The Journal of Molecular Diagnostics, Vol. 24, No. 5, May 2022

jmdjournal.org

&

A S
ELSEVIER

A Model for Design and Implementation of a
Laboratory Information-Management System
Specific for Molecular Pathology Laboratory Operations

Eban Tomlinson,* Jennifer Goodman,' Margaret Loftus,’ Stephen Bitto," Erica Carpenter,’ Richard Oddo,’ LuAnn Judis,’
Shabab Ali,* Wyatt E. Robinson,* Miranda Carver,’ Mariana Ganea,' Kristen McDonnell,” Diane 0'Neill," Jennifer Starbuck,
Eric Johnson,' Erik Meister,” Jonathan Pohl,” Jessica Spildener,’ Sheila Shurtleff,” Sheryl Sovie, Cathleen Melendez, *
Pamela Krebs, Jacquelyn D. Riley,T Christine Wensel,” Caroline Astbury,f Elizabeth M. Azzato,' David S. Bosler, Jay E. Brock,
James R. Cook," Yu-Wei Cheng,f Zheng Jin Tu," Michael Cruise,! Walter H. Henricks,” and Daniel H. Farkas'

‘ W) Check for updates ‘

From Semaphore Solutions,* Victoria, British Columbia, Canada; and the Robert J. Tomsich Pathology & Laboratory Medicine Institute,’ Cleveland Clinic,
Cleveland, Ohio

Accepted for publication

January 18, 2022. The Molecular Pathology Section, Cleveland Clinic (Cleveland, OH), has undergone enhancement of its

testing portfolio and processes. An Excel 2013— and paper-based data-management system was
replaced with a commercially available laboratory information-management system (LIMS) software
application, a separate bioinformatics platform, customized test-interpretation applications, a dedi-
cated sample-accessioning service, and a results-releasing software application. The customized LIMS
solution manages complex workflows, large-scale data packets, and process automation. A customized
approach was required because, in a survey of commercially available off-the-shelf software products,
none met the diverse and complex needs of this molecular diagnostics service. The project utilized the
expertise of clinical laboratorians, pathologists, genetics counselors, bioinformaticians, and systems
analysts in partnering with software-engineering consultants to design and implement a solution.
Concurrently, Agile software-building best practices were formulated, which may be emulated for
scalable and cost-effective laboratory-authored software. (J Mol Diagn 2022, 24: 503—514; https://
doi.org/10.1016/j.jmoldx.2022.01.002)

Address correspondence to
Daniel H. Farkas, Ph.D.,
HCLD, Robert J. Tomsich Pa-
thology & Laboratory Medicine
Institute, Cleveland Clinic,
9500 Euclid Ave., LL2-137,
Cleveland, OH 44195. E-mail:
farkasd2 @ccf.org.

Data-management needs in clinical molecular pathology
laboratories differ in substantive ways from those in other
clinical laboratories and anatomic pathology.' * Conven-
tional laboratory-information systems (LISs) historically
have not supported, by themselves, the needs of molecular
pathology laboratories to the extent that they have in other
laboratory disciplines and operations.” Molecular pathology
laboratories have often relied on a combination of manual
methods, spreadsheets, and nonintegrated and/or modular
software to meet data-management and operational needs.
Such was the situation in the Molecular Pathology Sec-
tion, Pathology & Laboratory Medicine Institute, Cleveland
Clinic (Cleveland, OH), in early 2017. A revitalization and
growth plan for the Section, which included expansion of
personnel, equipment, testing platforms, and test

development, was undertaken. An improvement deemed
fundamental to this re-invention process was a new labo-
ratory information-management system (LIMS) to reduce
and eventually replace the outdated, largely paper- and
electronic spreadsheet—based data- and workflow-
management system.

While the overhaul of the laboratory service was sub-
stantial, the focus of this report is limited to a description of

Supported by the Robert J. Tomsich Pathology & Laboratory Medicine
Institute, Cleveland Clinic.

Disclosures: E.T., S.A., W.ER., and C.M. are full-time employees of
Semaphore Solutions, the vendor retained by Cleveland Clinic in the
development and launch of the laboratory information-management system
described in this article.

Copyright © 2022 Association for Molecular Pathology and American Society for Investigative Pathology. Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).

https://doi.org/10.1016/j.jmoldx.2022.01.002

mailto:farkasd2@ccf.org
https://doi.org/10.1016/j.jmoldx.2022.01.002
https://doi.org/10.1016/j.jmoldx.2022.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmoldx.2022.01.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1016/j.jmoldx.2022.01.002
http://jmdjournal.org
https://doi.org/10.1016/j.jmoldx.2022.01.002

Tomlinson et al

a replicable process for the modernization of data and
workflow management specific to a clinical molecular pa-
thology laboratory. The process employed a customer—
vendor relationship. Of necessity, the relationship was a
partnership due to the complementary and nontechnical skill
sets of each party. The overall goal was to digitize a system
based on paper and Excel 2013 (Microsoft, Redmond, WA)
across a complex, multidisciplinary molecular pathology/
cytogenomics clinical laboratory service. This digitization
was accomplished through a custom-architected software
solution.

This article describes a model for the design and imple-
mentation of a LIMS that meets the diverse information-
management needs of a full-service clinical molecular pa-
thology laboratory, emphasizes the integral importance of a
well-structured development process, and describes a novel
application of modern software-based project-management
methods and third-party partnerships for building and
deploying a LIMS suitable for a modern molecular pathol-
ogy laboratory.

Materials and Methods
Scope Definition

The goal of the project was to deploy a LIMS to modernize
data and workflow management of the clinical molecular
pathology laboratory, including cytogenomics. The project
encompassed a complete overhaul of paper- and electronic
spreadsheet—based data-handling methods into a compre-
hensive, integrated electronic platform.

Objectives were identified to define the scope and focus
priorities of the project:

e Design and implement an electronic information system
to support the specialized requirements and workflow of a
full-service clinical molecular pathology laboratory, and
to fulfill needs unmet by conventional LISs.

e Support the range of clinical testing performed: adult,
pediatric, and somatic mutation detection in tumor tissues,
blood, and bone marrow; chromosome analysis; germline
genetic testing for diagnosis and/or carrier screening; and
pharmacogenomics.

e Support the range of complex data management of
analytical methods (and applications) in use: PCR; RT-
PCR; next-generation sequencing; B- and T-cell gene
rearrangement (PCR + capillary electrophoresis); chro-
mosomal microarray analysis; fluorescence in situ hy-
bridization; cytogenetic testing; and (genotyping by) mass
spectrometry.

o Integrate into the information-technology environment of
the institution for accessioning and resulting, particularly
the electronic health records system and the conventional
clinical laboratory and anatomic pathology information
systems [specifically, Sunquest software version 7.2
(Sunquest Information Systems, Tucson, AZ) and

504

CoPathPlus software version 2014 (Cerner, N. Kansas
City, MO), at the time, but now in the process of being
replaced by Epic Beaker software version November
2020 (Voicebrook, Verona, WI)].

Needs Assessment and Partner Selection

Given the complexity and multifaceted nature of the project,
two key needs were recognized: professional project man-
agement guided by domain expertise in molecular-testing
laboratories, and experienced and expert software-
development professionals who could bring to bear state-of-
the-art software-development tools and techniques. Between
two and four software developers were dedicated to the
project at various stages. One business/quality-assurance an-
alyst was included who served as the conduit for the trans-
lation of laboratory-specific requirements into software
requirements. A Ph.D.-level molecular biologist with project-
management expertise was hired to apply process rigor and
organization to direct the LIMS development and imple-
mentation (and other projects).” Laboratory-based personnel
participated in their various subject-matter domains as their
primary responsibilities to patient care allowed. Partnership
with a team of software engineers was established. This team
worked with molecular pathologists and laboratory personnel
(subject-matter experts) to design and build the full software
solution. Peer-to-peer relationships were formed between the
clinical laboratory project manager and software project
managers as control points for the project.

Prior to the beginning of this extensive development
project, due diligence was undertaken to evaluate whether,
or to what extent, commercially available information sys-
tems could meet the needs at hand. This assessment indi-
cated that some systems on the market could provide some
of the functional requirements, and that development
entirely from scratch was not required. Next-generation
sequencing—centric LIMS software was selected for licen-
sure (BaseSpace Clarity LIMS 5.1; Illumina, San Diego,
CA). This software as licensed was focused narrowly on
supporting particular elements of next-generation
sequencing workflows. Its distinguishing characteristics
were customizability and extensibility that could ultimately
support the objectives of the laboratory, including a wide
portfolio of molecular diagnostics tests performed and the
need for systems integration. Compatibility with the third-
party commercial bioinformatics software (Clinical Geno-
mics Workspace version 6.15.1; PierianDx, Creve Couer,
MO) that the laboratory had previously chosen was another
key deciding criterion.

Technology Platforms and Software Tools

The software-engineering team used Jira and Confluence
cloud-based software (Atlassian, San Francisco, CA) to
organize development tasks and to project documentation,

jmdjournal.org m The Journal of Molecular Diagnostics

http://jmdjournal.org

Molecular Pathology LIMS

Table 1 Definitions of Terms for the Agile-Scrum Software-Development Method Applied
Term Definition
Stakeholders The group of individuals who work with, and would be impacted by, the software system being developed (ie,

Agile project management

Scrum

LIMS workflow

External program plug-in
(EPP)

Application programming

interface (API)

Continuous integration
(CI) pipeline

Environments
Development
Test
Staging

Production

laboratory and medical directors, laboratory manager, laboratory supervisors, medical/laboratory
technologists, pathologists, geneticists, bioinformaticians, staff scientists, clinical systems analysts, and a
revolving cast from the larger Cleveland Clinic information-technology group).

A system of practice to manage project delivery using an iterative approach. Optimization is achieved via
continuous releases that include changes based on stakeholder review at each iteration. The process is
useful for addressing highly complex problems in a mechanistic, incremental way.

Agile framework that encourages cross-functional team progress through short, measured iterations (https://
www.scrum.org/resources, last accessed November 4, 2021). Each problem is addressed in focused iterations
called sprints, in which engineering management and build practices are used for addressing the complexity
at hand. Outcomes are predicted and control of risk is assessed incrementally and via empirical observation.

Clinical laboratory test workflows have three components: i) preanalytical, ii) analytical, and iii)
postanalytical. A LIMS, or other supporting software, digitally models test workflows, storing and
classifying large volumes of laboratory workflow data, and automates laborious, repetitive workflow tasks
that risk compounding human error. The term LIMS workflows alludes to customized, digital workflow
models that span the preanalytical, analytical, and postanalytical stages.

A Clarity LIMS (Illumina, San Diego, CA)—specific term that refers to a standalone script file accessible within
the LIMS to perform calculations, transformations, or integrations too complex or cumbersome to configure
within the LIMS itself.

Software intermediary that serves to connect multiple applications allowing them to exchange information.
An API dictates what information can be sent and received by a given application and may add security
restrictions. It also abstracts underlying code when interacting with other software. An analogy is a person
(application A) ordering at a restaurant (application B); the menu represents the API.

The practice of automating the grouping of changes (typically software code but also software-build pipelines
and automated tests) from multiple contributors into a single software project; this is software industry
best practice, allowing developers to incorporate code changes into a central repository where builds and
tests can be run more frequently and easily.

System in which new features are actively developed.

System in which newly developed features are tested; user-acceptance testing occurs in this environment; if
the test fails, the software goes back to development; if it passes, it is promoted to staging.

System used for validating changes prior to promotion to production; the system should mirror production in
all ways except those new changes to be tested.

The active system processing patient samples; processes personal health information and needs to be treated
in accordance with HIPAA regulations.

respectively. Version control was implemented in the
GitHub cloud-based software host (San Francisco, CA). A
continuous-integration pipeline (Table 1) was built using
TeamCity software version 2019.1 (JetBrains, Prague,
Czech Republic). PyCharm software version 2019.1 (Jet-
Brains), Docker Desktop Community software version
2.1.0.5 (Docker, Palo Alto, CA), VirtualBox software
version 6.1 (Oracle, Austin, TX), and Postman software
version 8.1 (Postman, San Francisco, CA) were used to
facilitate local testing and development.

Python (Python Software Foundation, https:/www.
python.org, last accessed August 2021), a popular,
general-purpose, high-level programming language with
well-documented, well-supported engineering standards,
was used to develop external program plug-ins, automated
test scripts, report templates, and other services. A report-
generation and sign-out application named AVRO (analyt-
ically validated reporting object; see Clinical Reporting
Application) was built on a Python server with an Angular
JavaScript front-end. For LIMS workflows, the open-source

The Journal of Molecular Diagnostics m jmdjournal.org

Python s4-Clarity library (https://github.com/Semaphore
Solutions/s4-clarity-lib, last accessed August 4, 2021) was
used to support batch-analyte data (spreadsheet-formatted)
parsing, laboratory-instrument integrations, complex library
pooling, de-multiplexing, and other computations on ana-
lytes. The Jinja2 web-based template engine library (github.
com/pallets/jinja, last accessed August 2021) was used for
default report-content templating to support clinical inter-
pretation and clinical-report generation in AVRO.

Project Management

The general project-management process used was Agile-
Scrum, chosen by the owner of the critical path for project
completion (ie, the software-development team). In the
project, Agile-Scrum was supplemented with additional roles
and processes tailored to work in the hybrid clinical labora-
tory service/software-development consultant environment.
It became obvious that definitions and vocabulary differed
between these two groups of subject-matter experts (ie,

505

https://www.python.org
https://www.python.org
https://github.com/SemaphoreSolutions/s4-clarity-lib
https://github.com/SemaphoreSolutions/s4-clarity-lib
http://github.com/pallets/jinja
http://github.com/pallets/jinja
https://www.scrum.org/resources
https://www.scrum.org/resources
http://jmdjournal.org

Tomlinson et al

Validation Phase 1
Requirements elicitation, Consensus approval
Owner: Software Team Business Analyst

Validation Phase 2
Development, Peer Review, Auto-test development
Owner: Software Development Team

Stakeholder
Consensus
Process

Requirements Granular
Elicitation | "Requirements

Iteration Start

Iteration End

Passed

Failed

RDE';F’IOV Pre-production DEIP|0V oo 1ab DF‘]F"OY
elease » Release In-silico laborato Release

! runs with real — P d ry

Candidate to sample run < candidate to asse user testing Candidate to
Production testing Staging Test

Passed Software
™| Development

Automated
tests and Peer
Review

Release€andidate

Failed

Passed

Validation Phase 4
Pre-Production Runs
Owner: Lab Director delegated to Lab Manager

Validation Phase 3
User Acceptance Testing
Owner: Clinical Systems Analyst

Figure 1 Representation of the four major phases of validation and development.

clinical laboratory and software-engineering professionals).
Selected terms are defined in Table 1. Key roles and activities
of the Agile-Scrum development process, as applied in this
project, are described in the subsequent paragraph.

Key Roles

Four key roles corresponding to major development and
validation phases were identified as gatekeepers of the
development process. These gatekeepers controlled the pro-
motion of a deliverable through the process and, thus, control
of a rapidly evolving process was retained. The subject-
matter experts in these roles worked in tight collaboration to
ensure that the highest possible quality was achieved. Note
that at relevant steps, bioinformatics professionals, Ph.D.-
level laboratory director-designee, and/or M.D.-level pathol-
ogists reviewed and approved changes as appropriate.

Key Role 1—Business Analyst (Extant within Software-
Development Team)

The business analyst assumed responsibility and account-
ability for the elicitation and decomposition of requirements
into granular requirements that were logically defined and

506

complete. This work output was added to the stakeholder-
consensus process.

Key Role 2—Software-Development Team

The software-development team was the consumer of
approved granular requirements and the developer of soft-
ware designed to meet those requirements. This team was
involved in developing automated tests to validate that the
software written did in fact meet the granular requirements
as specified. This work output was collected into a release
candidate and, upon passing the automated tests, was
released into phase 3, user-acceptance testing. This team
was self-organizing and chose the Scrum framework to
align themselves into 2-week iterations (ie, sprints).

Key Role 3—Clinical Systems Analyst (Extant within
Laboratory Team)

The clinical systems analyst served as the first round of
testing for the laboratory service, owing to the proximity of
the role to the laboratory and to the expertise in the labo-
ratory’s process and informatics architecture. The work
assigned to this role was to coordinate and, in some cases, to
perform the tasks in development/validation (phase 3), user-
acceptance testing. The output of this work was a pass/fail

jmdjournal.org m The Journal of Molecular Diagnostics

http://jmdjournal.org

Molecular Pathology LIMS

Table 2 Test-Component Organization

LIMS component Example Scope

Step DNA extraction Single wet-laboratory process contained in a single work session, in one physical location
Protocol Sample extraction Collection of steps that facilitate one stage of the workflow

Workflow Fragile X carrier screening End-to-end sample processing from accessioning to report issuance

decision that either sent the release candidate back to
development or promoted the release candidate to staging.

Key Role 4—Laboratory Manager

The laboratory manager signed documentation approving the
release candidate for promotion to the production environ-
ment after review of successful preproduction runs that were
performed using test samples in the laboratory and after
verification that all test plans and checklists were completed.

Key Activities

The major phases of software development and validation
are shown in Figure 1. All activities were coordinated uti-
lizing a series of modular processes that worked together to
produce a performant and validated software installation
consisting of licensed software, configuration of that soft-
ware, and customized software to supplement the licensed
software [eg, AVRO, Health Level Seven International
version 2.3 (HL7; Health Level Seven International, Ann
Arbor, MI) interface].

The highest-order process consisted of four development/
validation phases:

Phase 1: Identify requirements and group them into archi-
tecturally independent release candidates logically small
enough to enable rapid development (requirements elicitation).

Phase 2: Monitor and facilitate the development of
automated testing and peer-review process on release can-
didates (software development).

Phase 3: Coordinate the promotion of release candidates
from the development environment to the testing environ-
ment (user-acceptance testing).

Phase 4: Coordinate the promotion of the release candi-
date from the testing environment to the staging environ-
ment for preproduction run, and subsequently to the
production in silico environments in such a way as to avoid
patient-care impacts (preproduction runs, progression to
user-accepted version, and deployment).

Development/Validation Phase 1—Requirements Elicitation
The project consumed hundreds of person-hours in elicita-
tion meetings, the goals of which were to:

i. Establish the location of relevant domain knowledge
ii. Establish detailed requirements and shared terminology
iii. Achieve stakeholder group consensus on each granular
requirement
iv. Promote granular requirements to the approved backlog
of work

The Journal of Molecular Diagnostics m jmdjournal.org

Translation of end-user system functionality into work-
able development items was a task shared between the
laboratory and software teams. The laboratory team solicited
input from subject-matter experts and prepared documen-
tation. The software business analyst then used that docu-
mentation to produce software-development work items that
fulfilled the final system requirements specified by the lab-
oratory team. System-requirements documentation included
written requirements, text-based documents, logic tables
(eg, user-role permission maps, diagrams, and flowcharts),
spreadsheets, native-instrument data files, laboratory stan-
dard operating procedures, and test-validation plans.

Software deliverables were detailed and tracked in Jira.
Laboratory objectives were described in common language,
then passed to the software team for decomposition.
Software-development tasks were identified during decom-
position and completed by the software team using Scrum.
The percentage of completion reports for each objective
were tracked using Jira and reviewed weekly by the joint
project-management group. Impediments to progress were
identified and delegated to the appropriate team members
for resolution. Common impediments included:

i. Language ambiguity of requirements
ii. Technical difficulty in mapping laboratory requirements
to the software
iii. Requirements without a test plan or for which gener-
ating a test plan to be used in practice was challenging

Development/Validation Phase 2—Software Development
Software development proceeded in 2-week iteration cycles
(sprints). Members of the clinical laboratory and software-
engineering teams continuously evaluated and improved the
software-development processes throughout the project. The
teams incorporated the requirements of the Health Insurance
Portability and Accountability Act (HIPAA) to ensure that
protected health information was handled appropriately. For
example, scripting of mock samples was developed with
convincing, yet mock, data. This scripting enabled the en-
gineering team to test the system in a realistic fashion
without the use of patient information.

The engineering team adhered to the following technical
process while working within sprints:

i. A team member chose a development task from the
approved requirements to work on during the current
iteration (sprint backlog).

ii. Once completed, each development task was peer-
reviewed by other software engineers prior to

507

http://jmdjournal.org

Tomlinson et al

Table 3 Shared Workflow Components

LIMS workflow Workflow components

Cytogenetics Preanalytics™ > (CytoG) wet-laboratory sample extraction > wet-laboratory analysis > clinical reporting > long-term data
(CytoG) archiving*

Chromosomal Preanalytics™ > (CMA) wet-laboratory sample preparation > wet-laboratory analysis > clinical reporting > long-term data
microarray archiving®
(CMA)

Carrier Preanalytics® > sample-preparation extraction® > (carrier screening) wet-laboratory analysis (per test code) > clinical
screening reporting > MDx long-term data archiving®

MDx Preanalytics® > sample-preparation extraction® > wet-laboratory analysis (per test code) > clinical reporting > MDx

long-term data archiving®

*Universally shared component. Note that preanalytics was able to be shared across all workflows, while sample-preparation extraction was shared, but only

within the MDx group of tests.
MDx, molecular diagnostics.

inclusion in the master codebase, an industry-standard
quality-assurance practice.

iii. Automated tests were generated during development
and run before and after each development task was
committed to the master codebase, to identify problems
in the task and in the integration of the task into the
codebase, respectively. Automated tests generally con-
sisted of scripts that generated representative mock
samples, and utilized the Clarity LIMS application
programming interface to move those mock samples
through the workflow while replicating user interaction
at each step, again using the application programming
interface.

iv. When the development of a full software deliverable
was completed (release candidate), it was assembled
atop all previous deliverables on a replica LIMS (test
server).

v. The release candidate was tested for both successful and
potentially erroneous scenarios, in accordance with the
requirement specification(s).

Development/Validation Phase 3—User-Acceptance Testing
In phase 3 of software validation, functional testing was
performed by the laboratory team and led by the clinical
systems analyst, who reported results and discrepancies back
to the software team at each stage for collaborative triage. A
go/no-go decision was made based on the severity of the
discrepancy and the viability of a workaround being utilized
until the next release candidate could be deployed. Discrep-
ancies were addressed by the software team in order of pri-
ority and redeployed through reiteration of the process in
Development/Validation Phase 2—Software Development.

Development/Validation Phase 4—Preproduction Runs,
Progression to User-Accepted Version, and Deployment
The following process was used for preproduction runs,
progression to user-accepted version, and deployment:

i. After all tests were passed, the software vendor
deployed the validated release candidate to the staging
environment of the laboratory.

508

ii. Successful execution of the user-acceptance testing
phase triggered full-system—Ilevel preproduction runs by
laboratory personnel in the staging environment.

iii. Successful preproduction run completion was followed
by scheduled deployment of the release candidate to the
production environment, which, in some cases, consti-
tuted several releases at once.

iv. Full deployment was facilitated jointly by software and
laboratory information-technology personnel. Full-sys-
tem—Ilevel tests, as well as preproduction run checklists
and end-to-end testing scripts, were utilized to validate
the performant nature of the final deployment(s).

Results

System Design—Workflow Analysis and Support

The LIMS organizes and handles the workflows of the
clinical laboratory, from specimen accessioning through
laboratory analysis to issuing reports to ordering physicians.
The system also coordinates tasks among staff. The LIMS
automates several laboratory processes, such as spreadsheet
parsing or container-placement indexing, and is compatible
with laboratory instrumentation, such as automated liquid
handlers and quality-control instruments, either through an
off-the-shelf or custom-built integration. Substantial
customized LIMS-workflow design and engineering were
required to model the testing procedures of the laboratory
and to organize the constituent processes, including sample
accessioning, nucleic acid (DNA, RNA, or total nucleic
acid) purification, direct PCR testing, genotyping by mass
spectrometry, sequencing, chromosome testing, data anal-
ysis, and all associated quality-control steps.

A key project requirement was organization and refine-
ment of workflows within the LIMS. Wherever possible,
shared processes were identified and excluded from test-
specific workflow building. For example, sample acces-
sioning and DNA extraction were built out as shared pro-
tocols. Templating (sharing) at the step and protocol layers

jmdjournal.org m The Journal of Molecular Diagnostics

http://jmdjournal.org

Molecular Pathology LIMS

Cerner
CoPathPlus
(commercial)

A

Molecular Procedure Results

Sunquest

Epic electronic
medical record

LIS HL7 messaging

(commercial) |

Figure 2

Laboratory
Instrumentation
and hardware

Files Files

ClarityLIMS
(commercial) +
configured workflows
and custom built EPPs)

HL7 Interface

(custom) g—Bi-directional APl——p»-

A

Bi-directional AP1

A

AVRO
(custom)

A laboratory information-management system (LIMS) supports clinical laboratory—test workflows systems interfacing and traceability by

classifying and storing laboratory workflow data [accessioning, preanalytics, analytical wet bench, analytical interpretation paired to clinical interpretation
(results reporting)]. Traceability refers to the record-keeping in each of the systems shown (ie, data received, data sent, and data transformations that happen
in between). AVRO, analytically validated reporting object; EPP, external program plug-in; LIS, laboratory-information system. CoPathPlus, Cerner (N. Kansas
City, MO); Epic Beaker version November 2020, Voicebrook (Verona, WI); HL7, Health Level Seven International version 2.3, Health Level Seven International
(Ann Arbor, MI); Sunquest software version 7.2, Sunquest Information Systems (Tucson, AZ).

were combined with unique elements to generate end-to-end
workflows specific to each test.

The LIMS was engineered to support the build of
workflows in a hierarchical fashion in which workflows
contain protocols which, in turn, contain steps (Table 2). In
steps, the work of the end-user is performed, on either a
single sample or a batch of samples. Protocols are a
collection of steps organized around the standard operating
procedures of a laboratory, and workflows comprise the
protocols required to execute a test. Custom-built workflows
are shown in Table 3.

System Features and Integration

LIS—HL7 Interface for Sample Accessioning

LIS applications typically connect to other patient health
care applications such as Health Insurance Policy Admin-
istration systems and electronic health records.’ To function
effectively, LISs must be interoperable with these health
care record systems through the adoption of a common
standard.” The HL7 standard was utilized as the form of
communication between the LIS and the LIMS through a
customized interface (Figure 2).

The interface between the existing Sunquest and
CoPathPlus (Cerner) LISs of the laboratory and the new
LIMS streamlined the flow of patient data received from the
health care record systems into sample accessioning. A
customized HL7 listener service was built and configured to
interface with the LIS. This service verifies whether the HL.7
message received is valid and, if so, generates a sample with
all required sample-information fields and accessions it
directly into the LIMS. Required sample fields including,

The Journal of Molecular Diagnostics m jmdjournal.org

but not limited to, medical-record number, last name, and
collection date are extracted from the HL7 message and
mapped to LIMS user-defined fields to preserve vital in-
formation for mapping test results to the correct patient
downstream. The original inbound HL7 message was pre-
served on the sample to resolve any ambiguous data map-
ping in the LIMS. Error logs are generated for review when
HL7 messages either cannot be processed or produce errors.
The LIS application was integrated with the HL7 inter-
face while its essential functionality and interoperable links
were preserved. After software build, the LISs still collected
and organized patient health care data. However, software
management of the clinical-test workflows and process
automation were improved with LIMS implementation.

Instrumentation

Integration with nucleic acid—purification robotics and
spectrophotometers (preanalytical) and molecular
diagnostics—related analytical platforms were facilitated
through file-transfer systems built on shared network loca-
tions. Integrations followed the same process:

i. A plate map was generated and displayed to laboratory
personnel at the appropriate LIMS workflow step.

ii. After the requisite samples were plated and the instru-
ment completed its full cycle, an output file was directed
to a shared network location available at each LIMS
workstation.

iii. Laboratory personnel uploaded the output file to the
appropriate (usually next) step in the LIMS workflow.

iv. An external program plug-in parsed data from the output
file and saved discrete pieces to user-defined fields on
the sample in the LIMS.

509

http://jmdjournal.org

Tomlinson et al

Table 4 Benefits Accruing to a Clinical Laboratory from a LIMS

Item

Category
() Fin

o
e}
©n

PC Q Reg

Inventory management and control; optimize reagent purchasing to just-in-time model thereby I

improving cash flow
Reduce time needed for archived-specimen retrieval
Reduce paper consumption

Monitor process activities: track/locate a specimen as it moves through testing process, waiting

YYY \

times, bottlenecks, instrument usage, assess percentages of instrument capacity being used,

idle versus active time, batch sizes
Reduce opportunities for human error
Prevent use of expired reagents
Monitor waste, rework, delayed turnaround times

Optimize use of laboratory human resources; monitor individual clinical laboratory scientist v

productivity by tracking work units
Audit trail

Troubleshoot bottlenecks in testing progress; simplification of root-cause analysis
Real-time opportunities for investigation of failures (reagents, instruments, human) and

identification of patterns

Capacity to identify rapidly specimens associated with a problematic reagent, instrument, or run

Simplification of monitoring instrument calibration and verification

Capacity to upload supporting documentation so that all data are centralized and not in separate

logs
Monitor volumes by client/physician
Correlate testing with environment (eg, temperature, humidity)
Correlate technologist training and competence with testing
Centralize instrument maintenance and service agreements
Opportunity to learn true cost of testing
Correlate testing done with and without payer preauthorization
Track test volumes by variables (eg, test code, CPT code, shift)

Reduce the time that medical technologists invest in performing clerical tasks (eg, pre- and
postanalytical clerical tasks, accessioning exceptions, data transcription)

Simplified, standardized results reporting across all tests

Reduce time spent on regulatory submissions associated with software
Reduce documentation errors associated with instrument function and verification and

workspace decontamination

X\
AN WA WA
\

X\
X\
A U W W W

\
\

YYYY YYYX XX
X\

XYY\

\
\
YYY X

CPT, Current Procedural Terminology; CS, customer service; Fin, financial; Ops, operations; PC, patient care; Q, quality; Reg, regulatory.

Clinical Reporting Application

To address the ultimate goal of every high-complexity
clinical laboratory test (ie, the issuance of a patient report for
the physician who ordered the test), the customized AVRO
was built. AVRO serves as an interface to manage the
interpretation (postanalytical) component of laboratory-test
workflows. AVRO utilizes the authentication system of the
LIMS, and therefore only LIMS users with the correct
permission setting can access AVRO. AVRO runs on its
own server, links directly to the LIMS, and polls specific
steps to import reporting objects. It then determines which
report template to assign based on the test code and displays
test data to professional staff reviewers. This reporting
application generates standards-compliant clinical reports
for annotation and sign-out by molecular pathology pro-
fessional staff. Upon sign-out, AVRO sends text reports to
the automated clinical report—releasing service, which

510

submits HL7-formatted data and issues a text-based copy of
the report to the appropriate recipient.

AVRO was designed and implemented to harmonize re-
sults reporting and formatting within a dynamic multicom-
ponent system of electronic medical records and LISs [Epic
Beaker; Sunquest, CoPathPlus, and Rhapsody software
version 6.6 (Lyniate, Boston, MA)] while maintaining a
flexible LIMS configuration. [Rhapsody is an interface en-
gine that sits between Epic and ancillary systems (eg, Sun-
quest, CoPathPlus).] Given that report fields are populated
directly from LIMS user-defined fields, all LIMS data are
available to the report template. Using Jinja2 Python tem-
plating enabled a programmatic approach to reporting (ie,
rules can be applied to text and data formatting). AVRO uses
the LIMS application data layer and the LIMS-managed user
credentials that can be integrated with Lightweight Directory
Access Protocol systems to support data provenance and
added security. This approach obviated the architectural

jmdjournal.org m The Journal of Molecular Diagnostics

http://jmdjournal.org

Molecular Pathology LIMS

generation of a separate database and the duplication of user
credentials. AVRO thus facilitates professional actions on
samples that exist entirely within the LIMS.

The concept of report-content defaults was identified
from feedback after early implementations had been tested
by the reporting professional staff. Reporting templates were
customized for each test and then served the correct tem-
plate by mapping test codes to those templates. Templates
could be mapped to multiple test codes and were maintained
independently for maximum flexibility in content.

Opening a report in AVRO presents a template, populated
with interpretation text derived from the results-
interpretation code applied in the analysis portion of the
workflow. The molecular pathologist user is able to modify
and customize all of the populated content prior to sign-out.
At any point during the report-building process, AVRO
allows the user to preview the report.

A customized report-release service was built into the
LIMS as a set of external program plug-ins in a report-
release step. This step was designed such that the system
monitors for newly signed-out reports in AVRO every 30
seconds via the AVRO application programming interface.
The report-release step generates and sends reports back to
the LIS, and then attaches the report file(s) to the completed
step in the LIMS.

Audit trails were available as base functionality in the
LIMS and did not require customization. Building AVRO
atop the audit trail—data layer facilitated auditing through
the report-building process up until submission of the
outbound HL7 message. HIPAA compliance as imple-
mented in the LIMS thus persisted through the report-
building process, an efficiency afforded by leveraging of the
existing software-validation work extant in the off-the-shelf
product. The LIMS tracks all of the elements specified by
audit trails—related items on the College of American Pa-
thologists Laboratory General Accreditation Checklist.

Resulting End-to-End Software Solution

The test-managing software system of the LIMS and AVRO
interfaced with the pre-existing LIS architecture via
customized software services, an HL7-bridged laboratory
sample—accessioning service, and an automated clinical
report—releasing service through the LIMS. The newly in-
tegrated solutions automated the full end-to-end process of
the molecular pathology laboratory, from sample acces-
sioning to the issuance of final patient reports. These ser-
vices eliminated the use of paper to track analytics data and
mitigated the risks for bottlenecks and human error that tend
to result from manual control of laboratory input and output
processes. For example, accessioning bottlenecks have been
mitigated by streamlining accessioning through the
LIS—HL?7 interface, and human errors due to data tran-
scription have been reduced through data tracking in the
LIMS and subsequent automated exchange of data between
the LIMS, AVRO, and LIS.

The Journal of Molecular Diagnostics m jmdjournal.org

An important predictor of success was the selection of a
LIMS with robust application programming interface and
customization support in order to address the significant A
between off-the-shelf functionality” and the functionality
required by the molecular service via the only pathway
remaining, customized-software engineering. Software en-
gineers worked in virtual instances of the software envi-
ronment to enable rapid revisions within existing and
relevant system parameters. Imagining, designing, testing,
and implementing the information-management system
described required significant human and financial re-
sources. A list of advantages that have been accrued by this
clinical laboratory, or that are anticipated in the near future,
is shown in Table 4. Specific examples of the benefits the
laboratory has experienced since LIMS implementation are
listed in Table 5.

Discussion

The Molecular Pathology Section, Pathology & Laboratory
Medicine Institute, Cleveland Clinic, performs high-
complexity clinical laboratory testing in support of the
practice of genomic medicine. A revitalization and
modernization program begun in 2016 established the need
for improvements in laboratory data management. Organi-
zation of clinical laboratory—testing workflows in the 21st
century is best matched to 2l1st-century software and
information-management tools, not tools from the previous
century (ie, paper, Excel, flash drives). Education was
pivotal in accelerating the project toward success. Educating
all members in this team-based approach in respective do-
mains led to the acknowledgment that both software
development and molecular pathology (with inherent regu-
lation) were of equal importance in the LIMS-generation
process. Education, not unlike the build process itself, was
accomplished iteratively and continually throughout the
project. The more that subject-matter experts from all dis-
ciplines understood each other, the better the team was able
to optimize and improve each build iteration and, subse-
quently, execute the shared process successfully. The
importance of partnership between the laboratory and
software-engineering teams was a lesson well learned.
Modeling clinical laboratory—test workflows digitally
and integrating a LIMS into the clinical hardware and
software architectures of the laboratory required a signifi-
cant amount of customized-software engineering. Most
LIMSs available commercially are touted as configurable.
Principles and practices from the domains of computer
science and software engineering were required to produce a
maintainable and scalable LIMS implementation, alongside
a greater set of laboratory software services and applica-
tions. Laboratories often do not have the resources in-house
to integrate such a solution into their existing system(s).
Software and process engineers were required to build
effective customized test-workflow models in silico that

511

http://jmdjournal.org

Tomlinson et al

Table 5 Examples of LIMS Benefits
Item Benefit(s) Supporting metric(s)
Specimen demographic information interfaces 1. Preanalytics and analytics technicians no 1. Time-saving, measurements in

directly from extant LIS to LIMS-based analytics
workflows

Nucleic acid quantification values and quality
metrics parsed directly from NanoDrop (Thermo
Fisher Scientific, Waltham, MA) files into LIMS-
based analytical workflows

Nucleic acid extraction reagent and data tracking
now completely LIMS-based; previous state
required manual completion and archiving of
physical worksheets

Consolidation of specimen tracking history from
multiple systems into one searchable database

LIMS-based workflow steps include performing
technologist, date, and time stamps

Specimen analytical results parsed directly from
analytical Excel workbooks into LIMS, which
transmits directly to reporting LIS

Consolidation of reporting system from three
separate LISs [CoPathPlus (Cerner, N. Kansas
City, M0), Sunquest version 7.2 (Sunquest
Information Systems Tucson, AZ), ePath Logic
web-based software version 3.1.0 (ePath Logic,
Highland, MI)] to one universal reporting
product (AVRO)

LIMS transmits data directly to Tableau software
version 2020.1 (Tableau, Seattle, WA)

512

. Eliminated time-consuming clerical

. Analytics technicians no

. Analytics technicians no

. Improved

. Analytics technicians no

longer need to manually transcribe specimen
demographic information into Excel (Micro-
soft, Redmond, WA) logs and workbooks
duties
from preanalytics and analytics technicians

. Eliminated transcription errors that result in

discordant specimen demographic information
between systems

longer need to
manually transcribe quantification data into
Excel logs

. Eliminated time-consuming data transcription

duties from analytics technicians

. Eliminated data transcription errors
. LIMS-based automations perform quality met-

rics calculations previously performed by Excel
macro

longer need to
manually transcribe reagent-lot information

. Reduced paper consumption
. Reduced physical document storage
. Higher-resolution specimen tracking enables

users to pinpoint specimen location at any
step of preanalytical, analytical, and post-
analytical processes

. Expanded and available user-defined fields in

extraction workflow reveal whether additional
material is available for re-extraction/
retesting, ie, computer-based query versus
manual search and review in-laboratory

. Reduced interruption of preanalytics and ana-

lytics technicians for specimen-data
interrogation
troubleshooting and trend
identification

Provides high-resolution data previously
unavailable to the laboratory which can be
used for the identification of technique
variation among techs

longer need to
manually transcribe result codes into reporting

LIS

. Reduced data-transcription errors
. Standardized reporting process across testing

platforms

. Reduced LIS access and training requirements

for analytics technicians

Enables more sophisticated queries and data

analysis for quality metrics reporting and
troubleshooting

progress

2. Twenty-four Excel logs used
for specimen data storage
eliminated and archived

1. Time-saving, measurements in
progress

2. One Excel macro eliminated
and archived

Ten high-use nucleic acid
extraction documents
eliminated and archived

Time-saving, measurements in
progress

N/A

Time-saving, measurements in
progress

Reporting LIS reduction from
three systems to one

N/A

(table continues)

jmdjournal.org m The Journal of Molecular Diagnostics

http://jmdjournal.org

Molecular Pathology LIMS

Table 5 (continued)
Item Benefit(s) Supporting metric(s)
Automated calculation for reagent addition in 1. Saves time Time-saving, measurements in
FISH 2. Eliminates arithmetic errors progress
3. Automates recording of probe(s) used, lot
numbers, expiration dates
Case tracking (FISH laboratory) 1. TAT tracking automated Time-saving, measurements in

2. Rush samples or samples approaching TAT limit

progress

more easily sorted and found
3. Facilitates case assignment to technologists

FISH, fluorescence in situ hybridization; TAT, turnaround time.

automated processes and managed the inherent workflow
data. Their role also included installing and successfully
integrating the LIMS application alongside other supporting
software that existed in the clinical-informatics architecture.
By employing a clinical laboratory team/software-
engineering team collaboration, the existing software sys-
tem was significantly upgraded, the use of paper and elec-
tronic spreadsheets was reduced (with the eventual goal of
the complete elimination of paper), and efficiency was
increased, putting the laboratory in a better position to scale
up throughput and manage complex data.

The test-reporting environment is complex; here is an
example of one benefit of the LIMS implementation. The
Pathology & Laboratory Medicine Institute (composed of
two departments, [anatomic] Pathology and Laboratory
Medicine) uses Sunquest to result laboratory medicine
testing. CoPathPlus is used to report anatomic pathology
results and additional associated testing of tissue,
cytology, and bone marrow specimens (ie, special stains,
fluorescence in situ hybridization, cytogenetics, PCR, and
next-generation sequencing testing). Clarity LIMS
streamlined reporting so that all molecular pathology tests
are now reported back to Sunquest and posted as a
discrete item in the patient’s electronic health record in
Epic for the specific test. Tests that must be reported as
part of an anatomic pathology report are sent back to
CoPathPlus from Sunquest so that clinicians may view a
comprehensive report on that specimen.

Formulating an effective software-building framework was
important, considering the challenges in generating and
operating customized clinical laboratory software. Such soft-
ware must address testing intricacies and diverse molecular
technologies within a complex clinical laboratory architecture.
Rigorous building methods and techniques were needed to
ensure build quality and maintenance sustainability.

Scrum best practices are valuable in the modernization of
clinical ~ laboratory information—management via
customized-software generation. Scrum best practices are
demonstrated to be extensible, scalable, and cost-effective.
It is crucial that any given Scrum format: i) be lightweight,
with clearly defined roles and responsibilities of the partic-
ipants; ii) be comprehensively simple; and iii) assume room
for improvement.

The Journal of Molecular Diagnostics m jmdjournal.org

Notably, a laboratory-science framework for molecular
biology research, termed LabScrum, has gained support in
research-oriented molecular biology laboratories. LabScrum
emulates the principles of software-engineering Scrum. The
writers of LabScrum illustrated three critical principles of
the Scrum framework’s utility in research laboratories
[Attps://www.cutter.com/article/labscrum-case-study-agility-
academic-research-labs-504061; last accessed August 2021
(registration required)]. These principles are valid for
building customized information-management software in
the setting of clinical laboratory testing.

The adoption of some form of Scrum in building
customized laboratory software should focus on three
essential components: i) transparency, ii) inspection, and iii)
adaptation. LabScrum proponents have argued that a man-
agement framework based on empiricism is highly consis-
tent with the scientific method [https://www.cutter.com/
article/labscrum-case-study-agility-academic-research-labs-
504061; last accessed August 2021 (registration required)].
Anecdotally, research scientists rigorously apply empiricism
and the scientific method for results, or product, but often
do not think empirically about tasks/techniques, or
processes. Generating process visibility and analysis
utilizing a framework for ongoing improvement can
improve the quality of the science (more rigorous science),
the quantity of the science (more productive science), and
the quality of life of scientists (more sustainable science).
In effect, to run a modern clinical laboratory necessitates
having a laboratory function to interact with the processes
of configuring or generating customized software, because,
by definition, this software does not yet exist or, more
accurately, must be customized for use in every clinical
laboratory.

The inability of the LIMS implementation to store unique
patients in their own table with a one-to-many relationship
between the patients table and the specimens table in the
database is a limitation of the existing system. The system is
maintained via Information Technology department
personnel and in-laboratory medical technologists.

An important lesson learned in executing the LIMS project
was the concept of a minimally viable product (MVP). Early
in the project, the laboratory team was excited at the flexi-
bility and customizability of the chosen LIMS product. In

513

https://www.cutter.com/article/labscrum-case-study-agility-academic-research-labs-504061
https://www.cutter.com/article/labscrum-case-study-agility-academic-research-labs-504061
https://www.cutter.com/article/labscrum-case-study-agility-academic-research-labs-504061
https://www.cutter.com/article/labscrum-case-study-agility-academic-research-labs-504061
https://www.cutter.com/article/labscrum-case-study-agility-academic-research-labs-504061
http://jmdjournal.org

Tomlinson et al

understanding what was possible and what was needed to
elevate the laboratory’s capabilities, overreaching, unrealistic
goals were imagined. The team grew too ambitious, frustra-
tion accompanied scope creep, and project velocity
decreased. Once it became clear that an MVP was, by defi-
nition, good enough, goals became simultaneously more
modest and attainable. Thus the project’s progress toward full
execution accelerated over the last approximately 12 months
of a 30-month effort from late 2017 to early 2020. With
LIMS launch, experience, and newly acquired local skills and
knowledge, the laboratory team looks forward to indepen-
dently adding more functionality via new customizations.

Acknowledgments

We thank Gordon Meyer, Justin Chant, Emily Wong, Jeremy
Snell, Danny Hopkins, Mark Swinkels, Mark Luszniak, and
the rest of the Semaphore team for their technical expertise;
Wendy Nedlik for organizational-management expertise,
Hillard Meade for project-management expertise; James
Fenske for software-implementation assistance; Michael
Reese for financial analysis; Eric D. Hsi, M.D., for

514

leadership; and Jacqueline Urankar and Susan Brennan for
excellent administrative support.

References

1. Kang W, Kadri S, Puranik R, Wurst MN, Patil SA, Mujacic I,
Benhamed S, Niu N, Chao JZ, Ameti B, Long BC, Galbo F, Montes D,
Iracheta C, Gamboa VL, Lopez D, Yourshaw M, Lawrence CA,
Aisner DL, Fitzpatrick C, McNerney ME, Wang YL, Andrade J,
Volchenboum SL, Furtado LV, Ritterhouse LL; Segal JPSystem for
Informatics in the Molecular Pathology Laboratory: An open-source
end-to-end solution for next-generation sequencing clinical data man-
agement.] Mol Diagn 2018, 20:522—532

2. Myers C, Swadley M, Carter AB: Laboratory information systems and
instrument software lack basic functionality for molecular laboratories.
J Mol Diagn 2018, 20:591—-599

3. Lee RE, Henricks WH, Sirintrapun SJ: Laboratory information systems
in molecular diagnostics: why molecular diagnostics data are different.
Adv Anat Pathol 2016, 23:125—133

4. Campbell WS, Carter AB, Cushman-Vokoun AM, Greiner TC,
Dash RC, Routbort M, de Baca ME, Campbell JR: A model infor-
mation management plan for molecular pathology sequence data using
standards: from sequencer to electronic health record. J Mol Diagn
2019, 21:408—417

5. Brock JE, Nedlik W, Farkas DH: A process for new clinical laboratory
test implementation. J Mol Diagn 2018, 20:1016, Abstract

6. Sinard JH, Gershkovich JH: Custom software development for use in a
clinical laboratory. J Pathol Inform 2012, 3:44—53

jmdjournal.org m The Journal of Molecular Diagnostics

http://refhub.elsevier.com/S1525-1578(22)00012-5/sref1
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref1
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref1
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref1
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref1
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref1
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref1
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref1
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref1
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref2
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref2
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref2
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref2
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref3
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref3
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref3
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref3
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref4
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref4
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref4
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref4
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref4
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref4
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref5
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref5
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref6
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref6
http://refhub.elsevier.com/S1525-1578(22)00012-5/sref6
http://jmdjournal.org

	A Model for Design and Implementation of a Laboratory Information-Management System Specific for Molecular Pathology Labora ...
	Materials and Methods
	Scope Definition
	Needs Assessment and Partner Selection
	Technology Platforms and Software Tools
	Project Management
	Key Roles
	Key Role 1—Business Analyst (Extant within Software-Development Team)
	Key Role 2—Software-Development Team
	Key Role 3—Clinical Systems Analyst (Extant within Laboratory Team)
	Key Role 4—Laboratory Manager

	Key Activities
	Development/Validation Phase 1—Requirements Elicitation
	Development/Validation Phase 2—Software Development
	Development/Validation Phase 3—User-Acceptance Testing
	Development/Validation Phase 4—Preproduction Runs, Progression to User-Accepted Version, and Deployment

	Results
	System Design—Workflow Analysis and Support
	System Features and Integration
	LIS–HL7 Interface for Sample Accessioning
	Instrumentation

	Clinical Reporting Application
	Resulting End-to-End Software Solution

	Discussion
	Acknowledgments

