");

_owner = newOwner;

The contract uses both OpenZeppelin’s AccessControl (with
DEFAULT_ADMIN_ROLE) and a custom ownership pattern, which creates
ambiquity about which system controls what functionality and could lead to

privilege escalation or access control bypass.

Exploit scenario

Alice, the current owner of the StakingNFT contract, decides to transfer
ownership to Bob, a new protocol administrator. She calls

t ransf er Oaner shi p(bob), which updates the _owner variable to Bob’s address.

However, this function does not transfer the DEFAULT _ADM N _ROLE in the

AccessControl system, which remains with Alice.

Recommendation

Remove the custom ownership pattern and use only the AccessControl

contract.

Fix 1.1

The owner functionality is now explicitly documented as not being used for

access control.

Go back to Findings Summary

L3: Mlax stake amount can be exceeded

Low severity issue

Impact: | Low Likelihood: Medium
Target: | Staking.sol Type: Logic error
Description

The naxSt ake amount is a maximum amount of stake that can be reached.
However, the t ot al St aked variable is tracking the total amount of deposited
tokens, plus the bonus amount. During deposits, the maxSt ake amount is
validated against the new amount passed to the staking contract and not the
amount, plus bonuses. As a result, it is possible to exceed the naxSt ake
amount. According to current setting of staking tiers it can be up 30%, but it

may be more with different tiers.
Listing 11. Excerpt from Staking

function stake(uint256 _amount, uint8 _tier)
external
virtual
notPaused
nonReentrant

require(_amount >= minStake, "Amount is below the minimum stake");
uint256 stakingAmountWithBonus = calculateStakeBonus(_amount, _tier);

require(totalStaked + _amount <= maxStake, "Exceeds max total staked");

Listing 12. Excerpt from Staking

totalStaked += stakingAmountWithBonus;

emit Staked(msg.sender, stakingAmountWithBonus, lockDuration, tokenId);

Exploit scenario

The t ot al St aked amount is equal to 900 and the max stake amount is 1000.
Alice stakes 99 tokens, but instead of setting totalStaked to 990, it is set to

1017 (including bonus). As a result, the naxSt ake amount is exceeded.

Recommendation

Ensure the naxSt ake amount can not be exceeded. Or document intentions of

the current behavior.

Fix 1.1

The amount is now properly validated on all entrypoints.

Go back to Findings Summary

L4: Missing Events for Critical State Changess

Low severity issue

Impact:

Low

Likelihood:

Medium

Target:

Staking.sol, StakingNFT.sol

Type:

Logging

Description

Many admin functions don not emit events for critical state changes,

reducing transparency and making it harder for off-chain monitoring systems

to track important protocol changes. Missing events in Staking.sol are in

functions such as:

. pause

« unpause

« setMinStake

. setVaultAddress

« updatePresaleAddress

« updateStakingNftAddress

« updateBDCATokenAddress

« updateUSDTTokenAddress

« updateTier

« updateRevenuelLanchingStatus

rescueToken

Then in StakingNFT.sol those are:

« updateStakingAddress

« updateBaseURI

« transferOwnership

Exploit scenario

Alice, the contract admin, calls the pause function in Staking.sol. The function

does not emit an event for this critical state change.

Recommendation

Add events for critical state changes.

Fix 1.1

The events are now present.

Go back to Findings Summary

L5: Missing Pause Modifier on Reward Distribution

Low severity issue

Impact: | Medium Likelihood: Low

Target: | Staking.sol Type: Logic error

Description

The di st ri but eRewar ds function is not protected by the not Paused modifier,
allowing it to be called even when the protocol is paused. This allows the flow

of funds in case of a pause.

Exploit scenario

Alice, the contract admin, calls the pause function in Staking.sol. The protocol
is paused paused but a off-chain bot that is responsible for triggering the
reward distribution is not aware of the pause and continues to distribute

rewards.

Recommendation

Add not Paused modifier to the di st ri but eRewar ds function.

Fix 1.1

The not Paused modifier is added to the di st ri but eRewar ds function.

Go back to Findings Summary

L6: Mint function is performing safe mint

Low severity issue

Impact: | Low Likelihood: Medium
Target: | StakingNFT.sol Type: Standards
violation

Description

The ni nt function in the StakingNFT contract has the same behavior as
expected from a saf eM nt function. While it is not defined in the ERC-721
standard, it is expected that the ni nt function skips calling the

onERC721Recei ved function. In this case, this function is called.

Exploit scenario

Alice, the minting authority, calls the ni nt function where the receiveris a
contract that does not have the onERC721Recei ved function implemented. As a

result, the transaction reverts.

Recommendation

Make a distinction between ni nt and saf eM nt functions.

Fix 1.1

Both functions are now implemented.

Go back to Findings Summary

W1: Affiliate program integration

Impact: | Warning Likelihood: N/A
Target: | Staking.sol Type: Logic error
Description

The st ake function attempts to retrieve staking bonuses based on the

affiliate program in the Presale contract for all deposits above 1000 BDCA.

Since the Presale contract is out of scope, its behavior cannot be exactly
verified; however, from the perspective of the Staking contract, it allows

bonuses to be obtained for each stake.

This part of the function introduces non-trivial complexity due to the

integration with the Presale contract.
Listing 13. Excerpt from Staking

339 if(_amount >= 1000 ether) {

340 uint256 affiliatedId = presale.addressToAffiliateId(msg.sender);

341 bool isFounder = presale.isFounder(msg.sender);

342

343 if(affiliatedId > @ &5 !isFounder) {

344 address parentAddress = presale.affiliateIdToAddress(

345
presale.affiliateIdToParentAffiliateId(affiliatedId)

346)i

347 uint256 parentNftbalance = stakingNft.balanceOf(parentAddress);

348

349 if(parentNftbalance > 0) {

350 for(uint256 i; i < parentNftbalance; i++) {

351 uint256 parentTokenId =
stakingNft.tokenOfOwnerByIndex(parentAddress, i);

352

353 if(_eligibleNftId(parentTokenId)) {

354 uint256 parentBonus =
tierAffiliateBonusPersentages[_tier] * _amount / TIER_DENOMINATOR;

355 if(parentBonus > 0) {

356 nftLockedAmount[parentTokenId] += parentBonus;

totalStaked += parentBonus;
bdcaToken.transferFrom(vaultAddress, address(this),
parentBonus);

break;

Any revert from the Presale contract will revert the staking call and

potentially block staking.

Recommendation

Perform an audit of the Presale contract integration or remove the affiliate

logic from the Staking contract.

Fix 1.1

The Presale contract is set but is not used anywhere; therefore, this finding is

no longer relevant.

Go back to Findings Summary

W2: Insufficient Data Validation

Impact: | Warning Likelihood: N/A

Target: | Staking.sol Type: Data validation

Description

The st aki ng. sol contract does not sufficiently validate the data provided to
the admin setter functions. Thorough data validation is important to prevent

configuration issues and strengthen trust assumptions toward the protocol.

Exploit scenario

Recommendation

Define reasonable bounds for protocol parameters and apply checks in the

setter functions to satisfy them.

Fix 1.1

The data validation is addedd.

Go back to Findings Summary

W3: Potential lack of funds

Impact: | Warning Likelihood: N/A

Target: | Staking.sol Type: Logic error

Description

During deposits, the bonus amount is pulled from the vault. Continuous
staking and unstaking is covered until the contract receives USDT and
distribution starts. Then, if there is no mechanism for covering BDCA tokens, it

can cause a lack of funds for users who want to unstake.

Recommendation

Ensure that after rewards distribution, the contract is liquid enough to cover

all unstake operations.

Go back to Findings Summary

WW4: Potential reentrancy due to NFT hook

Impact: | Warning Likelihood: N/A

Target: | Staking.sol Type: Reentrancy

Description

The staking contract performs safe minting of StakingNFT during calls to the
stake function. This triggers the onERC721Recei ved function on recipients and
can potentially be exploited to perform reentrancy attacks. The publicly-
accessible st ake function has a nonReent r ant modifier, so it is not vulnerable in
this case, but other stake functions lack this protection, or it can become a

problem in future development.

Exploit scenario

Alice, a malicious user, deploys a contract that implements the
onERC721Recei ved function. When Alice calls a stake function that lacks the
nonReent r ant modifier, the contract mints an NFT to Alice’s contract. During
the minting process, the onERC721Recei ved function is called on Alice’s
contract, which can then reenter the staking contract and potentially

manipulate state before the original transaction completes.

Recommendation

Implement the nonReent r ant modifier on all stake functions and be aware of

this potential attack vector during NFT minting operations.

Fix 1.1

The nonReent rant modifier is now used on all stake functions.

Go back to Findings Summary

W5: Uninitialized variables and roles

Impact: | Warning Likelihood: N/A

Target: | Staking.sol, StakingNFT.sol Type: Logic error

Description

Several variables and roles are not initialized in the protocol during
initialization. This can lead to a partially functioning protocol, unexpected

behavior, or even loss of funds.

The M NTER and BURNER roles are not initialized in the St aki ngNFT contract. If the
M NTERrole is set but the BURNER role is not, users can only stake but not
unstake. Additionally, the PAUSER role is not explicitly set. In the St aki ng
contract, the Vault address is not explicitly set, which can cause the st ake

function to revert.

Exploit scenario

Alice, a user, attempts to interact with the protocol after deployment. Bob,
the protocol administrator, has not properly initialized all required variables

and roles.

Alice calls the st ake function in the St aki ng contract and some time passes. At
some moment she is able to unstake her tokens. She calls the unst ake

function but it fails. She is not able to unstake.

Recommendation

Ensure that all variables are initialized and all roles are set before users begin

interacting with the protocol to guarantee full functionality.

Fix 1.1

The values are now properly initialized.

Go back to Findings Summary

Ackee Blockchain Security 44 of 59

W6: Unknown swap conditions

Impact: | Warning Likelihood: N/A

Target: | Staking.sol Type: Logic error

Description

The ust dToBDCA function relies on the Presale (out-of-scope component)
contract’s price. The swap conditions cannot be verified for correctness and
lack proper slippage control. Since the minimum amount expected on output
is not passed as a parameter, it is impossible to quarantee from the Staking

contract that the swap will be fair.
Listing 14. Excerpt from Staking

function ustdToBDCA(uint256 _amount) public view returns (uint256) {
return presale.paidwWithTokenToPresaleToken(_amount);

Recommendation

Be aware of this dependency or implement a proper slippage control from the

staking contract to quarantee the fair swap.

Fix 1.1

The Presale contract is set but is not used anywhere; therefore, this finding is

no longer relevant.

Go back to Findings Summary

I1: Code duplication

Impact: | Info Likelihood: N/A
Target: | Staking.sol Type: Code quality
Description

The stake functions could share logic in helper functions to prevent code

duplication, improve code readability, and avoid issues connected to that.

These lines of code could be extracted into a _st ake function called by the

other functions at the end of execution:
Listing 15. Excerpt from Staking

uint256 tokenId = _mintNFT(msg.sender);

uint256 lockDuration = uint256(block.timestamp)
.addYears(currentTierLockDuration._years)
.addMonths(currentTierLockDuration._months)
.addDays(currentTierLockDuration._days);

nftLockExpire[tokenId] = lockDuration;

nftLockedAmount[tokenId] = stakingAmountWithBonus;

nftTier[tokenId] = _tier;

totalStaked += stakingAmountWithBonus;

emit Staked(msg.sender, stakingAmountWithBonus, lockDuration, tokenId);

Additionally, the validation at the beginning of the function can be separated

and called in all functions.

Recommendation

Extract the duplicated code into helper functions.

Fix 1.1

The duplicated code is significantly reduced.

Go back to Findings Summary

Ackee Blockchain Security 47 of 59

I2: Division by Zero in Reward Calculation

Impact: | Info Likelihood: N/A

Target: | Staking.sol Type: Arithmetics

Description

If total StakedBal ance is O in the reward calculation, division will revert with no

explanatory error message.

Listing 16. Excerpt from Staking

usdtBonus = _usdtTotalShareAmount * _stakedAmount / _totalStakedBalance;

The function doesn’t validate that _t ot al St akedBal ance is non-zero before

performing division.

Recommendation

Add explicit data validation for the variable with an explanatory error

message in case it is zero.

Fix 1.1

The cal cul at eBonuses function now returns zero for each return value if

_total StakedBal ance is zero.

Go back to Findings Summary

I3: Ambiguous error messages

Impact: | Info Likelihood: N/A
Target: | Staking.sol Type: Logging
Description

The error messages in the modifiers for pause and unpause functions

reference the presale contract, but the pausing functionality applies to the

staking contract.

Listing 17. Excerpt from Staking

71 /**

72 * @dev Throws is the presale is paused

73 x/

74 modifier notPaused()

75 {

76 require(!paused, "Presale is paused");
77 _

78 }
79
80 /*x%

81 = adev Throws is presale is NOT paused

82 =/

83 modifier isPaused()

84 {

85 require(paused, "Presale is not paused");

86 s

87 }

Recommendation

Update the error messages to accurately reflect the staking contract

context.

Fix 1.1

The error message is updated.

Go back to Findings Summary

Ackee Blockchain Security 50 of 59

14: Use of magic numbers

Impact: | Info Likelihood: N/A

Target: | Staking.sol Type: Code quality

Description

The contracts contain hard-coded values (magic numbers) such as 1000 et her
for the minimum amount that leads to affiliate bonus. This declaration can be
misleading since it represents a specific token amount including decimals. A
declared constant, such as M N_AFFI LI ATE_AMOUNT with an explanation, would

be clearer in the code.
Listing 18. Excerpt from Staking

if(_amount >= 1000 ether) {
uint256 affiliatedId = presale.addressToAffiliateId(msg.sender);

Recommendation

Replace the hard-coded numbers with constant declarations.

Fix 1.1

The magic numbers are replaced with constant declarations.

Go back to Findings Summary

I5: Missing documentation

Impact: | Info Likelihood: N/A

Target: | Staking.sol, StakingNFT.sol Type: Code quality

Description
The codebase lacks documentation and NatSpec comments for the functions

in the contracts.

Recommendation

Add comprehensive documentation of the protocol functionality and

NatSpec comments throughout the codebase.

Fix 1.1

The NatSpec comments are added.

Go back to Findings Summary

I6: Typos

Impact: | Info Likelihood: N/A
Target: | Staking.sol Type: Code quality
Description

The codebase contains typos. While these typos are used consistently, they
do not affect the functionality of the contract, but they can cause issues in

future development.
Listing 19. Excerpt from Staking

498 function ustdToBDCA(uint256 _amount) public view returns (uint256) {
499 return presale.paidWithTokenToPresaleToken(_amount);
500 }

Listing 20. Excerpt from Staking

54 mapping(uint8 => uint256) public tierBonusPersentages;
55 // Tiers affiliated bonuses
56 mapping(uint8 => uint256) public tierAffiliateBonusPersentages;

Recommendation

Fix the typos.

Fix 1.1

The typos are fixed.

Go back to Findings Summary

I7: Unused variables

Impact: | Info Likelihood: N/A
Target: | StakingNFT.sol Type: Code quality
Description

Thetier and | ockExpi re variables are retrieved but never used in the t okenURI

function, causing gas wastage and code clarity issues. The function fetches

these values from the staking contract but does not incorporate them into

the returned URI.
Listing 21. Excerpt from StakinglNFT

uint256 tier;
uint256 lockExpire;

if(address(staking) !'= address(0)) {
tier = staking.nftTier(tokenId);
lockExpire = staking.nftLockExpire(tokenId);

Recommendation

Remove the unused variables.

Fix 1.1

The unused variables are removed.

Go back to Findings Summary

Report Revision 1.1

Revision Team

Revision team is the same as in Report Revision 1.0.

System Overview

The changes in the system are focused on fixes from the previous revision.
Most of the codebase was simplified and documented. A PancakeSwap V2
router was introduced for price calculation between a custom token and the
BDCA token during rewards distribution. Due to hardcoded values, the
codebase is now deployable only on the BSC network. Also, this newly
introduced change is out of scope of this revision similarly to anything else

without a direct connection to the issues found in the previous revision.

Trust Model

The trust model remained unchanged since the previous revision.

Findings

The following section presents the list of findings discovered in this revision.

For the complete list of all findings, Go back to Findings Summary

WW7: Potential price manipulation on rewards
distribution

Impact: | Warning Likelihood: N/A

Target: | Staking.sol Type: Logic error

Description

The PancakeSwap V2 Router is introduced to the contract for price
calculation between custom tokens and BDCA. The price is used for value
conversion to determine how much BDCA rewards should be paid during

rewards distribution to stakers.

However, the value conversion is based on the pool price, which can be
manipulated depending on pool liquidity. A malicious actor can spot when
rewards are being distributed to them and manipulate the pool price to

receive more rewards.

Recommendation

Implement reliable price oracles such as TWAP (Time-Weighted Average Price)
or Chainlink price feeds instead of relying solely on pool prices. Add price
validation mechanisms to detect and prevent price manipulation attempts

during reward calculations.

Fix 2.0

The issue is fixed by removing the integration.

Go back to Findings Summary

Report Revision 2.0

Revision Team

Member’s Name Position

Jan Kalivoda Lead Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

System Overview

The codebase is simplified and resolves issues from the previous revision.
However, the simplification places greater requirements on the privileged

roles to act responsibly and correctly.

Trust Model

The distributor role is now responsible for selecting the price conversion ratio
between the BDCA token and the custom token in the codebase

(_bdcaToCust onifokenRat e). Additionally, the distributor must choose the
correct subset of the staked amounts (el i gi bl eNFTHol der sAnount) which will
be used for calculations in the distribution and distribute to stakers
accordingly. If all these parameters are not set together correctly, the

distribution will be flawed.

Appendix A: How to cite
Please cite this document as:

Ackee Blockchain Security, BitDCA: Staking contracts, 18.9.2025.

https://ackee.xyz/

Ackee Blockchain a.s.

Rohanske nabrezi 717/4
186 00 Prague
Czech Republic

hello@ackee.xyz

	BitDCA: Staking contracts
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain Security
	2.2. Audit Methodology
	2.3. Finding Classification
	2.4. Review Team
	2.5. Disclaimer

	3. Executive Summary
	Revision 1.0
	Revision 1.1
	Revision 2.0

	4. Findings Summary
	Report Revision 1.0
	Revision Team
	System Overview
	Trust Model
	Findings

	Report Revision 1.1
	Revision Team
	System Overview
	Trust Model
	Findings

	Report Revision 2.0
	Revision Team
	System Overview
	Trust Model

	Appendix A: How to cite

