Preserving America's Cognitive Strength

By Dr. Suzanne Gazda, MD

Neurologist and Founder of the Neurology Institute of San Antonio

OCTOBER 2025

Introduction

By our nature, we take for granted our ability to think. But cognitive strength—the blend of our mental, physical, and spiritual fitness—is our most valuable asset. It empowers us to think critically and independently so we can shape the world we want to live in. It prevents us from becoming slaves to small thinking and institutional dictates that serve a select few at the expense of the many. And it enables us to provide support for our family, friends, and fellow Americans. By maintaining our mental, physical, and spiritual well-being, we hold the potential to be loving parents to our children, caregivers for our family and friends, and active members of communities that form a thriving society.

Nothing drains America's cognitive strength like Alzheimer's disease, the most common form of dementia that affects more than seven million people over 65.1 It's a chronic, fatal disease that starves the brain of vital energy, prevents the formation of new memories, and traps a person in the "eternal now" as the mind, body, and spirit fade away. Much of the research on Alzheimer's in recent decades has focused on the role of amyloid protein plaques, which seem to be the first discernible biological change in the linear progression and inflammation cascade. But we are learning that the disease is far more complex, and there is still so much we don't understand.

As a practicing neurologist and clinician, I'm following research developments to give my patients the best care possible while guiding them to prevent Alzheimer's disease, and I've never been more optimistic. In this paper, I will discuss the importance of lifestyle changes in preserving cognitive abilities and preventing dementia, new insights into its genetic, environmental, and behavioral causes of Alzheimer's disease; the role of repurposed generic treatments and other therapies; and actionable recommendations for building a better system of care for patients and families. These developments can advance President Trump and Secretary Kennedy's work to understand the root causes of disease, improve prevention, and create a better system of care that preserves America's cognitive strength for generations to come.

Understanding Alzheimer's Disease: Mechanisms, Causes, and Lifestyle Changes That May Help Prevent It

Alzheimer's poses an existential threat as we age, stealing decades of productive, enjoyable life. We are seeing the signs and symptoms much earlier in life—patients in their fifties and even forties are no longer uncommon. These are people in the prime of their productive years, who may have young children in the home. By some estimates, the number of people living with Alzheimer's will nearly double to 13 million by 2050.²

Discovered in 1906, Alzheimer's disease has traditionally been characterized by the accumulation of two types of proteins in the brain—beta amyloid and tau—which kill neurons, shrink the brain, and ultimately result in death.

Recent discoveries have significantly increased our understanding of the complex causes and mechanisms behind this disease. There is strong evidence supporting genetic, environmental and behavioral factors, many of which can be addressed with clinicians through recommendations for lifestyle changes based on individual needs and risk profiles. The 2024 Lancet Commission on Dementia Prevention, Intervention and Care reported that fully addressing 12 lifestyle risk factors can prevent or delay up to 40% of dementia cases.³ An

ongoing international study continues to reinforce what practicing neurologists have long known: a low-inflammation diet, regular exercise, quality sleep, fundamental brain exercises, and validated nutritional supplements can preserve cognitive abilities⁴ and may help prevent the development of disease.

As with all chronic conditions, the challenge is delivering this essential information to patients and the American people in a persuasive and actionable way—cutting through the clutter of modern life to make people feel educated and empowered, rather than confused, ashamed, or intimidated. Below is a summary of the current state of research into the causes and potential opportunities to prevent Alzheimer's disease.

Genetic/Prenatal

• APOE4. A large body of evidence confirms that genes, and one allele in particular – apolipoprotein 4, or APOE4 – predispose individual carriers to the accumulation of amyloid protein plaques in the brain, significantly increasing risk. One quarter of the population carries APOE4, and 2-3% are believed to carry two copies of the gene,

- putting them at very high risk of developing dementia. Crucially, APOE4 interacts with multiple other genetic, environmental, and behavioral risk factors to further increase risk.⁵
- Prenatal nutrition is a significant risk factor for adult cognitive dysfunction. Good nutrition in utero creates stores of key neural building blocks such as folate, iodine, choline, and omega-3 found in leafy green vegetables, legumes, seafood, and eggs—all of which can help prevent amyloid deposition. 6-8 These compounds are also widely available as nutritional supplements, as well as part of "fortified" foods.

Behavioral

- Education. Completing secondary education is a key variable determining the likelihood of developing Alzheimer's, with economic opportunity, adolescent socialization, school- based nutrition programs, and athletic participation all potential contributing factors. 9-13
- Head injuries. Concussions and other serious brain trauma experienced in childhood and young adulthood are known risk factors. 14 Research has implicated aggravating injury in combination with genetic predisposition, especially the APOE4 allele. 15,16
- Sleep. Poor sleep patterns in middle age (50s-60s), including prolonged irregular or insufficient sleep, are strongly correlated with increased risk of disease in subsequent decades.¹⁷
- Diet. Many of the foods popular in the western diet have been identified as Alzheimer's risk factors, responsible for metabolic changes, obesity, and gut biota dysbiosis, contributing to impairment of the blood-brain barrier and neuroinflammation. 18,19
- Alcohol consumption. Heavy drinking in midlife is associated with multiple Alzheimer's risk factors, including chronic thiamine deficiency and amyloid plaque deposition.
 Again, research points to a combination of behavior with genetic factors, especially the presence of the APOE4 allele, as strong predictors of negative outcomes.²⁰
- Smoking. Individuals who smoke two or more packs a day have more than double the incidence of Alzheimer's.²¹ Studies have suggested multiple potential mechanisms, but there appears to be a strong role for vascular effects in combination with the APOE4 allele, leading to increased amyloid deposition.²²
- Social activity. Social isolation and subjective feelings of loneliness in later life are firmly established risk factors for Alzheimer's. ^{23,24} In one recent study, senior citizens who maintained an active social network delayed the onset of dementia by an

- average of about five years (from 87.7 to 92.2).²⁵ Studies of long-term care facilities that employ intensive socialization activities have shown significant decreases in dementia incidence.²⁶
- Brain training: The Lifestyle Intervention to Reduce Risk (U.S. Pointer) study²⁷ reinforces what integrated neurology practitioners have long understood: relatively simple lifestyle changes can help preserve cognitive function over years. Significant improvements were evident in a group that combined 30 minutes of exercise four times a week with 30 minutes of computer-based brain training each week and a Mediterranean diet, compared with a control group. The study is ongoing.

Environmental

- Sunlight. Studies suggest regular exposure to safe amounts of direct sunlight is linked to decreased Alzheimer's risk, with a central role indicated for vitamin D, a complex physiological regulator.^{28–32}
- Air pollution. Long-term exposure to air pollution from automobile traffic is causally related to Alzheimer's, with fine particulate matter found to contribute to the formation of amyloid plaques in the brain.³³

Medical

- Untreated hearing loss. Millions of Americans experience incremental hearing loss due to natural aging processes during midlife (ages 30-60). Age-related hearing loss is correlated with an increased risk.³⁴
- COVID. New research shows that the SARS-CoV2 virus can cause accumulation of beta proteins that lead to amyloid deposition, potentially increasing the risk of Alzheimer's disease.^{35–37}
- Obesity. A growing body of evidence connects obesity in midlife (age 35-65) to an increased risk of Alzheimer's later in life. Findings show neuroinflammation correlated with obesity leads to activation of microglia and amyloid deposition in the brain.³⁸⁻⁴⁰
- Diabetes. Diabetes in later life is a major risk factor for dementia, with a 73% higher risk of developing Alzheimer's, concentrated in individuals with the APOE4 allele. 41,42 Lifestyle interventions to control diabetes have also been shown to be effective in slowing the progress of Alzheimer's, including diet, exercise, and weight loss. 43,44 For example, a Mediterranean diet is associated with fewer signs of Alzheimer's in older individuals. 45,46

The Landscape for Treatment

New therapeutic options are being explored to treat Alzheimer's, with numerous generic drugs being studied for potential repurposing. Typically, these studies must evaluate key issues for any proposed repurposing of an existing drug, including drug interactions and dosing, as well as questions specific to Alzheimer's treatments, such as the compound's ability to cross the blood-brain barrier. ^{47,48} The following is a partial list of drugs that are currently under investigation.

Fasudil	A Rho-associated protein kinase (ROCK) inhibitor, Fasudil was shown in mice to protect against amyloid beta (Aβ) pathology, increase oxidative substances, and decrease lipid peroxides in the brain. ⁴⁹
Fluticasone	An inhaled anti-inflammatory corticosteroid, fluticasone use was shown to be correlated with lower incidence of Alzheimer's disease in a large retrospective study. ⁵⁰
Ibudilast	A phosphodiesterase inhibitor and toll-like receptor 4 (TLR4) antagonist, ibudilast has been shown in rats to alleviate cognitive deficits associates with Alzheimer's dementia, via TLR signaling and the ubiquitin/ proteasome pathway. ⁵¹
Lithium	A well-known mood stabilizer, research with mice suggests lithium may reduce amyloid deposition and formation of abnormal clumps of tau proteins, slowing progression of Alzheimer's. ⁵²
Semaglutide	Widely used for treatment of diabetes, semaglutide has recently been shown to be associated with a lower incidence of first-time Alzheimer's diagnosis, likely due to overlapping disease mechanisms of Alzheimer's and diabetes. ⁵³
Sildenafil	Better known by trade name Viagra, computational modeling research in 2024 shows sildenafil is associated with a 30%-54% reduced prevalence of Alzheimer's disease, perhaps by lowering levels of neurotoxic tau

proteins in the brain.⁵⁴

The Role of Anti-Amyloid Therapies

There are currently two FDA-approved drugs for treatment in early Alzheimer's disease. These therapies have come under criticism from Secretary Kennedy and other members of the Trump administration. Many of my colleagues and I in the medical MAHA movement understand these concerns. On balance, there is a place for them in the current system of care for patients who understand the risks and wish to use them. Here is what we know:

- The FDA approved two monoclonal antibodies, lecanemab and donanemab, based on trials showing they slowed progression of Alzheimer's in early stage patients by clearing amyloid plaques from the brain. In addition there is anecdotal evidence of patient benefit. 55,56
- The drugs have known risks and side effects, such as brain swelling or bleeding, so patients are closely monitored and treatment is stopped at the first sign of concern.
- The drugmakers claim the therapies show a delay in Alzheimer's disease progression over 36 months.^{57,58}
- Trials are underway to understand potential to prevent symptoms by treating people with amyloid therapies when younger and still cognitively normal.⁵⁹

Building a Better System of Care

The most important thing we can do to preserve America's cognitive strength is prioritize the prevention and care of Alzheimer's disease. I believe we have reached a watershed moment in recognizing the factors that lead to the decline of brain health. We have the potential to do today for the brain what we did 70 years ago for the heart.

In the early 20th century, heart disease was not a major public health problem in America. But by the 1940s, its prevalence shot up and accounted for about half of all deaths. ⁶⁰ A concerted public effort was made to understand and address the causes of this epidemic. Guidelines for prevention were created and updated over the years as we came to understand the many factors that contributed to disease—smoking, cholesterol, high blood pressure, obesity, among others. Today these are all common knowledge. As a result, our ability to prevent heart disease has massively improved. Between 1970 and 2022, deaths from heart disease fell by two-thirds. ⁶¹

We can do the same for Alzheimer's disease right now. Lifestyle changes have been found in study after study to improve brain health and lower the risk of cognitive decline. Educating Americans about simple steps they can take to improve brain health and potentially prevent disease must be an urgent national priority. Primary care providers must be empowered to help patients make these changes, improve diagnosis, treat when appropriate, and ensure patients and families receive compassionate care at every stage of the disease. Here are the steps our leaders in government can take to accelerate this process:

- The U.S. Department of Health and Human Services. Our federal government should launch a nationwide educational campaign to encourage and educate Americans about the role of lifestyle changes in preserving cognitive strength and staving off brain disease. It is never too early to be focused on brain health. Knowing the signs and symptoms of brain disease early in life empowers people to seek care for themselves or their loved ones. The agency has already taken some positive steps to improve prevention through changes to the physician fee schedule and by including a prevention RFI to incentivize earlier diagnosis. 62 It should prioritize actions to encourage specialists and primary care physicians to further focus on upstream prevention and diagnosis.
- Medical schools. Just as medical schools do not require in-depth learning about nutrition and root causes of chronic disease, ⁶³ they similarly have given short shrift to educating students on brain health. The importance of a good diet, regular exercise, adequate sleep, exposure to sunlight, and nutritional supplements in preventing brain disease should be a fundamental part of an American medical education. Physicians of all disciplines should guide patients in their care not only towards treating disease, but also towards making essential lifestyle choices that can protect their brains and preserve cognitive strength over the course of a lifetime.
- Fortifying primary care: Given the scale and urgency of Alzheimer's disease, the most important system shift we can make is training more primary care physicians to increase their brain health IQ and become stewards of cognitive strength. Early intervention can delay the progression of Alzheimer's disease and preserve cognitive strength through naturopathic and therapeutic interventions. Primary care physicians should be empowered to recognize and act on the signs of cognitive impairment, armed with the knowledge about preventing disease and preserving cognitive function. Dr. Barak Gaster's Cognition in Primary Care program is one of several promising models for scaling national capacity. This is the most important place within the health care system where we can have the greatest impact for patients

- and families right now, while priming the system to act quickly on new insights, discoveries, and therapeutic interventions as they arise.
- Therapeutics: We need an all-of-the-above approach to treatment guided by wherever gold-standard science takes us. That includes a systematic study of naturopathic and generic repurposed drugs in partnership with the federal government. It also includes new medicines backed by solid evidence. It could also include use of validated Alzheimer's biomarkers to investigate preventive interventions through lifestyle modifications and therapeutics. The federal government should play a central role in this effort by funding and systematizing the collection and reporting of observational data nationwide. It can incentivize pharmaceutical industry discoveries by providing patent protections for new uses of old drugs and understanding the role generic repurposed treatments can play in adjunctive therapies for Alzheimer's and ultimately preventing brain disease.

References

- ¹ 2024 Alzheimer's disease facts and figures. Alzheimers Dement. 2024;20(4):1235-1374. doi:10.1002/alz.13874. Accessed October 2025. https://pubmed.ncbi.nlm.nih.gov/38689398/
- ² Ibid.
- ³Livingston G, Huntley J, Liu KY, Costafreda SG, Selbæk G, Alladi S, Ames D, Banerjee S, Burns A, Brayne C, Fox NC, Ferri CP, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Nakasujja N, Rockwood K, Samus Q, Shirai K, Singh-Manoux A, Schneider LS, Walsh S, Yao Y, Sommerlad A, Mukadam N. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet. 2024 Aug 10;404(10452):572-628. Accessed October 2025. https://www.thelancet.com/commissions-do/dementia-prevention-intervention-and-care
- ⁴Baker LD, Espeland MA, Whitmer RA, et al. Structured vs Self-Guided Multidomain Lifestyle Interventions for Global Cognitive Function: The US POINTER Randomized Clinical Trial. JAMA. 2025;334(8):681–691. doi:10.1001/jama.2025.12923 Accessed October 2025. https://jamanetwork.com/journals/jama/article-abstract/2837046
- ⁵ National Institute on Aging. Study reveals how APOE4 gene may increase risk for dementia. NIH News. Published March 16, 2021. Accessed September 2025. https://www.nia.nih.gov/news/study-reveals-how-apoe4-gene-may-increase-risk-dementia
- ⁶ Niculescu MD, Lupu DS. Maternal diet and vulnerability to cognitive and psychiatric disorders: epigenetic regulation of brain gene expression. Neuroendocrinology. 2023;115(2):242-257. doi:10.1159/000529104. Accessed September 2025. https://karger.com/nen/article-abstract/115/2/242/919001
- ⁷ Stubbins RE, Zhang C, Song Y, et al. Prenatal exposure to undernutrition is associated with a specific lipid profile predicting future brain aging. npj Aging. 2024;10:8. doi:10.1038/s41514-024-00169-x. Accessed September 2025. https://www.nature.com/articles/s41514-024-00169-x
- ⁸ Jadavji NM, Emmerson J, Willmore WG, Smith P, Boughner JC. Perinatal choline supplementation prevents learning and memory deficits and reduces brain amyloid-β42 deposition in AppNL-G-F Alzheimer's disease model mice. PLoS One. 2024;19(1):e0297289. doi:10.1371/journal.pone.0297289. Accessed September 2025. https://journal.pone.0297289. doi:10.1371/journal.pone.0297289
- ⁹ University of Texas College of Liberal Arts. How does education affect Alzheimer's and dementia risk? It's about more than degree attainment. Published 2024. Accessed September 2025. https://liberalarts.utexas.edu/news/how-does-education-affect-alzheimer-rsquo-s-and-dementia-risk-it-rsquo-s-about-more-than-degree-attainment
- ¹⁰ Cha H, Farina M, Chiu CT, Hayward MD. The importance of education for understanding variability of dementia onset in the United States. Demogr Res. 2024;50:26. Accessed September 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC11171414/
- ¹¹Weninger S. Alzheimer's disease drug development in an evolving landscape. Alzheimers Dement (Transl Res Clin Interv). 2024;10:70015. doi:10.1002/trc2.70015. Accessed September 2025. https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.70015
- ¹² American Association of Universities. Education can hold dementia: new USC-led study finds. AAU. Published 2025. Accessed September 2025. https://www.aau.edu/research-scholarship/featured-research-topics/education-can-hold-dementia-new-usc-led-study-finds
- ¹³ Rutgers University. How educational attainment may impact memory and dementia risk later life. Published 2024. Accessed September 2025. https://www.rutgers.edu/news/how-educational-attainment-may-impact-memory-and-dementia-risk-later-life
- ¹⁴ Gottlieb S. Head injury doubles the risk of Alzheimer's disease. BMJ. 2000;321(7269):1100. doi:10.1136/bmj.321.7269.1100. Accessed September 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC1173459/
- ¹⁵ Kumar A, Shekhar S, Chauhan P, et al. Alzheimer disease. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2024. Accessed September 2025. https://www.ncbi.nlm.nih.gov/books/NBK299179/
- ¹⁶ Flavin WP, Hosseini H, Ruberti JW, Kavehpour HP, Giza CC, Prins ML. Traumatic brain injury and the pathways to cerebral tau accumulation. Front Neurol. 2023;14:1239653. doi:10.3389/fneur.2023.1239653. Accessed September 2025. https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2023.1239653/full
- ¹⁷ Sabia S, Fayosse A, Dumurgier J, van Hees VT, Paquet C, Sommerlad A, Kivimäki M, Dugravot A, Singh-Manoux A. Association of sleep duration in middle and old age with incidence of dementia. Nat Commun. 2021;12:2260. doi:10.1038/s41467-021-22354-2. Accessed September 2025. https://www.nature.com/articles/s41467-021-22354-2

- ¹⁸ Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, et al. Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev. 2021;70:101397. doi: 10.1016/j.arr.2021.101397. Accessed September 2025. https://www.sciencedirect.com/science/article/pii/S1568163721001446
- ¹⁹ Diet has a major impact on risk of Alzheimer's disease." JAD. Published December 3, 2023. Accessed September 2025. https://www.j-alz.com/content/diet-has-major-impact-risk-alzheimers-disease
- ²⁰ Anttila T, Helkala EL, Viitanen M, et al. Alcohol drinking in middle age and subsequent risk of mild cognitive impairment and dementia in old age: a prospective population-based study. BMJ. 2004;329(7465):539. doi:10.1136/bmj.38181.418958.BE. Accessed September 2025. https://www.bmj.com/content/329/7465/539
- ²¹ Rusanen M, Kivipelto M, Quesenberry CP Jr, et al. Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. JAMA Intern Med. 2011;171(4):333-339. doi:10.1001/archinternmed.2010.393. Accessed September 2025. https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/226695
- ²² Rusanen M, Rovio S, Ngandu T, et al. Midlife smoking, apolipoprotein E and risk of dementia and Alzheimer's disease: a population-based cardiovascular risk factors, aging and dementia study. Dement Geriatr Cogn Disord. 2010;30(3):277-284. doi:10.1159/000320484. Accessed September 2025. https://karger.com/dem/article-abstract/30/3/277/102480
- ²³ National Institute on Aging. Loneliness linked to dementia risk in large-scale analysis. NIH News. Published January 16, 2025. Accessed September 2025. https://www.nia.nih.gov/news/loneliness-linked-dementia-risk-large-scale-analysis
- ²⁴ Drinkwater E, Davies C, Spires-Jones TL. Potential neurobiological links between social isolation and Alzheimer's disease risk. Eur J Neurosci. 2022;56(9):5397-5412. doi:10.1111/ejn.15373. Accessed September 2025. https://onlinelibrary.wiley.com/doi/full/10.1111/ejn.15373
- ²⁵ Chen Y, Grodstein F, Capuano AW, Wang T, Bennett DA, James BD. Late-life social activity and subsequent risk of dementia and mild cognitive impairment. Alzheimers Dement. 2025;21:e14316. doi:10.1002/alz.14316. Accessed September 2025. https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.14316
- ²⁶ Chen Y, Dong Y, Yu L, et al. Social activities offer protection against cognitive decline in long-term care residents. News-Medical. Published March 20, 2024. Accessed September 2025. https://www.news-medical.net/news/20240320/Social-activities-offer-protection-against-cognitive-decline-in-long-term-care-residents.aspx
- ²⁷ Baker LD, Espeland MA, Whitmer RA, et al. Structured vs Self-Guided Multidomain Lifestyle Interventions for Global Cognitive Function: The US POINTER Randomized Clinical Trial. JAMA. 2025;334(8):681–691. doi:10.1001/jama.2025.12923 Accessed October 2025. https://jamanetwork.com/journals/jama/article-abstract/2837046
- ²⁸ Zhao Y, Sun Y, Ji HF, Shen L. Vitamin D levels in Alzheimer's and Parkinson's diseases: a meta-analysis. Nutr. 2013;29(6):828-832. doi:10.1016/j.nut.2012.11.018. Accessed September 2025. https://www.sciencedirect.com/science/article/abs/pii/S0899900712004650
- ²⁹ Li H, Cui F, Wang T, Wang W, Zhang D. Associations between natural sunlight exposure and brain structural markers: a prospective study in the UK Biobank. medRxiv. 2023. doi:10.1101/2023.10.12.23296944. Accessed September 2025. https://www.medrxiv.org/content/10.1101/2023.10.12.23296944v2
- ³⁰ Li H, Cui F, Wang T, Wang W, Zhang D. The relationship between long-term sunlight radiation and cognitive decline in the REGARDS cohort study. Int J Biometeorol. 2013;57:63-71. doi:10.1007/s00484-013-0631-5. Accessed September 2025. https://link.springer.com/article/10.1007/s00484-013-0631-5
- ³¹ Sommer I, Griebler U, Kien C, et al. Vitamin D deficiency as a risk factor for dementia: a systematic review and meta-analysis. BMC Geriatr. 2017;17:16. doi:10.1186/s12877-016-0405-0. Accessed September 2025. https://link.springer.com/article/10.1186/s12877-016-0405-0. Accessed September 2025. https://link.springer.com/article/10.1186/s12877-016-0405-0. Accessed September 2025.
- ³² Ma LZ, Ma YH, Ou YN, et al. Time spent in outdoor light is associated with the risk of dementia: a prospective cohort study of 362,094 participants. BMC Med. 2022;20:132. doi:10.1186/s12916-022-02331-2. Accessed September 2025. https://link.springer.com/article/10.1186/s12916-022-02331-2
- ³³ Emory University Rollins School of Public Health. Traffic pollution and Alzheimer's disease. Published 2024. Accessed September 2025. https://sph.emory.edu/news/traffic-pollution-alzheimers
- ³⁴ Griffiths TD, Lad M, Kumar S, et al. How can hearing loss cause dementia? Neuron. 2020;108(3):401-412. doi:10.1016/j. neuron.2020.08.003. PMID:32871106; PMCID:PMC7664986. Accessed September 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC7664986/

- ³⁵ Yale School of Medicine. SARS-CoV-2 causes buildup of Alzheimer's-related peptides in the retina. Yale Medicine News. Published 2023. Accessed September 2025. https://medicine.yale.edu/news-article/sars-cov-2-causes-buildup-of-alzheimers-related-peptides-in-the-retina/
- ³⁶ University of Kentucky. UK researchers find Alzheimer's-like brain changes in long COVID patients. Research News. Published 2023. Accessed September 2025. https://research.uky.edu/news/uk-researchers-find-alzheimers-brain-changes-long-covid-patients
- ³⁷ IMA Health. Post-COVID cognitive impairment: treatment strategies. Published 2024. Accessed September 2025. https://imahealth.org/post-covid-cognitive-impairment-treatment/
- ³⁸ Albanese E, Launer LJ, Egger M, Prince MJ, Giannakopoulos P, Wolters FJ, Egan K. Body mass index in midlife and dementia: systematic review and meta-regression analysis of 589,649 men and women followed in longitudinal studies. Alzheimers Dement (Diagn Assess Dis Monit). 2017;8:165-178. doi:10.1016/j.dadm.2017.05.007. Accessed September 2025. https://alz-journals.onlinelibrary.wiley.com/doi/10.1016/j.dadm.2017.05.007
- ³⁹ Anjum I, Fayyaz M, Wajid A, et al. Does Obesity Increase the Risk of Dementia: A Literature Review. Cureus. 2018;10(5):e2660. doi: 10.7759/cureus.2660. Accessed September 2025. https://www.cureus.com/articles/12417-does-obesity-increase-the-risk-of-dementia-a-literature-review/
- ⁴⁰ Slomski A. Obesity Is Now the Top Modifiable Dementia Risk Factor in the US. JAMA. 2022;328;(1):10. doi:10.1001/jama.2022.11058. Accessed September 2025. https://jamanetwork.com/journals/jama/article-abstract/2793840
- ⁴¹ Vagelatos NT, Eslick GD. Type 2 diabetes as a risk factor for Alzheimer's disease: the confounders, interactions, and neuropathology associated with this relationship. Epidemiol Rev. 2013;35(1):152-160. doi:10.1093/epirev/mxs012. Accessed September 2025. https://academic.oup.com/epirev/article-abstract/35/1/152/554847
- ⁴² Gudala K, Bansal D, Schifano F, Bhansali A. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J Diabetes Investig. 2013;4(6):640-650. doi:10.1111/jdi.12087. Accessed September 2025. https://onlinelibrary.wiley.com/doi/10.1111/jdi.12087
- ⁴³ Carranza-Naval MJ, Vargas-Soria M, Hierro-Bujalance C, Baena-Nieto G, Garcia-Alloza M, Infante-Garcia C, del Marco A. Alzheimer's disease and diabetes: role of diet, microbiota and inflammation in preclinical models. Biomolecules. 2021;11(2):262. doi:10.3390/biom11020262. Accessed September 2025. https://www.mdpi.com/2218-273X/11/2/262
- ⁴⁴Lee HJ, Seo HI, Cha HY, Yang YJ, Kwon SH, Yang SJ. Diabetes and Alzheimer's disease: mechanisms and nutritional aspects. Clin Nutr Res. 2018;7(4):229-240. doi:10.7762/cnr.2018.7.4.229. Accessed September 2025. https://doi.org/10.7762/cnr.2018.7.4.229. Accessed September 2025. https://doi.org/10.7762/cnr.2018.7.4.229.
- ⁴⁵ Agarwal P, Leurgans SE, Agrawal S, et al. Association of Mediterranean-DASH Intervention for Neurodegenerative Delay and Mediterranean diets with Alzheimer disease pathology. Neurology. 2023;100(22):e2259-e2268. doi:10.1212/WNL.00000000000207176. Accessed September 2025. https://www.neurology.org/doi/10.1212/WNL.00000000000207176
- ⁴⁷ Cummings JL, Zhou Y, Van Stone A, et al. Drug repurposing for Alzheimer's disease and other neurodegenerative disorders. Nat Commun. 2025;16(1):1755. doi:10.1038/s41467-025-56690-4. PMID:39971900; PMCID:PMC11840136. Accessed September 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC11840136/
- ⁴⁸ Grabowska ME, Huang A, Wen Z, Li B, Wei WQ. Drug repurposing for Alzheimer's disease from 2012–2022: a 10-year literature review. Front Pharmacol. 2023;14:1257700. doi:10.3389/fphar.2023.1257700. PMID:37745051; PMCID:PMC10512468. Accessed September 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC10512468/
- ⁴⁹ Wei W, Wang Y, Zhang J, et al. Fasudil ameliorates cognitive deficits, oxidative stress and neuronal apoptosis via inhibiting ROCK/MAPK and activating Nrf2 signalling pathways in APP/PS1 mice. Folia Neuropathol. 2021;59(1):32-49. doi:10.5114/fn.2021.105130. PMID:33969676. Accessed September 2025. https://pubmed.ncbi.nlm.nih.gov/33969676/
- ⁵⁰Lehrer S, Rheinstein PH. Alzheimer's disease and intranasal fluticasone propionate in the FDA MedWatch adverse events database. J Alzheimers Dis Rep. 2018;2(1):111-115. doi:10.3233/ADR-170033. PMID:30159547; PMCID:PMC6110392. Accessed September 2025. https://pubmed.ncbi.nlm.nih.gov/30159547/
- ⁵¹ Oliveros G, Wallace CH, Chaudry O, et al. Repurposing ibudilast to mitigate Alzheimer's disease by targeting inflammation. Brain. 2023;146(3):898-911. doi:10.1093/brain/awac136. PMID:35411386; PMCID:PMC10226755. Accessed September 2025. https://pubmed.ncbi.nlm.nih.gov/35411386/

- ⁵² Aron, L., Ngian, Z.K., Qiu, C. et al. Lithium deficiency and the onset of Alzheimer's disease. Nature 645, 712–721 (2025). Accessed October 2025. https://www.nature.com/articles/s41586-025-09335-x
- ⁵³ Wang W, Wang QQ, Qi X, et al. Associations of semaglutide with first-time diagnosis of Alzheimer's disease in patients with type 2 diabetes: target trial emulation using nationwide real-world data in the US. Alzheimers Dement. 2024;20:8661-8672. doi:10.1002/alz.14313. Accessed September 2025. https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.14313
- ⁵⁴Gohel D, Zhang P, Gupta AK, Li Y, Chiang CW, Li L, Hou Y, Pieper AA, Cummings J, Cheng F. Sildenafil as a Candidate Drug for Alzheimer's Disease: Real-World Patient Data Observation and Mechanistic Observations from Patient-Induced Pluripotent Stem Cell-Derived Neurons. J Alzheimers Dis. 2024;98(2):643-657. doi: 10.3233/JAD-231391 Accessed October 2025. https://pubmed.ncbi.nlm.nih.gov/38427489/
- ⁵⁵ "How early diagnosis of Alzheimer's has helped one Connecticut family", CT Insider. April 29, 2025. Accessed October 2025. https://www.ctinsider.com/connecticut/article/alzheimers-association-ct-early-diagnosis-20290484.php
- ⁵⁶Remarks by Dr. Brent Beasley a primary care physician in the Kansas University medical system who was diagnosed with early onset Alzheimer's in 2023, presented at the Alzheimer's Association's International Conference in Toronto in July. Accessed October 2025. https://www.youtube.com/watch?v=kmpUGBlaghw&list=PPSV&t=4s
- ⁵⁷ BioArctic. Long-term lecanemab data show increased patient benefit with maintained safety profile. Published 2024. Accessed September 2025. https://www.bioarctic.com/en/long-term-lecanemab-data-show-increased-patient-benefit-with-maintained-safety-profile/
- ⁵⁸ Eli Lilly and Company. Lilly's Kisunla (donanemab/azbt) showed growing benefit over three years. Investor release. Published 2024. Accessed September 2025. https://investor.lilly.com/news-releases/news-release-details/lillys-kisunla-donanemab-azbt-showed-growing-benefit-over-three
- ⁵⁹ Yaari R, Holdridge KC, Williamson M, Wessels AM, Shcherbinin S, Kotari V, Reiman EM, Tariot PN, Alexander R, Langbaum JB, Sims JR. Donanemab in preclinical Alzheimer's disease: Screening and baseline data from TRAILBLAZER-ALZ 3. Alzheimers Dement. 2025 Sep;21(9):e70662. doi:10.1002/alz.70662. Accessed September 2025. https://pubmed.ncbi.nlm.nih.gov/40955720/
- ⁶⁰ Dalen, James E. et al. The Epidemic of the 20th Century: Coronary Heart Disease. The American Journal of Medicine. Volume 127, Issue 9, p 807-812. September 2014. Accessed October 2025. https://www.amjmed.com/article/S0002-9343(14)00354-4/fulltext
- ⁶¹ King, Sara J. et al. Heart Disease Mortality in the United States, 1970 to 2022. Journal of the American Heart Association. June 25, 2025. Accessed October 2025. https://www.ahajournals.org/doi/10.1161/JAHA.124.038644
- ⁶² Federal Register. "Medicare and Medicaid Programs; CY 2026 Payment Policies Under the Physician Fee Schedule and Other Changes to Part B Payment and Coverage Policies; Medicare Shared Savings Program Requirements; and Medicare Prescription Drug Inflation Rebate Program" July 16, 2025. Accessed October 2025. https://www.federalregister.gov/documents/2025/07/16/2025-13271/medicare-and-medicaid-programs-cy-2026-payment-policies-under-the-physician-fee-schedule-and-other#citation-65-p32507
- ⁶³ U.S. Department of Health & Human Services. WSJ Kennedy op-ed: nutrition education requirements in medical training. Published 2024. Accessed September 2025. https://www.hhs.gov/press-room/wsj-kennedy-op-ed-nutrition-education-requirements-in-medical-training.html
- ⁶⁴ Cognition in Primary Care. A program to facilitate detection of cognitive impairment and improve care for people with dementia. University of Washington Department of Family Medicine. Accessed September 2025. https://familymedicine.uw.edu/cpc/

