
CertiK Assessed on Jul 3rd, 2025

Own - Audit
Security Assessment

Executive Summary

Highlighted Centralization Risks

Vulnerability Summary

2 Centralization 2 Acknowledged
Centralization findings highlight privileged roles &

functions and their capabilities, or instances where the

project takes custody of users’ assets.

1 Critical 1 Resolved

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

2 Major 1 Resolved, 1 Acknowledged
Major risks may include logical errors that, under specific

circumstances, could result in fund losses or loss of

project control.

5 Medium 5 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

6 Minor 6 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

SUMMARY OWN - AUDIT

CertiK Assessed on Jul 3rd, 2025

Own - Audit

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 07/03/2025

KEY COMPONENTS

N/A

CODEBASE
https://github.com/ownprotocol/Own-Smart-

Contracts/tree/18df788723bba6fb648dcec89365d708ddd61d9c/contract

s/contracts/implementations

View All in Codebase Page

Contract upgradeability Initial owner token share is 100%

20
Total Findings

15
Resolved

0
Partially Resolved

5
Acknowledged

0
Declined

https://github.com/ownprotocol/Own-Smart-Contracts/tree/18df788723bba6fb648dcec89365d708ddd61d9c/contracts/contracts/implementations

4 Informational 2 Resolved, 2 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY OWN - AUDIT

TABLE OF CONTENTS OWN - AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

OWA-01 : Attacker Can Drain Stake Tokens By Providing Unlocked Position IDs

OWA-03 : Centralization Related Risks

OWA-20 : Centralized Control of Contract Upgrade

OWA-05 : Attacker Can DoS Claim Functionality For Victim

OWA-21 : Initial Token Distribution

OWA-06 : Incorrect Final Week Reward Handling Leads To Loss Of User Rewards

OWA-07 : Incorrect Week Iteration In Reward Calculation Leads To Loss Of Final Week Rewards

OWA-08 : Potential Insufficient Withdrawable Tokens From Sablier Stream Enables Reward Claim Failures

OWA-09 : Unclaimed Tokens Withdrawable by Owner at Presale End

OWA-24 : Incorrect Reward Calculation When Claiming in Multiple Transactions

OWA-10 : Missing Zero Address Validation

OWA-12 : `addBoostDetails()` Allows Setting Boosts For Current Week

OWA-13 : Incorrect Round Status Before Presale Start

OWA-14 : Cannot Update Rounds Before Presale Starts

OWA-15 : Unmodifiable First Round

OWA-23 : Gas-Heavy Weekly Reward Cache Update

OWA-11 : Inconsistent Stake Time

OWA-17 : Unfinalized Token Name And Symbol

OWA-19 : Allocation Update Without Token Balance Check

OWA-22 : VeOwn Tokens Not Burned Upon Unstake

Appendix

Disclaimer

TABLE OF CONTENTS OWN - AUDIT

CODEBASE OWN - AUDIT

Repository

https://github.com/ownprotocol/Own-Smart-

Contracts/tree/18df788723bba6fb648dcec89365d708ddd61d9c/contracts/contracts/implementations

CODEBASE OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/tree/18df788723bba6fb648dcec89365d708ddd61d9c/contracts/contracts/implementations

AUDIT SCOPE OWN - AUDIT

4 files audited 4 files with Acknowledged findings

ID Repo File SHA256 Checksum

OWN
ownprotocol/Own-

Smart-Contracts
OWN.sol d8dbe6e0a5f4689bc10c99f340424f85c7e9a

af146c12dde5ce38b7a9f35c8a1

POS
ownprotocol/Own-

Smart-Contracts
Presale.sol

a35a66af37ca35ccae6faadd7b5a56accc22

e1624f1530f268573b98e00538c4

SOS
ownprotocol/Own-

Smart-Contracts
Stake.sol

182c284129c0c4a417fc4e82896bf6e5292f2

436a4bd07f8a4c25cb851a4c6f2

OWO
ownprotocol/Own-

Smart-Contracts
veOWN.sol

1d271e4fdcc7811c8a2ca54625f8808bd2b3

89f7408baf5cca6e066f5c80297e

AUDIT SCOPE OWN - AUDIT

APPROACH & METHODS OWN - AUDIT

This report has been prepared for Own to discover issues and vulnerabilities in the source code of the Own - Audit project as

well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Formal Verification, Manual Review, and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS OWN - AUDIT

FINDINGS OWN - AUDIT

This report has been prepared to discover issues and vulnerabilities for Own - Audit. Through this audit, we have uncovered

20 issues ranging from different severity levels. Utilizing the techniques of Formal Verification, Manual Review & Static

Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

OWA-01
Attacker Can Drain Stake Tokens By

Providing Unlocked Position IDs
Logical Issue Critical Resolved

OWA-03 Centralization Related Risks Centralization Centralization Acknowledged

OWA-20 Centralized Control Of Contract Upgrade Centralization Centralization Acknowledged

OWA-05
Attacker Can DoS Claim Functionality For

Victim
Denial of Service Major Resolved

OWA-21 Initial Token Distribution Centralization Major Acknowledged

OWA-06
Incorrect Final Week Reward Handling

Leads To Loss Of User Rewards
Logical Issue Medium Resolved

OWA-07

Incorrect Week Iteration In Reward

Calculation Leads To Loss Of Final Week

Rewards

Logical Issue Medium Resolved

OWA-08

Potential Insufficient Withdrawable Tokens

From Sablier Stream Enables Reward

Claim Failures

Denial of Service Medium Resolved

OWA-09
Unclaimed Tokens Withdrawable By Owner

At Presale End
Inconsistency Medium Resolved

OWA-24
Incorrect Reward Calculation When

Claiming In Multiple Transactions

Incorrect

Calculation
Medium Resolved

FINDINGS OWN - AUDIT

20
Total Findings

1
Critical

2
Centralization

2
Major

5
Medium

6
Minor

4
Informational

ID Title Category Severity Status

OWA-10 Missing Zero Address Validation Volatile Code Minor Resolved

OWA-12
addBoostDetails() Allows Setting Boosts

For Current Week
Inconsistency Minor Resolved

OWA-13
Incorrect Round Status Before Presale

Start
Logical Issue Minor Resolved

OWA-14
Cannot Update Rounds Before Presale

Starts
Logical Issue Minor Resolved

OWA-15 Unmodifiable First Round Logical Issue Minor Resolved

OWA-23 Gas-Heavy Weekly Reward Cache Update Denial of Service Minor Resolved

OWA-11 Inconsistent Stake Time Inconsistency Informational Acknowledged

OWA-17 Unfinalized Token Name And Symbol Coding Issue Informational Acknowledged

OWA-19
Allocation Update Without Token Balance

Check
Inconsistency Informational Resolved

OWA-22 VeOwn Tokens Not Burned Upon Unstake Design Issue Informational Resolved

FINDINGS OWN - AUDIT

OWA-01 ATTACKER CAN DRAIN STAKE TOKENS BY PROVIDING
UNLOCKED POSITION IDS

Category Severity Location Status

Logical Issue Critical Stake.sol: 161 Resolved

Description

The Stake::claimRewards() function checks if the current week is equal to the last week rewards were claimed for a

position:

186 if (currentWeek == positionLastWeekRewardsClaimed) {

187 continue;

188 }

However, this check is bypassed for unlocked and claimed positions because the positionLastWeekRewardsClaimed is set

to finalWeek , and currentWeek is not equal to finalWeek . Although the calculated reward is zero, the totalReward

still includes the positions[positionId].ownAmount :

200 if (currentWeek > finalWeek) {

201 positions[positionId].lastWeekRewardsClaimed = finalWeek;

202

203 uint256 ownAmount = positions[positionId].ownAmount;

204

205 > totalReward += ownAmount;

206 totalStakeDeductions += ownAmount;

207 } else {

The vulnerability allows an attacker to drain stake tokens by providing unlocked position IDs.

Proof of Concept

Attacker claims position 1 multiple times with input positions: [1,1,1] :

OWA-01 OWN - AUDIT

describe("Audit - Claim Rewards with Already Claimed Positions", async () => {

 let own: OwnContract;

 let stake: StakeContract;

 let signers: Signers;

 let alice: Signers[0];

 let stake_alice: StakeContract;

 beforeEach(async () => {

 ({ stake, own, signers } = await getContractInstances());

 await stake.write.setDailyRewardAmount([parseEther("5")]);

 await stake.write.startStakingNextWeek();

 await setDayOfWeekInHardhatNode(DayOfWeek.Friday);

 alice = signers[1];

 await own.write.transfer([alice.account.address, parseEther("1000")]);

 stake_alice = await hre.viem.getContractAt(

 "Stake",

 stake.address as `0x${string}`,

 { client: { wallet: alice } }

);

 });

 it("Should not allow claiming rewards with already claimed positions", async () =>

{

 await setDayOfWeekInHardhatNode(DayOfWeek.Friday);

 const duration = BigInt(7); // 1 week

 // users stake

 await own.write.approve([stake.address, parseEther("1000")], {

 account: alice.account,

 });

 await stake_alice.write.stake([parseEther("1000"), duration]);

 // Attacker stakes tokens for 1 week

 const amount = parseEther("100");

 await own.write.approve([stake.address, amount]);

 await stake.write.stake([amount, duration]);

 // Move to next Saturday

 await setDayOfWeekInHardhatNode(DayOfWeek.Saturday);

 await setDayOfWeekInHardhatNode(DayOfWeek.Saturday);

 // Attempt to claim rewards with positions input [1,1,1]

 // Verify the balance of the stake contract decreased by 300 ethers

 const initialBalance = await own.read.balanceOf([stake.address]);

 await stake.write.claimRewards([[BigInt(1), BigInt(1), BigInt(1)]]);

 const finalBalance = await own.read.balanceOf([stake.address]);

 console.log("initialBalance", initialBalance);

 console.log("finalBalance", finalBalance);

 expect(initialBalance - finalBalance).to.equal(parseEther("300"));

OWA-01 OWN - AUDIT

 });

});

 Stake - claimRewards

 Audit - Claim Rewards with Already Claimed Positions

Own deployed at: 0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512

veOwn deployed at: 0xCf7Ed3AccA5a467e9e704C703E8D87F634fB0Fc9

MockUSDT deployed at: 0xDc64a140Aa3E981100a9becA4E685f962f0cF6C9

Presale deployed at: 0x0165878A594ca255338adfa4d48449f69242Eb8F

Stake deployed at: 0x8A791620dd6260079BF849Dc5567aDC3F2FdC318

initialBalance 1100000000000000000000n

finalBalance 800000000000000000000n

 ✔ Should not allow claiming rewards with already claimed positions

 1 passing (1s)

Recommendation

Ensure positions that have unstaked cannot claim rewards again by adding a check for unstaked positions.

Alleviation

[Own, 05/20/2025]: Updated check in claimRewards function to early return if they are trying to claim on the last claim week:

contracts/contracts/implementations/Stake.sol#L191

Added extension to existing test case to validate: contracts/test/stake/claimRewards.test.ts#L284 in commit

d7c8dcd4648e6a1306851ed45d7e84e7826343ff

OWA-01 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/d7c8dcd4648e6a1306851ed45d7e84e7826343ff

OWA-03 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Centralization Acknowledged

Description

In the contract VeOwn , the role DEFAULT_ADMIN_ROLE has authority over the functions shown in the diagram below. Any

compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to take advantage of this authority and authorize

contract upgrades with the admin role.

Authenticated Role Function

DEFAULT_ADMIN_ROLE _authorizeUpgrade

In the contract VeOwn , the role MINTER_ROLE has authority over the functions shown in the diagram below. Any

compromise to the MINTER_ROLE account may allow the hacker to take advantage of this authority and mint tokens to a

specified address.

Authenticated Role Function Internal Calls

MINTER_ROLE mint _mint

In the contract Stake , the role DEFAULT_ADMIN_ROLE has authority over the functions shown in the diagram below. Any

compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to take advantage of this authority and set the

Sablier stream ID, set the daily reward amount, start staking next week, set the maximum daily reward amount, set own

address, authorize the upgrade to new implementation, add boost details with conditions and validations, set the veOwn

address, and set the Sablier lockup address.

OWA-03 OWN - AUDIT

Function

State Variables

Function

State Variables

Internal Calls

Function

State Variables

Authenticated Role Function

State VariablesFunction

State VariablesFunction

Internal Calls

Function

State Variables

Function State Variables

Internal Calls

Function State Variables

Internal Calls

External Calls

Internal Calls

setSablierStreamId

sablierStreamId

setDailyRewardAmount
rewardValuesWeeklyCache

dailyRewardAmount

dailyRewardValueHistory

getCurrentWeek

_updateWeeklyRewardValuesCache

hasStakingStarted

getCurrentDay

startStakingNextWeek

rewardValuesWeeklyCache

lastRewardValuesWeeklyCachedWeek

stakingStartWeek

RewardValuesWeeklyCache

DEFAULT_ADMIN_ROLE setMaximumDailyRewardAmount

setOwnAddress

_authorizeUpgrade

addBoostDetails

setVeOwnAddress

setSablierLockupAddress

maximumDailyRewardAmount

ownToken

finalBoostWeek

boostDetails.push

veOwn

sablierLockup

OWA-03 OWN - AUDIT

In the contract Presale , the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and update presale round allocation, add new

presale rounds, set the own address, set the presale start time, update the presale round duration, claim all USDT balance to

the owner, update the presale round price, claim back presale tokens, update presale round claim timestamp, authorize

contract upgrade to new implementation, and set the USDT address.

OWA-03 OWN - AUDIT

Authenticated Role

Function

State Variables

Function

External Calls

Function
State Variables

Function

State Variables

Function

State Variables

Function

External Calls

Function
State Variables

Function

External Calls

External Calls

Function

State Variables

Function

Internal Calls

Internal Calls

External Calls

Function

State Variables

External Calls
_owner

updatePresaleRoundAllocation

addPresaleRounds

setOwnAddress

setPresaleStartTime

updatePresaleRoundDuration

claimUSDT

updatePresaleRoundPrice

claimBackPresaleTokens

updatePresaleRoundClaimTimestamp

_authorizeUpgrade

setUSDTAddress

presaleRounds

presaleRounds.push

own.balanceOf

own

startPresaleTime

presaleRounds

usdtCache.safeTransfer

usdtCache.balanceOf

presaleRounds

ownCache.safeTransfer

owner

_getCurrentPresaleRoundId

ownCache.balanceOf

presaleRounds

usdt

OWA-03 OWN - AUDIT

In the contract Own , the role DEFAULT_ADMIN_ROLE has authority over the functions shown in the diagram below. Any

compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to take advantage of this authority and authorize

contract upgrades to new implementations.

Authenticated Role Function

DEFAULT_ADMIN_ROLE _authorizeUpgrade

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

OWA-03 OWN - AUDIT

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Own, 07/02/2025]: The team acknowledged this issue.

[CertiK, 07/02/2025]: It is suggested to implement the aforementioned methods to avoid centralized failure. Also, CertiK

strongly encourages the project team to periodically revisit the private key security management of all addresses related to

centralized roles.

OWA-03 OWN - AUDIT

OWA-20 CENTRALIZED CONTROL OF CONTRACT UPGRADE

Category Severity Location Status

Centralization Centralization
OWN.sol: 13; Presale.sol: 13; Stake.sol: 15; veOW

N.sol: 11
Acknowledged

Description

In the upgradable contracts Presale , Stake , Own and VeOwn , the role DEFAULT_ADMIN_ROLE has the authority to

update the implementation contract behind the proxy contract.

Any compromise to the DEFAULT_ADMIN_ROLE may allow a hacker to take advantage of this authority and change the

implementation contract which is pointed by proxy and therefore execute potential malicious functionality in the

implementation contract.

Recommendation

We recommend that the team make efforts to restrict access to the admin of the proxy contract. A strategy of combining a

time-lock and a multi-signature (⅔, ⅗) wallet can be used to prevent a single point of failure due to a private key

compromise. In addition, the team should be transparent and notify the community in advance whenever they plan to migrate

to a new implementation contract.

Here are some feasible short-term and long-term suggestions that would mitigate the potential risk to a different level and

suggestions that would permanently fully resolve the risk.

Short Term:

A combination of a time-lock and a multi signature (⅔, ⅗) wallet mitigate the risk by delaying the sensitive operation and

avoiding a single point of key management failure.

A time-lock with reasonable latency, such as 48 hours, for awareness of privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to a private key

compromised;

AND

A medium/blog link for sharing the time-lock contract and multi-signers addresses information with the community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

OWA-20 OWN - AUDIT

Provide a link to the medium/blog with all of the above information included.

Long Term:

A combination of a time-lock on the contract upgrade operation and a DAO for controlling the upgrade operation mitigate the

contract upgrade risk by applying transparency and decentralization.

A time-lock with reasonable latency, such as 48 hours, for community awareness of privileged operations;

AND

Introduction of a DAO, governance, or voting module to increase decentralization, transparency, and user

involvement;

AND

A medium/blog link for sharing the time-lock contract, multi-signers addresses, and DAO information with the

community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Permanent:

Renouncing ownership of the admin account or removing the upgrade functionality can fully resolve the risk.

Renounce the ownership and never claim back the privileged role;

OR

Remove the risky functionality.

Note: we recommend the project team consider the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

Alleviation

[Own, 07/02/2025]: The team acknowledged this issue.

[CertiK, 07/02/2025]: It is suggested to implement the aforementioned methods to avoid centralized failure. Also, CertiK

strongly encourages the project team to periodically revisit the private key security management of all addresses related to

centralized roles.

OWA-20 OWN - AUDIT

OWA-05 ATTACKER CAN DOS CLAIM FUNCTIONALITY FOR VICTIM

Category Severity Location Status

Denial of Service Major Presale.sol: 347 Resolved

Description

The claimPresaleRoundTokens() function iterates over the entire presalePurchases[msg.sender] array to find

unclaimed tokens. This exposes a denial-of-service (DoS) risk, where an attacker can force victims' claim transactions to

exceed gas limits by bloating their purchase history with trivial entries.

In Presale::claimPresaleRoundTokens() , the following loop is used:

uint256 presalePurchaseLength = presalePurchases[msg.sender].length;

for (uint256 i = 0; i < presalePurchaseLength; ++i) {

 if (!presalePurchases[msg.sender][i].claimed) {

 // logic to check and claim token

 }

}

This design assumes that the number of purchases per user is bounded and reasonable. However, since the

purchasePresaleTokens() function allows any _receiver address to be specified, an attacker can flood a victim’s

account with tiny purchases by setting _receiver = victim .

Each such entry increases the length of presalePurchases[victim] , making future calls to claimPresaleRoundTokens()

increasingly gas-heavy. Eventually, the loop will consume more gas than the block limit, preventing the victim from claiming

any tokens at all.

Scenario

1. Victim purchases tokens via purchasePresaleTokens() and has one valid entry.

2. Attacker repeatedly calls purchasePresaleTokens(_usdtAmount:1, _receiver:victim) with small USDT amounts

and sets _receiver = victim .

3. Victim tries to call claimPresaleRoundTokens() , but the transaction runs out of gas due to looping over thousands

of entries.

4. Victim cannot claim any tokens until the gas cost of the loop falls below the block limit — which may never happen.

5. Tokens remain locked indefinitely in the contract, effectively freezing the victim's assets.

Recommendation

OWA-05 OWN - AUDIT

Consider implementing claim pagination with from and to parameters.

Alleviation

[Own, 05/20/2025]: Added pagination to the method in commit 99dd72e00e5ade2253a5d8e4150a53c20ab7644c.

OWA-05 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/99dd72e00e5ade2253a5d8e4150a53c20ab7644c

OWA-21 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization Major OWN.sol: 37 Acknowledged

Description

All of the Own tokens are sent to _recipient , an externally-owned account (EOA) address. This is a centralization risk

because the owner of the EOA can distribute tokens without obtaining the consensus of the community. Any compromise to

these addresses may allow a hacker to steal and sell tokens on the market, resulting in severe damage to the project.

Recommendation

It is recommended that the team be transparent regarding the initial token distribution process. The token distribution plan

should be published in a public location that the community can access. The team should make efforts to restrict access to

the private keys of the deployer account or EOAs. A multi-signature (⅔, ⅗) wallet can be used to prevent a single point of

failure due to a private key compromise. Additionally, the team can lock up a portion of tokens, release them with a vesting

schedule for long-term success, and deanonymize the project team with a third-party KYC provider to create greater

accountability.

Alleviation

[Own, 07/02/2025]: The team acknowledged this issue.

[CertiK, 07/02/2025]: It is suggested to implement the aforementioned methods to avoid centralized failure. Also, CertiK

strongly encourages the project team to periodically revisit the private key security management of all addresses related to

centralized roles.

OWA-21 OWN - AUDIT

OWA-06 INCORRECT FINAL WEEK REWARD HANDLING LEADS TO
LOSS OF USER REWARDS

Category Severity Location Status

Logical Issue Medium Stake.sol: 161 Resolved

Description

In Stake::claimRewards() , when a user claims rewards and currentWeek < finalWeek , the position's

lastWeekRewardsClaimed is set to currentWeek . However, if currentWeek == finalWeek , this logic still applies, which

means that the final week’s rewards are never distributed because _calculateRewardsForPosition() returns 0 reward

when positionLastWeekRewardsClaimed == finalWeek (L646).

// File: Stake.sol

200: if (currentWeek > finalWeek) {

...

207: } else {

208: positions[positionId].lastWeekRewardsClaimed = currentWeek;

209: }

This breaks the expected behavior where users should be able to claim rewards up until and including the final week of their

stake.

Recommendation

Allow rewards to be claimed for the finalWeek .

Alleviation

[Own, 05/20/2025]: Fixed in commit d7c8dcd4648e6a1306851ed45d7e84e7826343ff.

OWA-06 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/d7c8dcd4648e6a1306851ed45d7e84e7826343ff

OWA-07 INCORRECT WEEK ITERATION IN REWARD
CALCULATION LEADS TO LOSS OF FINAL WEEK
REWARDS

Category Severity Location Status

Logical Issue Medium Stake.sol: 686~709 Resolved

Description

In Stake::_calculateRewardsForPosition() , when currentWeek > finalWeek , the function sets

finalWeekToIterateTo to either finalWeek or finalWeek - 1 depending on whether the final day falls at the end of the

week. However, the subsequent for loop only iterates up to (but not including) this value due to using week <

finalWeekToIterateTo :

687 if (currentWeek > finalWeek) {

688 if (finalDayEndOfWeek) {

689 finalWeekToIterateTo = finalWeek;

690 } else {

691 finalWeekToIterateTo = finalWeek - 1;

692 }

693 }

694

695 // Iterate over every week, using the cached value for efficiency

696 for (

697 uint256 week = startWeekToIterateFrom;

698 > week < finalWeekToIterateTo;

699 ++week

700) {

This means that even though the logic intends to include all weeks up to and including finalWeek , it actually skips the last

full week of rewards because the loop condition does not allow the index to reach finalWeekToIterateTo .

This issue compounds with another bug where lastWeekRewardsClaimed is set to finalWeek , which prevents future

claims — effectively making the user lose out on two separate opportunities to claim their final week's reward.

Recommendation

The week iteration should include the final week if currentWeek > finalWeek .

Alleviation

[Own, 05/20/2025]: Fix addresses this and OWA-06:

OWA-07 OWN - AUDIT

Instead of using the finalWeek when calculating rewards to calculate up to, instead created a lastClaimWeek which is an

exclusive upper bound of the last week for claiming rewards. The lastWeekRewardsClaimed on a position is set to this new

value

Created it here: contracts/contracts/implementations/Stake.sol#L187 and using it when comparing the last week to claim

rewards for

contracts/contracts/implementations/Stake.sol#L191

contracts/contracts/implementations/Stake.sol#L205

Also using this when calculating rewards for the position: contracts/contracts/implementations/Stake.sol#L710.

Updated final week iteration to include the final week: contracts/contracts/implementations/Stake.sol#L762

Then finally when issuing rewards for the final week, updated the check to include the final week:

contracts/contracts/implementations/Stake.sol#L778

Commit d7c8dcd4648e6a1306851ed45d7e84e7826343ff.

OWA-07 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/d7c8dcd4648e6a1306851ed45d7e84e7826343ff

OWA-08 POTENTIAL INSUFFICIENT WITHDRAWABLE TOKENS
FROM SABLIER STREAM ENABLES REWARD CLAIM
FAILURES

Category Severity Location Status

Denial of Service Medium Stake.sol: 161 Resolved

Description

The Stake contract relies on an externally managed Sablier stream (sablierStreamId) to provide tokens for reward

claims and unstaking.

In Stake::claimRewards() , after calculating the total reward amount, the contract checks whether its balance exceeds the

required amount. If not, it attempts to withdraw additional tokens from the Sablier stream using withdrawMax() . However,

since the contract does not lock tokens into Sablier itself, it cannot guarantee the stream has sufficient withdrawable tokens.

This creates a dependency on external management of the Sablier stream. If the stream is misconfigured or depleted, users

may face failed transactions when attempting to claim rewards or unstake their principle. The lack of fallback mechanisms

further exacerbates this risk.

Recommendation

Consider implementing an emergency withdrawal function for principle-only claims.

Alleviation

[Own, 05/20/2025]: Added an emergency withdraw function emergencyWithdrawStakePrinciple in commit

d7c8dcd4648e6a1306851ed45d7e84e7826343ff.

OWA-08 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/d7c8dcd4648e6a1306851ed45d7e84e7826343ff

OWA-09 UNCLAIMED TOKENS WITHDRAWABLE BY OWNER AT
PRESALE END

Category Severity Location Status

Inconsistency Medium Presale.sol: 120 Resolved

Description

In Presale::claimBackPresaleTokens() , the function checks whether any presale round is still active:

121 (bool roundsInProgress,) = _getCurrentPresaleRoundId();

122

123 if (roundsInProgress) {

124 revert CannotClaimBackPresaleTokensWhilePresaleIsInProgress();

125 }

If no round is active, it proceeds to transfer the entire Own token balance of the contract to the owner.

This assumes that all unclaimed tokens are available for owner withdrawal. However, some of these tokens may belong to

users who simply haven't yet claimed them. The function does not verify whether all users have successfully withdrawn their

purchased tokens before allowing the owner to sweep the balance.

Recommendation

Update claimBackPresaleTokens() to ensure only leftover tokens (not allocated to any purchase) can be reclaimed.

Alleviation

[Own, 05/20/2025]: Updated this method to only transfer tokens that haven't been allocated to presale purchases in commit

99dd72e00e5ade2253a5d8e4150a53c20ab7644c.

OWA-09 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/99dd72e00e5ade2253a5d8e4150a53c20ab7644c

OWA-24 INCORRECT REWARD CALCULATION WHEN CLAIMING IN
MULTIPLE TRANSACTIONS

Category Severity Location Status

Incorrect Calculation Medium Stake.sol: 682~684 Resolved

Description

In the ·_calculateRewardsForPosition()· function, a logical flaw exists when handling reward claims across multiple

transactions for positions that start mid-week (i.e., startDay % 7 != 0). Specifically, the function incorrectly skips the entire

week immediately following the lastWeekRewardsClaimed due to an unconditional increment:

uint256 startWeekToIterateFrom = positionLastWeekRewardsClaimed;

if (!enteredAtStartOfWeek) {

 ++startWeekToIterateFrom;

}

This assumes that the previous claim call has already fully accounted for the first partial week of staking via the function

_rewardPerTokenForDayRange . However, in multi-claim scenarios, only the first few days of that week may have been

claimed in the first transaction, while the remainder of the week is still unclaimed. The unconditional increment then skips

over this week entirely in future claims.

Scenario

1. User stakes on Day 1 (Week 1, Day 2). The startDay = 1, and the startWeek = 1. The finalDay is 35, and the

finalWeek is 6.

2. The first claim occurs in Week 4 (currentWeek = 4): The first partial week (Day 1–6) is processed via daily reward

logic. Weeks 2 and 3 are calculated using weekly loop. The lastWeekRewardsClaimed is updated to 4.

3. The second claim occurs in Week 9 (currentWeek = 9): startWeekToIterateFrom = 4 + 1 = 5.

finalWeekToIterateTo = 5 (Week 6 is partial).

Week 4 is skipped entirely, even though it was never processed. This results in permanent reward loss for Week 4.

Recommendation

We recommend the team to only increment startWeekToIterateFrom when both !enteredAtStartOfWeek and

startWeek == positionLastWeekRewardsClaimed conditions are met.

OWA-24 OWN - AUDIT

Alleviation

[Own, 06/30/2025]: Nice find! Pushed a fix with this commit hash 5ac5c929e422922e0d28347d1093e9040b8940c0

OWA-24 OWN - AUDIT

OWA-10 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile Code Minor Presale.sol: 43 Resolved

Description

The cited address input is missing a check that it is not address(0) .

Recommendation

We recommend adding a check the passed-in address is not address(0) to prevent unexpected errors.

Alleviation

[Own, 05/20/2025]: Added zero address validation to all initializer methods in commit

9229f1f86d14d48e82cf12fb417da53ed2176f4d

OWA-10 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/9229f1f86d14d48e82cf12fb417da53ed2176f4d

OWA-12 addBoostDetails() ALLOWS SETTING BOOSTS FOR

CURRENT WEEK

Category Severity Location Status

Inconsistency Minor Stake.sol: 808 Resolved

Description

In Stake::addBoostDetails() , the function checks if _boostDetails[i].startWeek is less than

weeksSinceStakingStarted . Since weeksSinceStakingStarted represents how many weeks have passed since staking

began, this check was designed to prevent boosts from being applied retroactively or to currently ongoing weeks.

However, when currentWeek == stakingStartWeek + weeksSinceStakingStarted , meaning the admin is trying to add a

boost for the current week, the condition:

if (currentWeek >= stakingStartWeekCache && _boostDetails[i].startWeek <

weeksSinceStakingStarted)

allows _boostDetails[i].startWeek == weeksSinceStakingStarted , because it only reverts if the start week is strictly

less than weeksSinceStakingStarted .

As a result, admins can assign boosts to the current week, change rewards mid-week and violates the requirement: "If

staking has started and trying to update a boost that has already started, revert".

Recommendation

Prevent boost settings for current and past weeks.

Alleviation

[Own, 05/20/2025]: Updated to prevent boost settings for current and past weeks in commit

60518751f9ea3549d905c02fc7324c58fe74c119

OWA-12 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/60518751f9ea3549d905c02fc7324c58fe74c119

OWA-13 INCORRECT ROUND STATUS BEFORE PRESALE START

Category Severity Location Status

Logical Issue Minor Presale.sol: 436 Resolved

Description

In Presale::_getCurrentPresaleRoundId() , the logic begins by checking hasPresaleStarted() . If false,

presaleTimeElapsed remains at zero:

441 uint256 presaleTimeElapsed;

442 if (hasPresaleStarted()) {

443 presaleTimeElapsed = block.timestamp - startPresaleTime;

444 }

It then proceeds to loop through presale rounds:

447 for (uint256 i = 0; i < presaleRoundLength; ++i) {

448 uint256 presaleRoundDuration = presaleRounds[i].duration;

449 if (presaleTimeElapsed < presaleRoundDuration) {

450 return (true, i);

451 }

452

453 presaleTimeElapsed -= presaleRoundDuration;

454 }

When presaleTimeElapsed == 0 and i == 0 , the condition presaleTimeElapsed < presaleRoundDuration will always

be true for any duration > 0. As a result, the function returns (true, 0) even though the presale has not started.

This leads to misleading information from getCurrentPresaleRoundDetails() , which uses this function to determine the

active round. Off-chain tools or integrations may interpret this as round 0 being active and allow users to attempt actions like

purchasing tokens before the presale officially starts.

Recommendation

Presale::_getCurrentPresaleRoundId() should return (false, 0) when presale has not started.

Alleviation

[Own, 05/20/2025]: Updated to return false when the presale hasn't started in commit

a030d2bb942b0cb465f3ff6eb5e29f6e2c4ab03f.

OWA-13 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/a030d2bb942b0cb465f3ff6eb5e29f6e2c4ab03f

OWA-14 CANNOT UPDATE ROUNDS BEFORE PRESALE STARTS

Category Severity Location Status

Logical Issue Minor Presale.sol: 163 Resolved

Description

In Presale::updatePresaleRound() , the logic checks:

163 if (!roundsInProgress) {

164 revert AllPresaleRoundsHaveEnded();

165 }

This assumes that roundsInProgress == false implies that all rounds have ended and no further updates should be

allowed. However, this condition can also be true when the presale has not yet started, even though future rounds may still

be editable.

Recommendation

Consider updating the modifier to allow updates only if the presale has started and the target round hasn't already passed.

Alleviation

[Own, 05/20/2025]: Issue acknowledged and handling has been added to address this in commit

a030d2bb942b0cb465f3ff6eb5e29f6e2c4ab03f.

OWA-14 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/a030d2bb942b0cb465f3ff6eb5e29f6e2c4ab03f

OWA-15 UNMODIFIABLE FIRST ROUND

Category Severity Location Status

Logical Issue Minor Presale.sol: 167 Resolved

Description

In Presale::updatePresaleRound() , the following check is used:

if (currentRoundId >= _roundId) {

 revert CannotUpdatePresaleRoundThatHasEndedOrInProgress();

}

When the presale has not yet started, _getCurrentPresaleRoundId() should return (false, 0) (after fixes) — indicating

no round is active. However, if _roundId == 0 , this condition becomes true (currentRoundId >= _roundId) and blocks

the update, even though the presale hasn't begun and the round is not in progress.

Recommendation

Allow updating first round when presale has not started:

- if (currentRoundId >= _roundId) {

+ if (currentRoundId >= _roundId && hasPresaleStarted()) {

 revert CannotUpdatePresaleRoundThatHasEndedOrInProgress();

}

Alleviation

[Own, 05/20/2025]: Updated the modifier to handle updating the first round if the presale hasn't started in commit

a030d2bb942b0cb465f3ff6eb5e29f6e2c4ab03f.

OWA-15 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/a030d2bb942b0cb465f3ff6eb5e29f6e2c4ab03f

OWA-23 GAS-HEAVY WEEKLY REWARD CACHE UPDATE

Category Severity Location Status

Denial of Service Minor Stake.sol: 527 Resolved

Description

In Stake::_updateWeeklyRewardValuesCache() , the contract calls _getValuesToUpdateWeeklyRewardValuesCache() ,

which iterates from fromWeek to currentWeek - 1 . For each week, it processes all 7 days.

If no staking or claim rewards activity has occurred for months, the update could involve many of weeks. Each week requires

up to 7 daily iterations, increasing computation time exponentially. This leads to transactions calling stake() or

claimRewards() may fail due to out-of-gas errors if they trigger this update.

Recommendation

Consider adding a public function to update the cache incrementally.

Alleviation

[Own, 05/20/2025]: Added public function (updateWeeklyRewardValuesCache) to update the cache in commit

95c742477c9bc56ba3f82603223fa84052299228

OWA-23 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/95c742477c9bc56ba3f82603223fa84052299228

OWA-11 INCONSISTENT STAKE TIME

Category Severity Location Status

Inconsistency Informational Stake.sol: 127, 199 Acknowledged

Description

In Stake::claimRewards() , the finalWeek is derived from finalDay using integer division by 7:

199 uint256 finalWeek = positions[positionId].finalDay / 7;

However, if finalDay does not correspond to the last day of the week, the calculated finalWeek will not reflect the actual

staking period. For example:

Given currentDay = 20218 , currentWeek = 2888 , and stakingStartWeek = 2886 .

A user stakes for 12 days: {startDay: 20219, finalDay: 20230} .

Calculated finalWeek = 20230 / 7 = 2890 , implying a stake period of 2 weeks.

User-provided stake period in days is 12, which spans parts of 2 weeks but does not fully cover them.

This inconsistency arises because finalWeek is treated as the absolute end of the stake, regardless of whether finalDay

falls on the last day of the week.

Recommendation

Consider aligning finalDay with the last day of the final week.

Alleviation

[Own, 05/20/2025]: This was an intentional decision to not align finalDay with the last day of the week as that would force

users to stake longer than they requested. This is only used in internal calculations so it doesn't seem like an issue.

OWA-11 OWN - AUDIT

OWA-17 UNFINALIZED TOKEN NAME AND SYMBOL

Category Severity Location Status

Coding Issue Informational OWN.sol: 31, 33 Acknowledged

Description

In Own::initialize() , the following line is used:

31 __ERC20_init("testToken", "testToken");

This sets both the token name and symbol to "testToken" , which is clearly a placeholder intended for testing. These

values should be updated before deploying to production.

Recommendation

Set correct token name and symbol before deployment.

Alleviation

[Own, 07/02/2025]: The team acknowledged the issue.

OWA-17 OWN - AUDIT

OWA-19 ALLOCATION UPDATE WITHOUT TOKEN BALANCE
CHECK

Category Severity Location Status

Inconsistency Informational Presale.sol: 206 Resolved

Description

The updatePresaleRoundAllocation() function enables modifying the token allocation for a specific presale round.

However, it does not validate whether the contract actually holds sufficient Own tokens after the update, which could result in

over-allocation and unfulfilled claims.

Recommendation

Ensure the contract contains enough tokens to support the updated allocation.

Alleviation

[Own, 05/20/2025]: Added validation to the method to ensure it can't be over-allocated in commit

a030d2bb942b0cb465f3ff6eb5e29f6e2c4ab03f.

OWA-19 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/commit/a030d2bb942b0cb465f3ff6eb5e29f6e2c4ab03f

OWA-22 VEOWN TOKENS NOT BURNED UPON UNSTAKE

Category Severity Location Status

Design Issue Informational Stake.sol: 15 Resolved

Description

The Stake contract allows users to unstake their Own tokens without burning the corresponding veOwn tokens issued

during staking. This enables users to retain voting power or other governance privileges even after fully withdrawing their

stake.

Recommendation

Consider implementing relevant logic based on project's requirement.

Alleviation

[Own, 05/27/2025]: Fixed in PR by calculating a user's voting power (veOwn balance) based solely on their active stake

positions and the amount of veOwn those positions currently generate.

OWA-22 OWN - AUDIT

https://github.com/ownprotocol/Own-Smart-Contracts/pull/1

APPENDIX OWN - AUDIT

Finding Categories

Categories Description

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Incorrect

Calculation

Incorrect Calculation findings are about issues in numeric computation such as rounding errors,

overflows, out-of-bounds and any computation that is not intended.

Denial of Service
Denial of Service findings indicate that an attacker may prevent the program from operating

correctly or responding to legitimate requests.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX OWN - AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER OWN - AUDIT

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER OWN - AUDIT

Elevating Your Entire Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Own - Audit Security Assessment CertiK Assessed on Jul 3rd, 2025 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

