
 

 

Inflation Logic Code Review 
 

Solana 
19 October 2020 
Version: 1.0 

Presented by: 
Kudelski Security Research Team 
Kudelski Security – Nagravision SA 

Corporate Headquarters 
Kudelski Security – Nagravision SA 
Route de Genève, 22-24 
1033 Cheseaux sur Lausanne 
Switzerland 
 
For Public Distribution 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 2 of 25
For Public Distribution 

Copyright Notice 
Kudelski Security, a business unit of Nagravision SA is a member of the Kudelski Group of Companies. 
This document is the intellectual property of Kudelski Security and contains confidential and privileged 
information. The reproduction, modification, or communication to third parties (or to other than the addressee) 
of any part of this document is strictly prohibited without the prior written consent from Nagravision SA. 

DOCUMENT PROPERTIES 

Version: 1.0 

File Name: Solana Code Inflation Review Report - Final.docx 

Publication Date: 19 October 2020 

Confidentiality Level: For Public Distribution 

Document Owner: Kudelski Security 

Document Recipient: Solana Foundation 

Document Status: Approved 

 

 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 3 of 25
For Public Distribution 

TABLE OF FIGURES .............................................................................................................. 4 

EXECUTIVE SUMMARY ......................................................................................................... 5 

1.1 Engagement Limitations ........................................................................................ 5 

1.2 Engagement Analysis ............................................................................................ 5 

1.3 Observations .......................................................................................................... 7 

1.3.1 Code and design documentation ................................................................... 7 

1.3.2 Coding Style .................................................................................................. 7 

1.4 Issue Summary List ............................................................................................... 7 

2. METHODOLOGY .............................................................................................................. 9 

2.1 Kickoff .................................................................................................................... 9 

2.2 Ramp-up ................................................................................................................ 9 

2.3 Review ................................................................................................................... 9 

2.4 Reporting ............................................................................................................. 10 

2.5 Verify .................................................................................................................... 11 

2.6 Additional Note .................................................................................................... 11 

3. TECHNICAL DETAILS .................................................................................................... 12 

3.1 Inflation consequence .......................................................................................... 12 

3.2 Longterm stable rate is fixed ................................................................................ 12 

3.3 Inflation reward inconsistency .............................................................................. 13 

3.4 Terminology confusion ......................................................................................... 13 

3.5 Negative year allowed in inflation calculation ...................................................... 14 

3.6 Deprecated code ................................................................................................. 15 

3.7 Unclear use of variable epoch ............................................................................. 15 

3.8 Incorrect documentation of equation ................................................................... 16 

3.9 Calculation of inflation uses two conflicting models ............................................. 17 

3.10 Tokens never created .......................................................................................... 18 

3.11 Retired code still in use ........................................................................................ 18 

3.12 Docstrings missing ............................................................................................... 19 

3.13 Code documentation standard ............................................................................. 19 

3.14 Incomplete comment ........................................................................................... 20 

3.15 Spellcheck code ................................................................................................... 21 

3.16 Unclear naming of function .................................................................................. 21 

APPENDIX A: ABOUT KUDELSKI SECURITY ..................................................................... 23 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 4 of 25
For Public Distribution 

APPENDIX B: DOCUMENT HISTORY ................................................................................. 24 

APPENDIX C: SEVERITY RATING DEFINITIONS ............................................................... 25 

Table of Figures 

Figure 1 Issue Severity Distribution ......................................................................................... 7 

Figure 2 Methodology Flow ..................................................................................................... 9 

Figure 3 Inflation model consequence ................................................................................... 17 

 

 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 5 of 25
For Public Distribution 

EXECUTIVE SUMMARY 

Kudelski Security (“Kudelski”), the cybersecurity division of the Kudelski Group, was engaged 
by Solana Foundation. (“Solana”) client to conduct an external security assessment in the form 
of a Code Review of the Solana Blockchain implementation specifically focusing on the 
Inflation capabilities during this review. 

The assessment was conducted remotely by the Kudelski Security Team. The tests took place 
from September 18, 2020 to September 30, 2020 and focused on the following objectives: 

1. The system operates in a manner consistent with the white paper or documented 
objectives. 

2. That out of bounds, overflow, and logic conditions are met and are secure 
3. That the scenarios discussed follow expected conditions with no ability to improperly 

manipulate inflation scenarios 

This report summarizes the tests performed and findings in terms of strengths and 
weaknesses. It also contains detailed descriptions of the discovered vulnerabilities, steps the 
Kudelski Security Teams took to exploit each vulnerability, and recommendations for 
remediation.  As of this final report, all serious vulnerabilities have been resolved to our 
satisfaction by the Solana development team. 

1.1 Engagement Limitations 
The project was time-boxed to be finished by September 30, 2020.  

During the project the Kudelski teams has focused on the following areas 

• Validate technical design claims and cryptographic coding underlying the behavior and 
intent of the technical systems  

• Perform a code-review of provided Rust Code, especially focusing on code written by 
the internal team, assuming third-party libraries act as expected   

• Validate implementation choices, completeness, and assumptions according to the 
design provisions and deployment   

• Validate predictions and behaviors with special attention to decentralized and 
distributed behaviors for claims with special attention to the defined areas 

• Provide recommendations for security related improvements and corrections to the 
infrastructure and architecture, if found  

• Provide recommendations for architectural and implementation related improvements 
to the infrastructure and architecture, if found  

Out of scope for this engagement, which can be included in future engagements include 
deployment of the infrastructure at-scale to validate findings, operational execution of the code 
to perform a pen-test of running binaries (memory review, attacks to binaries, theft of secrets), 
operational assessment of alerting and monitoring when non-ethical behavior is present in the 
system, or participation in any running test-net environments.  

1.2 Engagement Analysis 
The engagement was performed by cloning the relevant repositories into the internal GitLab 
environment utilized by Kudelski Security. The code base cloned was from the Master branch 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 6 of 25
For Public Distribution 

at 07 September, 2020 with the SHA 9eb10d914419fe448852f1aa1e6d65df9743c1e3 of the 
last commit.  Considerable time and effort of the engagement was spent focusing on the facts 
deemed most relevant to the client as outlined in the initial document provided by SOLANA. 

The code review was then conducted by analyzing the relevant code from different angles with 
both automated and manual tools. 

As a result of our work, we identified 2 High, 1 Medium, 2 Low, and 11 Informational findings.  
All of the non-informational findings are remediated at the time of this report. 

The high findings are either omissions vulnerabilities in the code or insecure handling of 
cryptographic components, e.g. private key handling, number over/underflow in calculations 
and random number generation. It may also be serious discrepancies between design and 
implementation that severely affect the functionality of the application.  In the case of 
mathematical operations or inflation, a high vulnerability could indicate unintended 
consequences. 

We only found one medium finding that is an issue with selecting a fixed value for the inflation 
but in the architecture documentation, it is described as a variable value. 

Multiple low findings were identified during our assessment. Although these findings do not 
represent a significant threat, they can increase the attack surface of the system or trigger 
unexpected conditions.  

Several informational findings were found. These are mostly cosmetic or omissions in 
functionality.  

 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 7 of 25
For Public Distribution 

Figure 1 Issue Severity Distribution 

1.3 Observations 

1.3.1 Code and design documentation 

We have performed the following analysis on security of the code  

• Code construct and call-trees  
• Verification that implementation in core code based on the architecture 

documentation provided.  

The documentation is well written and covers the architecture and the implementation of it as 
code.  

1.3.2 Coding Style 

As this is a follow up on the previous code reviews, we must commend the development team 
on how much of the code quality that has improved. This has made much of the findings being 
on the bottom half of the risk spectrum, with low and informational taking up more than 90% 
of the findings.  

The codebase analyzed in this assignment was well written and documented to the standard 
that we would expect from such a high-profile project. 

 

1.4 Issue Summary List 

ID SEVERITY FINDING 

solana_inflation_audit#1 Informational Inflation consequence 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

High Medium Low Informational

Issue Severity Distribution

High Medium Low Informational



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 8 of 25
For Public Distribution 

ID SEVERITY FINDING 

solana_inflation_audit#2 Medium Longterm stable rate is fixed 

solana_inflation_audit#3 Informational Inflation reward inconsistency 

solana_inflation_audit#4 Informational Terminology confusion 

solana_inflation_audit#5 High Negative year allowed in inflation calculation 

solana_inflation_audit#6 Informational Deprecated code 

solana_inflation_audit#7 Low Unclear use of variable epoch 

solana_inflation_audit#8 Informational Incorrect documentation of equation 

solana_inflation_audit#9 High Calculation of inflation uses two conflicting 
models 

solana_inflation_audit#10 Low Tokens never created 

solana_inflation_audit#11 Informational Retired code still in use 

solana_inflation_audit#12 Informational Docstrings missing 

solana_inflation_audit#13 Informational Code documentation standard 

solana_inflation_audit#14 Informational Incomplete comment 

solana_inflation_audit#15 Informational Spellcheck code 

solana_inflation_audit#16 Informational Unclear naming of function 

 

 

  



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 9 of 25
For Public Distribution 

2. METHODOLOGY 

Kudelski Security uses the following high-level methodology when approaching engagements. 
They are broken up into the following phases.  

 
Figure 2 Methodology Flow 

2.1 Kickoff 
The project is kicked all of the sales process has concluded. We typically set up a kickoff 
meeting where project stakeholders are gathered to discuss the project as well as the 
responsibilities of participants. During this meeting we verify the scope of the engagement and 
discuss the project activities. It’s an opportunity for both sides to ask questions and get to 
know each other. By the end of the kickoff there is an understanding of the following:  

• Designated points of contact 

• Communication methods and frequency 

• Shared documentation 

• Code and/or any other artifacts necessary for project success 

• Follow-up meeting schedule, such as a technical walkthrough 

• Understanding of timeline and duration 

2.2 Ramp-up 
Ramp-up consists of the activities necessary to gain proficiency on the particular project. This 
can include the steps needed for familiarity with the codebase or technological innovation 
utilized. This may include, but is not limited to: 

• Reviewing previous work in the area including academic papers 

• Reviewing programming language constructs for specific languages 

• Researching common flaws and recent technological advancements  

2.3 Review 
The review phase is where a majority of the work on the engagement is completed. This is the 
phase where we analyze the project for flaws and issues that impact the security posture. 
Depending on the project this may include an analysis of the architecture, a review of the code, 
and a specification matching to match the architecture to the implemented code.  

In this code audit, we performed the following tasks: 

1. Security analysis and architecture review of the original protocol 

2. Review of the code written for the project 

Kickoff Ramp-up Review Report Verify



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 10 of 25
For Public Distribution 

3. Assessment of the cryptographic primitives used 

4. Compliance of the code with the provided technical documentation 

The review for this project was performed using manual methods and utilizing the experience 
of the reviewer. No dynamic testing was performed, only the use of custom-built scripts and 
tools were used to assist the reviewer during the testing. We discuss our methodology in more 
detail in the following sections.  

Code Safety 

We analyzed the provided code, checking for issues related to the following categories: 

• General code safety and susceptibility to known issues 
• Poor coding practices and unsafe behavior 
• Leakage of secrets or other sensitive data through memory mismanagement  
• Susceptibility to misuse and system errors 
• Error management and logging 

This list is general list and not comprehensive, meant only to give an understanding of the 
issues we are looking for.  

Cryptography 

We analyzed the cryptographic primitives and components as well as their implementation. 
We checked in particular:  

• Matching of the proper cryptographic primitives to the desired cryptographic 
functionality needed 

• Security level of cryptographic primitives and their respective parameters (key lengths, 
etc.) 

• Safety of the randomness generation in general as well as in the case of failure 
• Safety of key management 
• Assessment of proper security definitions and compliance to use cases 
• Checking for known vulnerabilities in the primitives used 

Technical Specification Matching 

We analyzed the provided documentation and checked that the code matches the 
specification. We checked for things such as:  

• Proper implementation of the documented protocol phases 
• Proper error handling 
• Adherence to the protocol logical description  

2.4 Reporting 
Kudelski Security delivers a preliminary report in PDF format that contains an executive 
summary, technical details, and observations about the project. 

 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 11 of 25
For Public Distribution 

The executive summary contains an overview of the engagement including the number of 
findings as well as a statement about our general risk assessment of the project as a whole. 
We may conclude that the overall risk is low, but depending on what was assessed we may 
conclude that more scrutiny of the project is needed. 

We not only report security issues identified but also informational findings for improvement 
categorized into several buckets: 

• High 

• Medium 

• Low 

• Informational 

The technical details are aimed more at developers, describing the issues, the severity ranking 
and recommendations for mitigation. 

As we perform the audit, we may identify issues that aren’t security related, but are general 
best practices and steps, that can be taken to lower the attack surface of the project. We will 
call those out as we encounter them and as time permits. 

As an optional step, we can agree on the creation of a public report that can be shared and 
distributed with a larger audience.   

2.5 Verify 
After the preliminary findings have been delivered, this could be in the form of the approved 
communication channel or delivery of the draft report, we will verify any fixes within a window 
of time specified in the project. After the fixes have been verified, we will change the status of 
the finding in the report from open to remediate.  

The output of this phase will be a final report with any mitigated findings noted.  

2.6 Additional Note 
It is important to note that, although we did our best in our analysis, no code audit or 
assessment is a guarantee of the absence of flaws. Our effort was constrained by resource 
and time limits along with the scope of the agreement.  

While assessment the severity of the findings, we considered the impact, ease of exploitability, 
and the probability of attack. These is a solid baseline for severity determination. Information 
about the severity ratings can be found in Appendix C of this document.  

 

 

  



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 12 of 25
For Public Distribution 

3. TECHNICAL DETAILS 

This section contains the technical details of our findings as well as recommendations for 
improvement. 

3.1 Inflation consequence  
Finding ID: solana_inflation_audit#1 

Severity: Informational 

Status: Open 

Description 

The "Validation-client Economics" page mentions that the inflation at year 0 is 15% with a 
disinflationary rate of 15%, the provided examples instead use 7,5% respectively 20%.  

Proof of Issue 

Filename: N/A 

Beginning Line Number: N/A 

Severity and Impact Summary  

Recommendation  

Let the examples for the developers reflect the ideas that the code and the documentation 
inspires to. 

References 

https://docs.solana.com/implemented-
proposals/ed_overview/ed_validation_client_economics/ed_vce_state_validation_protocol_b
ased_rewards 

 

3.2 Longterm stable rate is fixed 
Finding ID: solana_inflation_audit#2 

Severity: Medium 

Status: Remediated 

Description 

The long-term stable rate is here specified to be between 1-2%, in the code this value is 
defined as specifically 1.5%. 

Proof of Issue 

N/A 

Filename: N/A 

Beginning Line Number: N/A 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 13 of 25
For Public Distribution 

Severity and Impact Summary 

If the documentation stipulates that, the long-term stable rate will be 1-2% and the source 
code pin it at 1.5% there is a discrepancy that needs to be addressed. 

Recommendation  

Correct either the documentation or the code to be coordinated. 

References 

https://docs.solana.com/implemented-
proposals/ed_overview/ed_validation_client_economics/ed_vce_overview 

 

3.3 Inflation reward inconsistency 
Finding ID: solana_inflation_audit#3 

Severity: Informational 

Status: Remediated 

Description 

90% of the inflation is supposed to go to the validators, where the other 10% goes is not 
mentioned. The code at this point however provides a theoretical limit of 95% going to the 
validators. 

Proof of Issue  

Filename: N/A 

Beginning Line Number: N/A 

Severity and Impact Summary 

Clarity for the users. 

 

 

 

Recommendation  

Correct either the documentation or the code to be coordinated. 

References 

https://docs.solana.com/implemented-
proposals/ed_overview/ed_validation_client_economics/ed_vce_overview 

3.4 Terminology confusion 
Finding ID: solana_inflation_audit#4 

Severity: Informational 

Status: Remediated 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 14 of 25
For Public Distribution 

Description 

A node is defined as "a computer participating in a cluster", a node count however is defined 
as "The number of validators participating in a cluster". This discrepancy between a node 
being either a computer or a validator could be confusing for some readers. 

Proof of Issue 

Filename: N/A 

Beginning Line Number: N/A 

Severity and Impact Summary 

Clarity for the users. 

Recommendation  

Correct the documentation to use the same definition 

References 

https://docs.solana.com/terminology 

 

3.5 Negative year allowed in inflation calculation 
Finding ID: solana_inflation_audit#5 

Severity: High 

Status: Remediated 

Description 

No checks in the inflation.total method confirming that the year is 0 or more. 

 

Proof of Issue 

 

Filename: sdk\src\inflation.rs 

Beginning Line Number: 56 

    /// inflation rate at year 

    pub fn total(&self, year: f64) -> f64 { 

        let tapered = self.initial * ((1.0 - self.taper).powf(year)); 

        if tapered > self.terminal { 

            tapered 

        } else { 

            self.terminal 

        } 

    } 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 15 of 25
For Public Distribution 

Severity and Impact Summary 

If you pass a negative number for year you will get a result that is outside the defined 
parameters and will result in a value that will be used in other calculations erroneously.  

Recommendation  

Insert a check to require the year parameter to be 0 or more in the code. 

References 

3.6 Deprecated code 
Finding ID: solana_inflation_audit#6 

Severity: Informational 

Status: Remediated 

Description 

The deprecated method "storage" does not seem to serve any purpose in the code. 

Proof of Issue 

 

Filename: sdk\src\inflation.rs 

Beginning Line Number: 21 

Severity and Impact Summary 

Deprecated code left in the code base. Should be removed unless it is used. 

Recommendation  

Delete the deprecated code. 

References 

N/A 

3.7 Unclear use of variable epoch 
Finding ID: solana_inflation_audit#7 

Severity: Low 

Status: Remediated 

Description 

In the update_reward function it is somewhat unclear that the variable epoch is the previous 
epoch and that self.epoch is the current one. 

    /// DEPRECATED, this field is currently unused 

    pub storage: f64, 

} 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 16 of 25
For Public Distribution 

Proof of Issue 

 

Filename: runtime/src/bank.rs 

Beginning Line Number: 897 

Severity and Impact Summary 

Clarity for the developers maintaining and extending the code base. 

Recommendation  

Rename the referenced epoch so that it clearly reflects the use. 

References 

N/A 

3.8 Incorrect documentation of equation 
Finding ID: solana_inflation_audit#8 

Severity: Informational 

Status: Remediated 

Description 

Incorrect comment for let period = self.epoch_schedule in the the years_elapsed equation. 

Proof of Issue 

 

Filename: runtime/src/bank.rs 

Beginning Line Number: 907 

Severity and Impact Summary 

Clarity for the developers maintaining and extending the code base. 

Recommendation  

    // update reward for previous epoch 

    fn update_rewards(&mut self, epoch: Epoch) { 

        if epoch == self.epoch() { 

            return; 

        } 

        // period: time that has passed as a fraction of a year, basically the length of 

        //  an epoch as a fraction of a year 

        //  years_elapsed =   slots_elapsed /  slots/year 

        let period = self.epoch_schedule.get_slots_in_epoch(epoch) as f64 / self.slots_per_year; 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 17 of 25
For Public Distribution 

Correct the comment so that it reflects the code 

References 

N/A 

3.9 Calculation of inflation uses two conflicting models 
Finding ID: solana_inflation_audit#9 

Severity: High 

Status: Remediated 

Description 

Since the implemented model calculates the inflation impact first at the end of an epoch and 
the documented model calculates based on the inflation at the start of the year, the total token 
supply differs between the models 

Proof of Issue 

 
Figure 3 Inflation model consequence 

Filename: N/A 

Beginning Line Number: N/A 

Severity and Impact Summary 

There is a discrepancy between the documented way the inflation logic works and the way it 
is implemented in code. It may influence the complete economic system in a negative way. 

Recommendation  

Chose one way of calculating the inflation and be sure to use it in all calculations in the code. 

References 

https://docs.solana.com/implemented-
proposals/ed_overview/ed_validation_client_economics/ed_vce_overview 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 18 of 25
For Public Distribution 

3.10 Tokens never created 
Finding ID: solana_inflation_audit#10 

Severity: Low 

Status: Remediated 

Description 

The foundation portion of the inflation does not seem to ever be introduced into the network, 
thus meaning that the tokens are never created, which makes the actual theoretical maximal 
inflation rate at 95% of the stated amount. 

Proof of Issue 

This is part of the architecture and  

Filename: N/A 

Beginning Line Number: N/A 

Severity and Impact Summary 

The full potential of the inflation mechanics are not utilized as the 95% cap is in place. 

Recommendation 

Revisit the architecture design and either correct or document the factual inflation 

References 

N/A 

3.11 Retired code still in use 
Finding ID: solana_inflation_audit#11 

Severity: Informational 

Status: Remediated 

Description 

The comment to the call self.update_sysvar_account should explain the actual purpose of the 
call rather than explaining that it apparently can be "retired". 

Proof of Issue 

 

        // this sysvar could be retired... 

        self.update_sysvar_account(&sysvar::rewards::id(), |account| { 

            sysvar::rewards::create_account( 

                self.inherit_sysvar_account_balance(account), 

                validator_point_value, 

            ) 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 19 of 25
For Public Distribution 

Filename: runtime/src/bank.rs 

Beginning Line Number: 923 

Severity and Impact Summary 

If this code is retired, it should be removed. Otherwise the comment should be correctly 
reflecting the use of the function. 

Recommendation  

Remove or correct the stated use of the function. 

References 

N/A 

3.12 Docstrings missing 
Finding ID: solana_inflation_audit#12 

Severity: Informational 

Status: Remediated 

Description 

Many public methods lack docstrings, and preferably, most if not all private methods should 
have a comment explaining the purpose of the code. 

Proof of Issue 

General observation 

Filename: N/A 

Beginning Line Number: N/A 

Severity and Impact Summary 

Clarity for the developers maintaining and extending the code base. 

Recommendation  

Go over the codebase and create a project goal to keep the number of documented functions, 
both private and public, as high as possible. The number should at least be more than 85%. 

References 

N/A 

3.13 Code documentation standard 
Finding ID: solana_inflation_audit#13 

Severity: Informational 

Status: Remediated 

Description 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 20 of 25
For Public Distribution 

Inconsistencies with some comments having an initial uppercase letter and others having an 
initial lowercase letter. 

Proof of Issue 

General observation 

Filename: N/A 

Beginning Line Number: N/A 

Severity and Impact Summary 

Clarity for the developers maintaining and extending the code base. 

Recommendation  

Implement a way to incentivize the developers to create good and consistent documentation. 

References 

N/A 

3.14 Incomplete comment 
Finding ID: solana_inflation_audit#14 

Severity: Informational 

Status: Remediated 

Description 

Incomplete comment: "Maximum number of credits history… smaller numbers makes" for 
variable MAX_EPOCH_CREDITS_HISTORY: usize = 64; 

Proof of Issue 

 

Filename: programs\vote\src\vote_state\mod.rs 

Beginning Line Number: 31 

Severity and Impact Summary 

Clarity for the developers maintaining and extending the code base. 

Recommendation  

Implement a way to incentivize the developers to create good and consistent documentation. 

References 

N/A 

// Maximum number of credits history to keep around 

//  smaller numbers makes 

pub const MAX_EPOCH_CREDITS_HISTORY: usize = 64; 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 21 of 25
For Public Distribution 

3.15 Spellcheck code  
Finding ID: solana_inflation_audit#15 

Severity: Informational 

Status: Remediated 

Description 

Spelling error in comment "Repeat somewhat large number… randamly…" - randomly 

Proof of Issue 

 

Filename: runtime\src\bank.rs 

Beginning Line Number: 5115 

Severity and Impact Summary 

Clarity for the developers maintaining and extending the code base. 

Recommendation  

Implement a way to incentivize the developers to create good and consistent documentation. 

References 

N/A 

3.16 Unclear naming of function 
Finding ID: solana_inflation_audit#16 

Severity: Informational 

Status: Remediated 

Description 

    #[test] 

    fn test_bank_update_rewards_determinism() { 

        // The same reward should be distributed given same credits 

        let expected_capitalization = do_test_bank_update_rewards_determinism(); 

        // Repeat somewhat large number of iterations to expose possible different behavior 

        // depending on the randamly-seeded HashMap ordering 

        for _ in 0..30 { 

            let actual_capitalization = do_test_bank_update_rewards_determinism(); 

            assert_eq!(actual_capitalization, expected_capitalization); 

        } 

    } 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 22 of 25
For Public Distribution 

The variable "vote_balance_and_staked" would be easier to understand if renamed to 
"previous_lamports_balance", indicating that it functions as a snapshot of the vote & stake 
balance before the rewards are applied. 

Proof of Issue 

 

Filename: runtime/src/bank.rs 

Beginning Line Number: 918 

Severity and Impact Summary 

Clarity for the developers maintaining and extending the code base. 

Recommendation  

Rename the function to reflect the intended use 

References 

N/A 

 

 

let vote_balance_and_staked = self.stakes.read().unwrap().vote_balance_and_staked(); 

 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 23 of 25
For Public Distribution 

APPENDIX A: ABOUT KUDELSKI SECURITY 

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and media 
security solutions to enterprises and public sector institutions. Our team of security experts 
delivers end-to-end consulting, technology, managed services, and threat intelligence to help 
organizations build and run successful security programs. Our global reach and cyber 
solutions focus are reinforced by key international partnerships. 

Kudelski Security is a division of Kudelski Group. For more information, please visit 
https://www.kudelskisecurity.com. 

 

Kudelski Security 

route de Genève, 22-24 

1033 Cheseaux-sur-Lausanne 

Switzerland 

 

Kudelski Security 

5090 North 40th Street 

Suite 450 

Phoenix, Arizona 85018 

 

This report and its content is copyright (c) Nagravision SA, all rights reserved. 

 

 

  



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 24 of 25
For Public Distribution 

APPENDIX B: DOCUMENT HISTORY 

VERSION STATUS DATE AUTHOR COMMENTS 

1.0 Final 19 October 2020 Kudelski Security  

 

 

 



Solana | Inflation Logic Code Review 
19 October 2020  

 

© 2020 Nagravision SA / All Rights Reserved Page 25 of 25
For Public Distribution 

APPENDIX C: SEVERITY RATING DEFINITIONS 

Kudelski Security uses a custom approach when determining criticality of identified issues. 
This is meant to be simple and fast, providing customers with a quick at a glance view of the 
risk an issue poses to the system. As with anything risk related, these findings are situational. 
We consider multiple factors when assigning a severity level to an identified vulnerability. A 
few of these include: 

• Impact of exploitation 

• Ease of exploitation 

• Likelihood of attack 

• Exposure of attack surface 

• Number of instances of identified vulnerability 

• Availability of tools and exploits 

SEVERITY DEFINITION  

High The identified issue may be directly exploitable causing an immediate 
negative impact on the users, data, and availability of the system for 
multiple users. 

Medium The identified issue is not directly exploitable but combined with other 
vulnerabilities may allow for exploitation of the system or exploitation 
may affect singular users. These findings may also increase in severity 
in the future as techniques evolve. 

Low The identified issue is not directly exploitable but raises the attack 
surface of the system. This may be through leaking information that an 
attacker can use to increase the accuracy of their attacks. 

Informational Informational findings are best practice steps that can be used to harden 
the application and improve processes. 

 


