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Abstract

This thesis compares a set of error reduction techniques such as Quasi Monte Carlo based
on Sobol sequences (QMC), Mixed Quasi Monte Carlo (MQMC) and Brownian Bridge
(BB) path construction, when they are embedded in the Monte Carlo (MC) framework
used by Algorithmica Research AB’s Quantlab pricing system.

Up-and-out barrier call options were chosen as the prototype contract. Prices generated
with the different schemes were benchmarked against analytic (or high-precision) reference
values, using relative error, standard error and average absolute/relative error as perfor-
mance metrics. Simulations were run under the risk-neutral Geometric Brownian Motion
(GBM) model with 1024 time steps and up to roughly 131 000 paths, values chosen to fit
Quantlab’s native Sobol generator and to reflect real trading usage.

The experiments show that swapping pseudo-random numbers for Sobol’ points cuts error
sharply by about a factor of 25 at very small path counts for the barrier option. At
N = 1023 paths, the relative error falls from 4.86% with standard MC to just 0.63% with
QMC + BB. As the number of paths grows, the gap narrows, yet QMC keeps a clear edge
up to roughly 6.5 x 10* paths, where it still delivers five to eight times lower absolute error
than MC. Beyond that point all methods converge, but QMC never becomes slower.

The study therefore recommends that Quantlab adopt Sobol/QMC as the default random-
number engine and automatically switch to Brownian-Bridge discretisation for barrier op-
tions. Doing so can deliver huge speed-ups for complex structures without altering exist-
ing payoff code. Future work should extend the benchmark to stochastic-volatility models
where similar efficiency gains are expected.

Keywords

Monte Carlo simulation, Quasi Monte Carlo (QMC), Mixed Quasi Monte Carlo (MQMC),
Sobol’ sequences, Brownian Bridge, Barrier Option, Option pricing, Geometric Brownian
Motion, Low-discrepancy sequences
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Sammanfattning

Denna avhandling jamfor ett antal felreducerande tekniker sasom Quasi Monte Carlo
baserat pa Sobolsekvenser (QMC), Mixed Quasi Monte Carlo (MQMC) och Brownian
Bridge baserad konstruktion nér de implementeras i det Monte Carlo (MC) system som
anvinds av Algorithmica Research AB, prisséattningssystemet Quantlab.

Up-and-out-barridroptioner (av typen call) valdes som prototypkontrakt. Priser som gener-
erades med de olika metoderna jaimfordes med analytiska (eller hogprecisions-) referensvér-
den. Relativt fel, standardfel och genomsnittligt absolut/relativt fel anvindes som pre-
standamatt. Simulationerna koérdes under den riskneutrala modellen Geometrisk Brownsk
Rorelse (GBM) med 1024 tidsteg och upp till cirka 131 000 simuleringar vilket ar vér-
den som &r anpassade till Quantlabs inbyggda Sobol generator och speglar en praktisk
marknadstillampning.

Experimenten visar att ersdttning av pseudorandomiserade tal med Sobol punkter drastiskt
minskar felen med ungefér en faktor 25 vid mycket fa simuleringar f6r barridroptionen. Vid
N = 1023 simuleringar sjunker det relativa felet fran 4.86% med standard MC till endast
0.63% med QMC + BB. Nar antalet samples okar minskar gapet och resultatet blir mer
jamnt, men QMC behaller ett tydligt forsprang upp till ungefir 6.5 x 10% simuleringar, dér
det fortfarande ger fem till atta ganger lagre absolutfel &n MC. Darefter konvergerar alla
metoder, men QMC blir aldrig langsammare.

Studien rekommenderar darfor att Quantlab anvinder Sobol/QMC som standard genera-
tor for slumptal och automatiskt aktiverar Brownian Bridge diskretisering for barridrop-
tioner. Detta kan ge avsevért snabbare berdkningar for komplexa strukturer utan att
befintlig payoff kod behéver dndras. Framtida arbete bor utvidga resultaten till stokastiska
volatilitetsmodeller, dér liknande effektivitetsvinster véantas.

Nyckelord

Monte Carlo-simulering, Quasi Monte Carlo (QMC), Slumpméssig Quasi-Monte Carlo
(MQMC), Sobol’-sekvenser, Brownian Bridge, Barridroption, Optionsprissittning, Ge-
ometrisk Brownsk Rorelse, Lag-diskrepanssekvenser
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1. Introduction

1.1 Background

When pricing complex financial derivatives, financial institutions often rely on Monte Carlo
methods because these methods handle path-dependent features and high-dimensional
problems more flexibly than many alternatives. However, a recurring challenge is the
large error spread typically associated with straightforward MC simulations, requiring a
large number of simulated paths to achieve sufficient accuracy. This computational in-
tensity becomes especially difficult for intricate option payoffs such as barrier, asian, and
lookback options that demand detailed tracking of the underlying asset’s path [§].

Monte Carlo methods are a broad class of computational algorithms that rely on repeated
random sampling to obtain numerical results. The key idea is to use randomness to explore
the behavior of complex systems or mathematical models when direct analytical solutions
are difficult or impossible. Since their inception in the mid-20th century, MC methods
have spread into an impressive array of scientific, engineering, and business applications.
They are now used to simulate everything from subatomic particle interactions to financial
portfolio outcomes, giving researchers a versatile toolkit for understanding uncertainty and
risk in complex models [26].

In collaboration with Algorithmica Research AB, this project specifically investigates how
different MC techniques can reduce the error in option pricing, thus lowering overall com-
putational requirements. Algorithmica’s proprietary environment, Quantlab, offers built-in
functionalities for path generation, random number streams, and direct charting capabili-
ties. These features streamline experimental comparisons between standard MC methods
and variants incorporating QMC sequences or Brownian Bridge constructions. By compar-
ing the relative errors and computational performance under various parameter settings
such as changes in the number of discretization steps, paths, or correlation structures one
gains deeper insights into the practical trade-offs of each method.

Ultimately, the goal is twofold: first, to systematically evaluate how each error reduction
technique behaves on a Barrier Option, and second, to identify a robust approach that
practitioners can adopt for lower error without significantly increasing implementation
complexity. Through empirical results and quantitative analysis, the thesis aims to illus-
trate which MC adaptations best balance accuracy and speed within a real-world financial
engineering context.

1.2 Problem and Purpose

Algorithmica Research AB currently uses MC simulations in their product Quantlab to
price various financial derivatives. However, standard MC methods often suffer from high
variance, which in turn demands a large number of simulated paths to reach acceptable
accuracy. This can become computationally intensive, especially when dealing with higher-
dimensional options or complex path dependencies (e.g., Barrier or Asian features).

The problem, therefore, is to identify and evaluate error reduction techniques such as QMC
and BB to mitigate this computational problem while maintaining or improving pricing
precision. By systematically comparing these methods in Quantlab, one can discover which



approach or combination of approaches yields the best trade-off between accuracy and
runtime. Furthermore, since the dimension is limited, one usually needs to mix MC and
QMC to achive better accuracy.

The primary purpose of this study is thus to develop and test practical Monte Carlo
enhancements that reduce the error in option pricing scenarios. The anticipated outcome is
a set of recommendations for Algorithmica on how best to incorporate these error reduction
techniques into Quantlab, ultimately providing faster and more reliable derivative pricing
to their end users.

1.3 Research Questions

o Which Monte-Carlo Method gets the lowest error when pricing Barrier options?
o Which method/mix should you use?

e How low is it possible to get the error?

1.4 Scope

The primary goal of this thesis is to investigate and compare how different Monte Carlo
methods, specifically standard Monte Carlo (MC), Quasi Monte Carlo (QMC), Mixed
Quasi Monte Carlo (MQMC) and Brownian Bridge (BB) perform when pricing a Barrier
Option. Throughout the project, the focus is on identifying which methods offer the most
significant error reduction relative to their computational cost, thereby providing a practi-
cal recommendation for improving efficiency in existing pricing workflows at Algorithmica

Research AB.
In meeting this goal, the thesis includes:

e A theoretical overview of Monte Carlo simulation under the risk-neutral measure,
covering the law of large numbers, the central limit theorem, and basics of generating
(pseudo)random numbers.

e An implementation component within Algorithmica’s Quantlab environment, where
each method is coded and tested across sample options to evaluate convergence prop-
erties, required sample sizes, and computational runtimes.

e A comparative analysis, presenting quantitative results (relative, standard and av-
erage absolute/relative errors) to determine whether QMC + BB or MQMC + BB
yield notable accuracy gains versus standard MC.

By confining attention to this set of models and option types, the scope remains both
feasible within the given time frame and sufficiently comprehensive to generate meaningful
insights.

1.5 Limitations

The project primarily examines Geometric Brownian Motion (GBM) under the risk-neutral
measure, along with Brownian Bridge and Quasi Monte Carlo variants. More advanced
stochastic volatility models (e.g., Heston) are mentioned for context but not exhaustively
implemented or calibrated.



Furthermore, real-world market frictions, transaction costs, and liquidity constraints are
not modeled. All simulations assume idealized conditions, including constant interest rates
and no market impact, so the final outcomes may not fully capture real trading dynam-
ics.

Finally, due to the limited timeframe of the degree project, the number of tested options,
underlying models, and parameter calibrations remains finite. The main aim is to identify
general performance trends among a focused option and error reduction strategies rather
than to provide an exhaustive market study.

1.6 Summary of thesis

Chapter 1 has introduced the background, problem and purpose of the study as well as
the research questions. Also, the scope and limitations were presented. In Chapter 2 the
theoretical background necessary to understand the study is presented and the use of it in
option pricing. In Chapter 3 the research design which allows the research questions to be
answered is presented. This includes the method. In Chapter 4 the results of the study are
presented. Finally in Chapter 5, the results are analyzed and conclusions are drawn. The
results indicate that error reduction methods reduce the computational expense and error
by a great deal.



2. Theoretical Background

In this chapter, a detailed description about relative background of the degree project is
presented to better understand results, discussions and conclusions.

2.1 Principles of Monte Carlo

Monte Carlo methods are used in a wide range of fields to estimate quantities that may
be too difficult or complex to solve analytically. In a financial context, for example, one
often wants to model stock price paths in order to price derivatives (e.g. Asian or European
options). A common modeling approach is to assume a stochastic process for the asset
price, such as Geometric Brownian Motion, and then sample many paths from this process
to compute the expected payoff of a derivative under appropriate pricing assumptions

18].

Generally, Monte Carlo methods estimate an expectation by simulating /N random samples
and computing an average. The simplest setup aims to evaluate

Byl £60] = [ 76 0 ax,

where x € R", f is the function of interest, and 1 is the probability density. In practice, we
approximate this integral by generating a large number of independent draws x1,...,Xy ~
1 and taking

N
N;f(xi)-

As N grows, this sample average converges to the true value thanks to fundamental results
such as the Law of Large Numbers (LLN) and Central Limit Theorem (CLT). In fact, by the
Central Limit Theorem, the Monte Carlo estimator is approximately normally distributed
around the true value for large N, with a standard deviation (standard error) on the order
of 1/v/N. In other words, if 02 = Var[f(X)] under the sampling distribution, then the
sample mean has standard error o/v/N. This implies that to reduce the error (standard
deviation of the estimate) by a factor of 2, one requires roughly 4 times more samples

[13].

In quantitative finance, one typically works under the risk-neutral measure Q, meaning the
drift of the asset process is replaced by the risk-free rate r. For example, a GBM can be
written as

dS(t) = rS(t)dt + o S(t)dW(b),

where W (t) is a standard Brownian Motion, o is the volatility, and r is the risk-free rate.
Under this assumption, the fair price of a derivative with payoff Vp at maturity T is

Vo = e "EQVr ).

Hence, using Monte Carlo under this measure involves simulating multiple GBM paths
S(t) and then averaging the discounted payoffs. Crucially, these simulations rely on the
assumption that draws are independent and identically distributed (i.i.d.) and that we can
generate large samples to apply the LLN and CLT in practice [§].



2.1.1 Geometric Brownian Motion (GBM)

GBM describes the evolution of an asset price S(t) over time according to the stochastic
differential equation (SDE) [8]:

dS(t) = pS(t)dt + oS(t)dW (t), (2.1)
where S(t) is the asset price at time ¢, p is the drift (expected return), o is the volatility

and W(t) is a standard Brownian motion. Solving the SDE using Itd’s Lemma leads to
the explicit solution:

S(#) = S(0) exp [(u _ ;&) L+ UW(t)] | (2.2)
From this, it can be shown that S(t) is lognormally distributed:
log S(t) ~ N (log S(0) + <u - 302> t, a2t> . (2.3)
The discrete time approximation is then:
Strar = Spexp Ku — ;a2> At + U\/EZ:| , (2.4)

where Z ~ N(0,1) is a standard normal variable.

B show_example_path - 1
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Figure 2.1: Example of GBM with parameters r = 0.02, 0 = 0.3, T =1, and At = ﬁ.

2.1.2 Risk-Free Measure

The risk-free measure is a probability measure in which the expected return of all tradable
assets equals the risk-free rate. It plays a underlying role in asset pricing. Let S(¢) represent
the price of a financial asset. Under the real-world probability measure P, its dynamics
follow the stochastic differential equation (SDE):

dS(t) = pS(t)dt + oS(E)dWs(t), (2.5)



where p is the drift, o is the volatility, and Wp(¢) is a standard Brownian Motion under
P. Under the risk-neutral measure Q, the drift term g is replaced by the risk-free rate r,
leading to the changed SDE:

dS(t) = rS(t)dt + oS(t)dWg(t), (2.6)

where Wg(t) is a Brownian motion under Q. This transformation allows us to calculate the
value of financial derivatives by estimating their expected future payout and then adjusting
for time using the risk-free interest rate [8].

The existence of a risk-neutral measure is guaranteed by the Fundamental Theorem of Asset
Pricing (FTAP), which states that a market is arbitrage-free if and only if there exists
an equivalent martingale measure under which discounted asset prices are martingales

[10].
Using the risk-neutral measure, the price Vy of a derivative with payoff Vp at time T is
given by:

Vo = e "TEQVy]. (2.7)

This equation states that the fair price of the derivative is the discounted expected value
of its future payoff under Q. Monte Carlo simulations often rely on this pricing principle
by generating sample paths under the risk-neutral measure[8|.

The transformation from the real-world measure P to the risk-neutral measure Q is facil-
itated by Girsanov’s theorem, which modifies the drift of Brownian Motion. The Radon-
Nikodym derivative defines this measure change as:

dQ T 1t
2 = exp (- /O OudWiet) — /0 tht>, (2.8)

where 6; is the market price of risk[8|.

2.1.3 Law of Large Numbers and Central Limit Theorem

Both the Law of Large Numbers (LLN) and Central Limit Theorem (CLT) are important
assumptions when working with Monte Carlo simulations.

The Law of Large Numbers states that as the number of simulations increases, the Monte
Carlo estimates converges to the true expected value. l.e when evaluating the function
f at n of these random points and averaging the results produces the Monte Carlo esti-
mate.

Gn = 13" (U, (2.9)
=1

If f is indeed integrable over [0, 1], then, by the strong law of large numbers,
Gy — a with probability 1 as n — oo. (2.10)

Furthermore, the Central Limit Theorem (CLT) states that if one take a sufficiently large
number of independent and identically distributed (i.i.d.) random variables, their sample
mean will approximate a normal distribution, regardless of the original distribution of the
variables.



Mathematically, if Xy, Xo,..., X, are i.i.d. random variables with mean u and variance
o2, then the sample mean:

_ 1<
X, = EZXZ- (2.11)
=1
follows approximately a normal distribution for large n:
_ 0'2
Xp ~N (u, n> . (2.12)

This implies that the standard error of the sample mean decreases as O(n_l/ 2), meaning
that increasing the number of samples improves the estimate.

2.1.4 Expected Value

In probability theory, the expected value of a random variable is the probability-weighted
average of all possible values it can take. For a continuous random variable X with density
¥ (x), the expected value of a function f(X) is defined as:

i) = [ " f(@) b(a) da,

provided this integral converges. For a discrete random variable, the expected value is
the sum of f(x) over all possible outcomes weighted by their probabilities. The expected
value represents the long-run average outcome of X. Monte Carlo simulation essentially
estimates such an expectation by averaging samples drawn from the distribution of X
[28].

2.1.5 Generic Monte Carlo Algorithm

The basic steps for Monte Carlo pricing include:

e Simulate N paths of the underlying asset price using the stochastic differential equa-
tion (SDE) that models the asset dynamics. For a Geometric Brownian Motion

(GBM), the SDE is:
dS(t) =rS(t)dt + oS(t)dW (t), (2.13)

where dW (t) represents the Wiener process.
e Calculate the payoff of the option for each path at maturity.
e Discount the payoff to the present value using the risk-free rate r.

e Compute the average of the discounted payoffs to estimate the option price.

2.2 Introduction to Option Pricing

Option pricing is a key concept for determining the fair price of a financial instrument,
such as a put or a call option. Options give the holder the right (but not the obligation) to
buy (call) or sell (put) an underlying asset, like a stock, at a specified price (often refeered
to as strike price) on or before a specific date.



2.2.1 Common options

Common call and put options (with their payoff structures)[10] [8]:

Standard Options

Standard options, also known as vanilla options, are the most commonly traded derivatives
in financial markets. They follow a simple and well-defined payoff structure, making them
the foundation of many more complex option types. The two primary categories of standard
options are European options and American options.

1. European Options

e Put: Gives the holder the right to sell an asset at a fixed price K only at
expiration.

e Call: Gives the holder the right to buy an asset at a fixed price K only at
expiration.

e Payoff: f(S7) = max(Sy — K, 0) for call and f(St) = max(K — Sr,0) for put.
2. American Options

e Put: Gives the holder the right to sell an asset at a fixed price K at any time
before or at expiration.

e Call: Gives the holder the right to buy an asset at a fixed price K at any time
before or at expiration.

e Payoff: f(S7) = max(Sp — K,0) for call and f(S7) = max(K — Sr,0) for put.

Path-Dependent Options

These options depend on the price path of the underlying asset during the option’s lifetime
rather than just the final price at expiration.

1. Asian Options

e Put: Gives the holder the right to sell an asset at the average price or relative
to the average price.

e Call: Gives the holder the right to buy an asset at the average price or relative
to the average price.

o Payoff: f(A) = max(A—K,0) for call and f(A) = max(K — A, 0) for put, where

A is calculated as: .
1
A=— E St,
n
i=1

2. Barrier Options
e Put: Provides the right to sell an asset if the barrier condition is met.
e Call: Provides the right to buy an asset if the barrier condition is met.
e Payoff for put:

max (K — St), if the barrier condition is met

0, otherwise

f(ST):{



e Payoff for call:

max(Sp — K), if the barrier condition is met

0, otherwise

f(ST):{

3. Lookback Options

e These options depend on the maximum or minimum price of the underlying
during the option’s life.

e Call (Floating Strike): f(S7) = St — minyep 71 S(t)
e Put (Floating Strike): f(S7) = max;ejor) S(t) — St
o Call (Fixed Strike): f(St)
e Put (Fixed Strike): f(S7) = max (K — minye(o 7 S(),0)

max (maxte[o,T] S(t) — K,0)

Multi-Asset Options
These options depend on multiple underlying assets rather than just one.
1. Basket Options
e These depend on the weighted average price of multiple underlying assets.
e Call: f(S7) =max (>, w;S;(T) — K,0)
e Put: f(Sr)=max (K — 1, w;S;(T),0)

e Here, w; are the weights of the assets in the basket, S;(T) is the price of the
i-th asset at maturity, and K is the strike price.

2. Rainbow Options

e Rainbow options involve multiple underlying assets and often focus on the best
or worst-performing asset.

e Call (Best Asset): f(S7) = max (max;=1 ., Si(T) — K,0)
e Put (Best Asset): f(Sr) = max (K — maxi_1,._, S(T),0)
e Call (Worst Asset): f(S7) = max (min;—; ., Si(T) — K, 0)
e Put (Worst Asset): f(St) = max (K — min;—;,__, S;(T),0)

2.2.2 Black Scholes Model and Analytical Pricing

The Black Scholes model, introduced in 1973 by Fischer Black and Myron Scholes, provides
a good analytical tool for pricing European options. It assumes that the underlying asset
follows a GBM with constant volatility, drift, and no arbitrage opportunities. The price of
a European call option is given by:

C = So®(dy) — Ke " ®(dy),

N 1 (S/ ) ( 2/) T
n(op K)+ (r+04/2)T
dy = s do=d —(Jf,
1 \F 2 1




and ® represents the cumulative distribution function of the standard normal distribution.
The price of a European put option can be derived using put-call parity.

However, the assumptions of the Black Scholes model make it unsuitable for more complex
options like Asian, barrier, or lookback options. These limitations lead to the need for
numerical methods. [10][8]

2.2.3 Exact Model for Barrier Option

We consider the Black Scholes model where the underlying asset follows a GBM. The
closed-form solution for an up-and-out barrier call option with spot price S, strike K,
barrier B, maturity T, risk-free rate r, and volatility o is given by:

UO_Barrier(S, T, K, 7,0, B) = S(A; + As) — e " K (A3 + Ay)
where:

B lnz—l—(r:l:%a2)T

dy(z) = T

oo (3)) (e (2)

wo{e (3))+(o 3
()

()2 (- ()]

Here, ®(-) denotes the cumulative distribution function of the standard normal distribution.
This formula will be used to compare the estimated price!

2.2.4 Other Common Pricing Models
Stochastic Volatility Models

Stochastic Volatility Models extend the Black—Scholes framework by modeling volatility as
a separate random process. This approach captures observed market phenomena such as
volatility clustering and the implied volatility smile, at the cost of increased computational
complexity [25].

e Description: The underlying asset price follows an SDE with an additional SDE
controlling volatility.

e Pros: More realistic, can fit market option prices better.

e Cons: Additional state variables => more complex to simulate.

2.2.5 Numerical Techniques
Binomial Tree Method

A popular numerical approach for pricing options is the binomial (or lattice-based) tree
method. The idea is to discretize time into small steps, and at each step, the underlying
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price can move “up”’ or “down” with specified probabilities. Figure 2.2 shows a simple
example with three time steps.

e Use Case: Particularly useful for American or path-dependent options that require
early-exercise checks at discrete times.

e Limitations: Can become computationally large in high dimensions or with many
time steps.

FiiH —d
p =
u-d
-\"II L
U= E-’”
d —iF N

Figure 2.2: Visualization of a binomial tree for 3 time steps. (Source: Wikipedia)

Finite Difference Methods

Finite difference methods are another numerical approach for solving the underlying partial
differential equation(s) (such as the Black—Scholes PDE). They discretize both time and
space (the price dimension) into a grid. |7]

e Algorithmic Idea: Approximate derivatives aa—szz,%, and % via difference quo-
tients.

e Pros: Structured PDE-based approach, often quite accurate for lower dimensional
(1D or 2D) problems.

e Cons: The computational grid grows quickly with dimension, making it impractical
for many-underlying (high-dimensional) options.
2.2.6 Monte Carlo Simulation for Option Pricing

Monte Carlo simulation is a powerful numerical method that estimates the value of options
by simulating a large number of possible paths for the underlying asset. Unlike analytical
solutions, MC methods are highly flexible and can accommodate path-dependent options,
multiple underlying assets, and stochastic volatility.

Monte Carlo methods are particularly useful for:

e Path-Dependent Options: Options like Asian or lookback options depend on the
history of the underlying asset’s price, which is easily captured through simulation.

11



e Multi-Dimensional Problems: Basket and rainbow options involve multiple underly-
ing assets, making analytical solutions infeasible.

e Flexibility: The method is highly adaptable to different models, including stochastic
volatility and jump-diffusion models.

2.2.7 Pricing Techniques for Specific Options
For the different types of options, the following approaches are commonly used:

e European Options: For plain European options under the Black—Scholes assump-
tions, the Black—Scholes formula provides an analytic price. MC will converge to the
same result but is typically unnecessary when a closed form solution exists[3] [11].

e American Options: An American option can be exercised at any time before expiry,
which invalidates the closed form Black—Scholes formula. Thus, pricing American
options usually relies on numerical methods. MC methods or lattice approaches (e.g.
a binomial tree) are commonly used to handle the early exercise feature|6] [21].

e Barrier Options: Barrier options pay off depending on whether the underlying asset
price crosses a predetermined barrier level during the option’s life. MC simulation
can price barrier options by tracking the underlying path and checking the barrier
condition at each time step. (Finite-difference methods or analytical formulas exist
for some simple barrier contracts, but in complex cases simulation is needed)[22][8]

e Asian Options: Asian options depend on the average price of the underlying asset
over a period of time. MC simulation naturally accommodates this by averaging the
prices along each simulated path and then computing the payoff accordingly|[16].

e Lookback Options: Lookback options have payoffs based on the maximum or mini-
mum asset price attained during the option’s life. MC can capture this by recording
the extremal values along each path and evaluating the payoff from those extrema|9].

e Basket and Rainbow Options: These options involve multiple underlying assets rather
than just one. For example, a basket option’s payoff might depend on a weighted
average of several asset prices, whereas a rainbow option’s payoff could depend on
the best or worst performer among the assets. In general, closed form solutions do
not exist for multi asset options, so MC simulation is often the method of choice
for pricing them. It can readily handle the high-dimensional integration required for
basket and rainbow payoffs, albeit with increased variance|32][4].

2.2.8 Advantages/Disadvantages of Monte Carlo over Other Pricing Mod-
els

While the Black Scholes model is central in financial engineering, it falls short for options
with features like path dependency or multiple underlying assets. Monte Carlo methods
overcome these limitations by directly simulating the dynamics of the underlying assets,
offering;:

e Realistic Modeling: Ability to incorporate more sophisticated models for asset dy-
namics, such as stochastic volatility or jump processes.

e Broad Applicability: Effective for a wide range of options, including exotic options
that cannot be priced analytically.

12



e Accuracy: Low accuracy with sufficient computational resources and variance reduc-
tion techniques like antithetic variates and control variates.

Monte Carlo simulation provides a robust and flexible framework for option pricing, making
it a key tool for complex financial instruments in modern risk management and financial
engineering. This is the reason why Monte Carlo methods will be used in this project.

2.3 Challenges with Monte Carlo

The standard MC have certain challenges when it comes to computational cost and accu-
racy. Thus, MC is usually only used for problems in high dimension when other methods
are worse.

2.3.1 Computational cost

The convergence rate of standard MC methods is primarily derived from the Law of Large
Numbers and the Central Limit Theorem. Given an expectation of the form:

I=E[f(0)) = [ ol (2.14)

where X is a random variable drawn from a probability density function p(z), the MC
estimator is given by:

1 N
Iy = > 7%, (2.15)
=1

where X1, Xo,..., Xy are independent and identically distributed (i.i.d.) samples from
p(z). By the Strong Law of Large Numbers (SLLN), it follows that:

lim In=1, as (2.16)
N—o0
To analyze the convergence rate, the error is defined as:
ey =1—1Ix. (2.17)

Applying the Central Limit Theorem, the asymptotic distribution of the error is ob-
tained:

VN(Iy — 1) % N(0,02), (2.18)

where 02 = Var(f(X)). This result indicates that the standard deviation of the error
is:

E[|Ix — I)?]"/? = O(N~Y/?). (2.19)

Thus, the convergence rate of standard MC methods is O(N~'/2). This implies that to
reduce the error by a factor of 10, one must increase the number of samples by a factor of
100 [19].

2.3.2 Accuracy

In general, it is inevitable that a MC simulation will be incorrect compared to the true
value, the question is how wrong will the estimation be. There is a lot of different ways to
measure accuracy, and this subsection will discuss Mean Square Error (MSE), Confidence
Intervals and Variance Estimation.
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Mean Square Error

The accuracy of a MC estimator is commonly measured using the Mean Squared Error
(MSE), defined as:

MSE(Iy) = E[(Iy — I)?] = Var(Ix) + (E[Iy] — I)?. (2.20)

Since the MC estimator is unbiased (i.e., E[Ix] = I), the bias term vanishes, leaving:

0.2

MSE(Iy) = .

(2.21)

where o2 is the variance of the underlying function values. This implies that the error
decreases at a rate of O(N~1/2) as established above.

Confidence Intervals

A key feature of MC methods is the ability to construct confidence intervals for estimated
quantities. By the CLT, the distribution of the MC estimator approximates a normal
distribution for sufficiently large N:

VN(Iy — 1) % N(0,02). (2.22)
This allows us to construct a confidence interval for I at a confidence level of 1 — o

o

IN:EZO‘/Z\/iﬁ’ (223)
where 2,9 is the standard normal quantile corresponding to the chosen confidence level
(e.g., 1.96 for a 95% confidence interval).

Variance Estimation

2

To use confidence intervals in practice, the variance ¢° must be estimated. A common

estimator for the variance is the sample variance, given by:

N
oN = ' (f(X:) — In)>. (2.24)

Using this estimate, the confidence interval can be rewritten as:

oN
Iy +£1.96——. 2.25
VN (229)
This provides a probabilistic estimate of the error, making it a crucial tool in practical
applications|19].

2.4 Generating Random Numbers

Random number generation is a fundamental component of computational methods used
in finance, physics, and engineering. One of the most important aspects of MC methods
are the random numbers that are generated which drives the simulations. The quality of
a MC simulation is highly dependent on the properties of the underlying random number
generator[8].
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2.4.1 General Setting

A pseudo-random number generator (PRNG) is a deterministic algorithm that produces
sequences approximating truly random numbers. The simplest PRNGs use a linear con-
gruential generator (LCG), which follows the recurrence relation:

Up = (aUp—1+b) modm (2.26)

where a,b, m, and an initial seed Uy define the sequence. These numbers are uniformly
distributed in [0, 1] and can be transformed to follow other distributions as needed |[5].

2.4.2 Skipping Ahead in PRNGs

One challenge with PRNGs is efficiently jumping ahead in the sequence, which is important
for parallel computations. Instead of iterating through all steps, matrix exponentiation
techniques allow direct computation of the state at step n:

Up = (a"Up+c) modm (2.27)
where ¢ is precomputed based on modular arithmetic. This enables efficient division of
PRNG sequences among multiple computing nodes which is crucial for large scale MC
simulations [5].

2.4.3 Inverse Transform Method

The Inverse Transform Method is a fundamental approach for generating random variables
from non-uniform distributions. It relies on the fact that if U ~ U(0, 1), then the random
variable:

X =F1U) (2.28)

follows the desired distribution F'(z), provided F(x) is continuous and invertible. This
method is particularly useful for generating exponential and normal distributions [5].
2.4.4 Acceptance-Rejection Method

The Acceptance-Rejection Method is an alternative when the inverse CDF is difficult to
compute. It involves:

1. Sampling Y from an easy-to-sample proposal distribution g(y).

2. Computing an acceptance probability: p = f(Y)/(Mg(Y)), where f(y) is the target
density function and M is a bounding constant.

3. Accepting Y with probability p, otherwise repeating the process.
This method is often used for distributions with complex shapes that are difficult to sample
from directly [5].
2.4.5 Generating Multivariate Normals
Generating multivariate normal random vectors X ~ N (u,X) is done by:
1. Sampling a standard normal vector Z ~ N (0, I).

2. Transforming it using the Cholesky decomposition of the covariance matrix ¥ = LLT,
so that:
X=LZ+p (2.29)
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This ensures X has the desired mean p and covariance Y. This technique is widely used
in financial risk modeling and portfolio simulations [5].

2.5 Error Reduction Techniques

As established in section 2.3, there exists some issues with standard MC simulations in
terms of computational cost and accuracy. One solution to this problem is to use Variance
Reduction Techniques (VRT)|[27].

2.5.1 Quasi Monte Carlo (QMC)

Quasi Monte Carlo is, compared to the standard Monte Carlo method, a deterministic
alternative. It uses low-discrepancy sequences instead of random sampling which fills the
sample space more uniformly and thus reduces the variance. [12]

For QMC the convergence rate is generally O(N~!). Although there are ways to achieve
better convergence rate. For functions of bounded variation the theory shows that a con-
vergence rate of O(N ~!log® N), where s is the dimension, is possible. However, it is possible
to improve the convergence rate even further by introducing additional smoothness param-
eters or techniques like scrambling, higher-order digital nets and lattice rules. Thus, the
convergence rate (if using some of the mentioned parameters/techniques) is O(N 7%logs N)
and can get as high as O(N~2). Lastly, if Randomized Quasi Monte Carlo (RQMC) is

used, the convergence rate can get as high as O(N_%) [18].

2.5.2 Low-Discrepancy Sequences

Low-discrepancy sequences (LDS) play a crucial role in QMC methods because it offers
a deterministic approach to numerical integration and simulation. Unlike pseudo random
numbers which may exhibit clustering and irregularities low-discrepancy sequences are
designed to be well distributed over the unit hypercube. The effectiveness of QMC methods
in reducing variance is largely determined by the properties of these sequences.

Let Uy,...,Un be ii.d. vectors, each uniformly distributed in the D-dimensional unit
hyper-cube. Then the MC estimator for the integral:

W = / h(u) du.
[0,1)P

becomes:

The discrepancy is defined as:

D((ui)1<i<n) = sup
o E=[0,t1)xx[0,tp)

N D

1

Nzl{“@} — VOL(E)|,  VOL(E) = [] t-
=1 k=1

=

The famous Koksma—-Hlawka inequality provides a deterministic error bound:
Vo —Vo| < V(h) D({Ui}i<n),

where
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e V(h) is the variation of the integrand h (hard to alter), and

e D(-) is the discrepancy of the point set, i.e. a quantitative measure of how evenly the
points cover the hyper cube.

A fundamental justification for the use of low-discrepancy sequences is provided by the
Koksma-Hlawka inequality, which establishes a bound on the integration error based on
the discrepancy of the sequence and the variation of the integrand. The discrepancy of a
sequence quantifies how evenly it covers the domain, with lower values indicating better
distribution properties. For a given s, the best achievable order of the discrepancy is
O(N~tlog®N), a characteristic feature of low-discrepancy sequences|30].

There exist many families of low-discrepancy sequences, including Halton, Faure, Nieder-
reiter, and Sobol’ sequences, each with distinct construction methods and efficiency in
high-dimensional settings. Among these, Sobol’ sequences is the most widely used due
to their adaptability, superior numerical properties, and effectiveness in high-dimensional
applications [1].

Sobol’

Sobol’ sequences are a widely used low-discrepancy sequence in QMC methods and one of
the most common low-discrepancy within the finance sector.

A key advantage of Sobol” sequences in option pricing is their ability to improve conver-
gence rates compared to standard MC sampling. By using deterministic sequences with low
discrepancy properties, they achieve faster error reduction, making them effective for pric-
ing high dimensional derivatives. This efficiency is particularly relevant when estimating
Greeks, where variance reduction is crucial for accurate sensitivity analysis.

Compared with pseudo-random sampling the variance of a QMC estimator built on Sobol’
points drops at close to O(N~1) rather than O(N -1/ 2). In option pricing, where hun-
dreds or thousands of Gaussian variates may be required per path, that faster convergence
translates into huge CPU savings.

A single Sobol’ draw delivers a full vector of uniform variates u® = (ugi), e ,u((ii)) €
[0,1]¢, whose length d is chosen to equal the number of random numbers required for one
simulation path (typically the number of time steps or factors in the model). In practice
the Sobol” generator is most uniform after every base-2 extension, so practitioners run with
N = 2F points and usually drop the very first point (the all zero vector). The effective
path count is therefore Npaths = 2% — 1, a choice that (i) avoids a degenerate zero shock
on the first path and (ii) guarantees the lowest possible discrepancy for every prefix of the
sequence, leading to the tightest error bands in QMC tests [30].

(d))

Sobol’ is not one monolithic list of D-vectors. It is D separate sequences (z; ’ );>o with each

xgd) € (0,1). Taking the i-th element from every coordinate produces the i-th D-vector.
If an application later needs a higher dimension D’ > D, the first D coordinates remain
unchanged which means no regeneration required.

Each coordinate maintains an unsigned 32-bit integer state ygd) € {0,...,2% — 1} and
scales it to the unit interval via:

@

it 932

€ (0,1). (2.30)
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For every axis d pre-compute 32 direction numbers Dngd), k=0,...,31. Let J; be the
index of the right-most zero bit in the binary representation of i. Starting from y((]d) =0
the update rule is

d d d
yh = @ DN, (2:31)

where @ denotes bit-wise exclusive-or. In practice, the pair (y(()d), a:éd)) = (0,0) is skipped,
so simulation begins with index ¢ = 1. Because XOR is associative and a single CPU
instruction, the cost of producing the next point is negligible.

Direction number DN, ,gd) flicks in and out of the state every points (DNy every two
points, DNy every four points, DN, every eight points, and so on). Thus the first 2* points
realise all 2¥ combinations of the first k direction numbers exactly once. That property
explains the sequence’s extremely low discrepancy. A schematic of the first sixteen integers
on one axis is often shown to illustrate the pattern [30]:

2k+1

1 | DNO DN1 DN2 DN3 ‘ resulting y

0 0 0 0 0 0

1 1 0 0 0 DNO

2 1 1 0 0 DNO+DN1

3 0 1 0 0 DN1

4 0 1 1 0 DN1+DN2

) 1 1 1 0 DNO+DN1+DN2
6 1 0 1 0 DNO+DN2

7 0 0 1 0 DN2

8 0 0 1 1 DN2+DN3

Additionally, techniques like scrambling can be applied to Sobol’ sequences to further
improve their performance. Scrambling introduces controlled randomness, lowering the risk
of bias while preserving the low discrepancy properties, which is beneficial when dealing
with discontinuous payoff functions common in financial derivatives [1].

2.5.3 Bias-Variance Tradeoff

When applying MC methods for option pricing, particularly with work reduction or approx-
imate modeling, there is a risk of introducing bias to reduce computation time. According
to [31], such techniques can lower the cost per simulated path (and thus allow more paths
under a strict computational budget), but may introduce small systematic errors. In these
cases, the total estimation error is better measured via the mean squared error (MSE),

which accounts for both the variance Var(f) and the squared bias (Bias(f))?:

MSE({) = Var(d) + (Bias(9))”. (2.32)

[31] also points out:

e Standard MC estimators for option pricing are usually unbiased when the underlying
stochastic model is discretized finely enough, making variance the main source of
error.

e Approximate models (such as fewer time steps, simplified factor structures, or cheaper
function evaluations) can introduce a small bias. However, the overall MSE can
still decrease if the variance reduction (through faster runs or larger sample sizes)
outweighs the added bias.
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e In high-dimensional or frequently repeated simulations (daily pricing, risk manage-
ment etc), accepting slight bias for a notable reduction in variance often gives lower
MSE overall.

As shown in [31], short-cutting computations such as employing fewer simulation steps,
using partial factor models or adopting simplified function approximations can be justified
if the resulting bias remains small enough that mean squared error still beats that of a
fully accurate but high variance simulation.

Low Variance High Variance

Low Bias

High Bias

Figure 2.3: Illustration of Bias/Variance

2.6 Stochastic Volatility Models for Option Pricing

Until now, processes with a constant volatility has been discussed. However, there exists
better ways to model the future price of an asset. In a stochastic volatility model, not just
the evolution of the prince is random but the volatility itself varies randomly throughout
the time. This allows for a more realistic model when pricing financial derivatives [8].

2.6.1 Heston Model

One of the most common stochastic volatility models is the Heston model. It is designed
to overcome the constant volatility assumption of the Black Scholes framework|15].

Model Setup

Under the Heston model, the price process S; and its variance V; are modeled by two
stochastic differential equations (SDEs):

dS; = pSpdt + /V, Sy dw®, (2.33)
AV, = k(0 — V) dt + oy /V,dw"), (2.34)

and their correlation is:
aw ' aw V) = pat. (2.35)

[15] also states the following results regarding the Heston Model:
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e The Heston model allows volatility to be both random and mean-reverting which is
capturing key empirical phenomena (implied volatility smiles/skews).

e Calibration of the model typically reveals that the correlation p is often negative,
reflecting the "leverage effect" (volatility tends to increase after price drops).

e Compared to the Black Scholes model, the Heston model is better at fitting market
option prices across strikes and maturities, but it has more parameters and compu-
tational overhead.

2.6.2 Constant Elasticity of Variance Models (CEVM)

The Constant Elasticity of Variance model is a one-dimensional diffusion process for an
asset price S, where the instantaneous volatility is a power function of the price:

o(S) = aS”, (2.36)

with @ > 0 as the volatility scale parameter and [ the elasticity parameter. Under this
specification, the asset price S; follows the SDE

dS; = pSpdt + a S/ dB,, (2.37)

where B; is a standard Brownian motion and g is the drift term (which may be taken
under the risk-neutral or real-world measure, depending on the application).

2.7 Brownian Bridge Construction

A convenient and instructive way to generate a Brownian Motion path on [0, 7] is via the
Brownian Bridge (BB) Construction. The key aspects of this method is to build the path
level by level, progressively “filling in” midpoints and ensuring that, at each stage, the
joint distribution of the constructed process at sampled times matches that of standard
Brownian Motion|2].

Intuitively, the bridge samples the most influential points first: starting with the two
end-points Wy and Wr; next the mid-point Wy, is drawn, then the quarter-points Wy, War /4,
and so on, halving every remaining interval at each stage. This dyadic refinement orders

the variance contributions so that the early Gaussian shocks explain the bulk of the path’s
variability, while later shocks merely add fine detail. Feeding these successively less- impor-
tant shocks into the higher Sobol’ dimensions aligns the Brownian path’s variance hierarchy
with the discrepancy profile of the low-discrepancy sequence and is the main reason the
Sobol+Bridge combination is so effective for barrier and lookback options [8].

Step 1: Setup of Dyadic Time Intervals

Fix a final time 7' > 0. For each integer n > 0, partition the interval [0, 7] into 2" dyadic

intervals of equal length
At — T
tn, = on
Specifically, let
thy = kAL, k=0,1,...,2",
so that
T T

In,k‘ — [tn,k‘a tn7k+1] == |:k’2n, (]€+1) 2’”:|, k:O,1,72n—1
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Going from level n to level n + 1 subdivides each interval I,, ; exactly in half:

Ini = Lnyi2k U Iy 2k41,

where each new interval at level n + 1 has length At,, 11 = T/2"1[2].

Step 2: Iterative Construction of the Path

It is constructed, level by level, an approximate Brownian Motion {W,,;} on the dyadic
points {t, 1}, ensuring that the values match the correct finite dimensional distributions.
Level 0. Set

W()’o =0 and W()7T = \/TZ(),

where Zy ~ N(0,1).

Filling midpoints. For each interval I, at level n, with endpoints ¢, and t, r41,

Wt s and Wy, tngir AT€ already know. Define the midpoint

1
Mnk = 5 (tn,k + tn,k—‘rl) = tn,k + Athrl-

Wn7 tn,k + Wn7 tn,k+1 Atn+1
Wi, m,,, = 2 + > L1, 2k+15

where {Z,, 11 2k+1} are i.i.d. standard normal variables, independent of all previously used
random variables.

It is sampled

Brownian Bridge Conditional Formula

Given two time points t; < tg and the values of Brownian motion at those points, W (t1) =
wy and W (t2) = wa, the Brownian Bridge provides the distribution of W(t,,) at the
midpoint t,, = %

By the properties of Brownian Motion, the conditional distribution of W (t,,) given its
values at the endpoints is Gaussian with:

e Mean (linear interpolation):

t2 - 75m tm - tl
w1 w
tg — 1 tQ — 1

E[W(tm) | W(t1) = w1, W(t2) = wa] = 2

e Variance (quadratic interpolation):

(tm - tl)(t2 - tm)
to — 11

Var[W (tp) | W(t1), W(t2)] =

Sampling from this conditional distribution is implemented as:

W(ty) = 02 [ =02 tn) /o g 1),
2 ts— 1

This expression is used recursively in the Brownian Bridge construction to sample mid-

points of each interval, refining the path while maintaining consistency with the distribution
of Brownian Motion.
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Next level. Once the midpoint of every interval at level n is set, we have specified
{Whi1,t,,1,,} Oon a finer grid of size 27+ 4+ 1. This procedure is repeated to advance from
level n + 1 to level n + 2, thus obtaining increasingly refined piecewise linear paths that
converge to a Brownian Motion in the limit |2].

Barrier crossing between monitoring dates

Consider an up-out barrier at level B (in log-space b = In B). Let X; = InS; be the
log-price, and suppose that at two consecutive monitoring times ¢; < t;+1. We have
X; = Xy, < band X;41 := X, <b. Conditionally on these end-points, {X;}s,<i<¢;,,
is a Brownian bridge with variance parameter 0?At, At = t;;1 — t;. By the reflection
principle the exact probability that this bridge ever reaches the barrier in the open interval

(tistit1) is

2(b—X;) (b—X;
Phit = eXP(* ( aé(At +1))~

Simulation rule. At every step one extra uniform variable U ~ U(0,1) is drawn. If

both end-points stay below the barrier the path is declared knocked out whenever U <

Phit. For numerical stability the implementation compares In U with the log-probability
2 (b—X;) (b—Xi11)

—=—5A; —, avoiding underflow when the exponent is large in magnitude.

This additional Bernoulli test is the only place where an extra random number is consumed
relative to a plain Euler discretisation and is crucial for obtaining an unbiased estimate of
the barrier option price.

2.8 Discretization Methods

Monte Carlo simulations rely on numerical approximations of SDEs to model the evolution
of asset prices over time. Since exact solutions to these equations are often unavailable,
discretization methods become essential for practical implementations.

2.8.1 Euler-Maruyama method

The Euler-Maruyama method is a fundamental numerical method for simulating solutions
of SDEs. Consider an SDE of the form:

dX(t) = f(t, X (1)) dt + g(t, X (t)) AW (), (2.38)

where W(t) is a standard Wiener process. By discretizing time into steps of size 7, with
Wiener increments approximated as AW, ~ /7N (0,1), the Euler-Maruyama method
iterates according to

Xng1=Xp + Tf(tna Xn) + g(tna Xn) AW, (239)

This method is the stochastic analog of the standard Euler method used for ordinary
differential equations which is obtained by approximating the deterministic integral via
the left-point rule and using a similar approximation for the stochastic integral.

Theorem (Strong Convergence of Euler-Maruyama). Suppose the drift f and dif-
fusion g in the SDE

dX(t) = f(¢, X(t))dt + g(t, X(t)) dW ()
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are globally Lipschitz, among other regularity conditions. Then the Euler-Maruyama ap-
proximation X, converges to the true solution X with strong order % Concretely, there
is a constant C' (independent of the step size At) such that

NO|—=

(B X(t) - Xal?)? < C(A0)3,

meaning the pathwise (strong) error scales like vV At [17].

Despite its simplicity, Euler-Maruyama has only a strong order of convergence of %, mean-
ing that the pathwise error scales as O(y/7).

Theorem (Weak Order of Convergence). A discretization scheme is said to have
weak order of convergence 8 > 0 if there exists a constant C such that for all sufficiently
smooth test functions f,

E[f(Xa)] = E[f(X(ta)]] < C(A1)°

for all sufficiently small step sizes At [8]. Here, the set of test functions f typically consists
of functions whose derivatives up to order 23 + 2 are polynomially bounded. However, its
weak order of convergence is often 1, making it particularly useful for applications where
expected values, such as option prices in financial models, are of interest.

In mathematical finance, the Euler-Maruyama method is commonly applied to simulate as-
set price variations under models such as Black Scholes and Heston. For instance, applying
the Euler discretization to the Black Scholes SDE:

dSt = T‘Stdt + O'Stth, (240)
yields the discrete update rule:
Stir =St + 1S+ O'St\/;Z, (241)

where Z ~ N(0,1). Similarly, for stochastic volatility models like Heston’s, additional
modifications are required to prevent negative variance values, such as full truncation or
reflection schemes.

While the Euler-Maruyama method is widely used due to its computational efficiency, it
has some limitations. For instance, it tends to introduce bias in the simulation of processes
with multiplicative noise or nonlinearity, thus requiring careful step size selection to main-
tain accuracy. Furthermore, in models with significant stochasticity, higher-order schemes
like the Milstein method can offer improved convergence without substantial increases in
computational cost.

Despite these drawbacks, the Euler-Maruyama method remains a go-to approach for simu-
lating stochastic processes, especially in finance and other applied fields where approximate
solutions suffice. [14][29].

2.8.2 Milstein Scheme

The Milstein scheme is a discretization technique for stochastic differential equations
(SDEs) that improves upon the simpler Euler scheme by adding a correction term derived
from Ito’s lemma. It is particularly useful for SDEs whose diffusion coefficient depends on
the state variable, as it helps reduce the local discretization error compared to Euler.
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Consider an SDE of the form:
dS; = (I(St)dt + b(St)th, (242)

where a(S;) and b(S;) may depend on S; (but not explicitly on t¢), and W is a Brownian
motion. The integral form is:

1+ AL t+ AL
St+at = St +/ a(Ss)ds —|—/ b(Ss)dWs. (2.43)
¢ t

The Milstein scheme improves compared to Euler by expanding b(S;) via Ito’s lemma and
keeping a mixed Brownian term (i.e., the dW;dW; term). This generates an additional cor-
rection factor that accounts for how b(.S;) itself changes with S;. To derive the expression,
first apply an Ito expansion to b(S;). This effectively gives:

db(Sy) = (b’(St)a(St) + ;b”(St)(b(St)P) dt + H(S,)b(S,)dW,, (2.44)

where b’ and b” are the first and second derivatives of b with respect to S. The Milstein
discretization for a single time step At then becomes:

1
Siyne = Sy + a(Sy) At + b(S))VALZ + §b(St)b’(St)At(Z2 —1), (2.45)

where Z ~ N(0,1). The extra term £b(S;)b'(S;)At(Z? — 1) is the correction that distin-
guishes Milstein’s method from Euler’s.

Euler Scheme:

St—l—At =S+ a(St)At + b(St) VALZ. (246)
Milstein Scheme:
1
Siine = Sp + a(Sy) At + b(S)VALZ + 5b(@g)b’(st)m(z2 —1). (2.47)

While the Euler scheme is simpler, the Milstein scheme has higher strong-order accuracy
when b(S;) is not constant (i.e., truly depends on S;)[29].

2.8.3 Long Jump

In the context of simulating asset price paths under the risk-neutral measure, the Geometric
Brownian Motion (GBM) model assumes that the logarithm of the asset price evolves
as a Brownian Motion with drift. Specifically, for time steps ¢; < t;11, the conditional
distribution of the log-price log S(t;+1) given log S(¢;) is normally distributed:

1
log S(ti—i-l) = 10g S(tl) + (7" - 20'2> (ti+1 - tl') +o ti+1 — ti . ZZ', Z7, ~ ./\/‘(07 1),

which corresponds to formula (3.22) in [§].

This formula provides an exact simulation scheme for GBM by using the closed form
solution of the SDE. Unlike approximate methods such as Euler-Maruyama, it introduces
no discretization error. Since GBM has independent, normally distributed log increments,
the process can be simulated exactly at any discrete time grid.
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This exact scheme is particularly important for simulating path-dependent options such
as barrier, where precise modeling of the path’s evolution is critical to detecting barrier
crossings or extrema.

In this report’s implementation, the formula is used to evolve the log-price log S(t) at each
time step in both standard MC and QMC simulations, with or without BB construction.
It corresponds to the following SDE under the risk-neutral measure:

dS(t) = rS(t) dt + oS(t) AW (¢),

whose solution is:

S(t) = S(0) exp <<r _ 20—2) ty aW(t)> .
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3. Methodology

This chapter describes the empirical and analytical procedures adopted to answer the thesis
research questions. Firstly, a preliminary literature study conducted before the research
questions were finalized, was done. Secondly, the developer environment was introduced
and required some time to learn. Lastly, when the environment was mastered, the study
was conducted and the results were analyzed.

3.1 Previous Research

The study began with the published book [8] which, according to my supervisor, is "the
bible of Monte Carlo in Financial Engineering". The theoretical foundations and practical
considerations of MC methods in finance are comprehensively addressed in Glasserman’s
seminal work. The text introduces both the mathematical foundation of MC estimation and
a broad set of variance reduction techniques designed to improve efficiency. These include
control variates, antithetic sampling, importance sampling, and stratified sampling. For
path dependent options, such as barrier options, Glasserman places particular emphasis on
the utility of Brownian bridge constructions for improving sampling efficiency and reducing
effective dimensionality.

One of the most important limitations of standard MC is its slow convergence rate, typically
O(N -1/ 2). This has led to growing interest in QMC methods, which replace pseudo random
numbers with low-discrepancy sequences such as Sobol’ or Halton, in order to achieve a
more uniform coverage of the sample space. While QMC is not guaranteed to outperform
MC in all cases, studies such as those by Paskov and Traub [24] and Papageorgiou and
Traub [23] have shown that for many financial problems, especially when combined with BB
or principal component techniques, QMC methods can significantly outperform standard
MC in both accuracy and efficiency.

More recently, empirical research has focused on applying QMC methods to complex deriva-
tive pricing problems. For example, Wang and Caflisch [33| demonstrated that QMC
combined with effective dimension reduction strategies performs well for various types of
barrier and Asian options. Lemieux [20] has also provided a detailed overview of how QMC
methods can be adapted and optimized for high-dimensional financial applications.

In the context of this thesis, these prior contributions serve as a foundation for the em-
pirical investigation. The aim is not to develop new simulation techniques, but rather
to benchmark and compare the performance of standard Monte Carlo, QMC, and hybrid
methods (blending QMC and MC) across different parameter regimes relevant to barrier
options. By systematically varying inputs such as strike, barrier level, and volatility, the
study evaluates the stability, accuracy, and convergence behavior of each method. In par-
ticular, it seeks to determine the practical benefits of combining QMC with Brownian
bridge in a modern pricing environment such as Quantlab.
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3.2 The Development Environment: Qlang

3.2.1 What is Qlang?

Qlang is a specialized environment for quantitative finance simulations. It provides
e Built-in random number generators (e.g., rng, sobol_gen),
e Charting functionalities for plotting error curves or paths,
e Specialized data types like vector (number), point_number, etc.

These features allow for straightforward MC and QMC implementations and easy financial
calculations.

3.2.2 Why Qlang?

Qlang was provided by Algorithmica Research AB, and it has built-in library features for
quick Sobol sequence generation, convenient random number streams and an interactive
environment that makes both coding and plotting convenient. This integration streamlines
the workflow compared to using a generic language, where one might need to import
multiple external libraries for random numbers, charting, and data structures. Also the
employee’s at Algorithmica has great knowledge about the language and have always helped
when necessary.

3.2.3 Key Language Constructs

Qlang uses the out function syntax to return data or produce global vector(point number)
arrays for plotting. We compile and run scripts in Qlang’s IDE, which automatically
manages chart displays when we define data in vector(point_number). The snippet
below is typical of how we define a function to produce the price of a general Geometric
Brownian motion:

out string example_qlang_function(
number rate,
number vol,
integer n_steps)

{
// Basic setup
number spot = 100;
number dt = 1.0 / n_steps; // For demonstration
rng my_rng = rng(millisecond(now()));
// We’ll do a simple Euler loop for a Geometric Brownian "price"
number current_price = spot;
for(integer i = 1; i <= n_steps; it++)
{
number Z = my_rng.gauss(); // standard normal draw
current_price *= exp((rate - 0.5 * vol * vol)*dt + vol*sqrt(dt)*Z);
}
// Print or store the final "price"
return strcat(["Final price from example_qlang function = ",
string(current_price)]);
}
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3.3 Overall Approach and Rationale

3.3.1 Focus on Monte Carlo

In this project, both standard MC and QMC is used to price Barrier Options. MC is
especially appropriate for complex or path dependent options, where closed form solutions
do not exist or are really complicated. Standard MC is flexible but can have high variance,
so it is compared to QMC approaches.

3.3.2 Choice of Error Reduction / QMC

Specifically standard MC vs. QMC with a Brownian Bridge construction for barrier paths is
tested. This bridging approach allows in between time-step barrier checks. From the code,
it’s clear that no other variance reduction methods like control variates or antithetics was
incorporate; the only focus was on QMC’s low-discrepancy properties as our main variance
reducer.

3.4 Implementation Details

3.4.1 Code Organisation

All pricing logic lives in self-contained out functions so that a single call both computes
and plots the result in Quantlab. The current project focuses exclusively on an up-and-out
barrier call. The relevant functions are:

e price_barrier_option(...) — baseline MC
e price_barrier_option_gmc_BB(...) —Sobol’QMC with midpoint Brownian bridge
e UO_Barrier(...) — used as the exact benchmark

e MC_BO_calculate_error(...) and QMC_BO_calculate_error(...) — sweep the
number of paths, store the relative/standard errors in global vector (point_number)
series for automatic plotting

e Helper routines such as buildBrownianPathMidpointFree(...) (path constructor)

The same functions, but for average absolute/relative error exists as well and have the
same construction. Each pricer takes market parameters (S, K, r, 0, T, B), discretises the
path, draws the appropriate random stream, accumulates discounted pay offs, and finally
pushes both the estimate and its sampling error to the caller.

3.4.2 Key Functions
price_barrier_option(...) — Standard MC
e Euler steps on log S; with drift (r — $6?)At and diffusion ov/At Z

e Checks the upper barrier after every step and uses the in-between crossing probability
to avoid missing hits between time points

e Returns the discounted mean, plus the usual MC standard error /v N.
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price_barrier_option_gmc_BB(...) — QMC+BB

e First d = nggsteps Sobol’ coordinates become N (0, 1) draws; any remainder (if nggeps >
d) falls back to a pseudo-random rng.

e buildBrownianPathMidpointFree generates the Wiener path on a 2" grid, concen-
trating the largest variance into the lowest Sobol’ dimensions.

e Barrier detection is identical to the MC routine, so the two estimators differ only by
their sampling schemes.

Error and plotting helpers Both MC_BO_calculate_error and QMC_BO_calculate_error
loop over an increasing path count, calling the corresponding pricer,computing

rel _error = 100 x “7 — Vexact ‘/Vexaet, std _error =& e_TT/\/N,

and pushing those points to MC_BO_Error_plot, QUC_BO_Error_plot and their standard-error
companions. Quantlab then renders the plots automatically when the user calls
show_MC_BO_Error_plot() or the QMC companion.

3.4.3 Random Number Generators
e Pseudo-random: rng my_rng = rng(millisecond(now()));

e Sobol’: sobol_gen s = new sobol_gen(n_gsteps, skip); produces one low-discrepancy
[0, 1]"a8%P$ vector per simulation path; the optional skip lets us (i) discard the
all-zero point and (ii) partition the sequence across parallel jobs.

Standard MC always uses the former; QMC replaces the whole normal stream with Sobol’
points whenever possible.

3.4.4 Brownian Bridge Path Builder

The function buildBrownianPathMidpointFree constructs a Brownian path over the in-
terval [0,77], assuming a dyadic time grid with ngeps = 2. It fills in the midpoints level
by level using Brownian bridge interpolation:

1. Set Wy = 0 and Wy = VT Zo;

2. For each refinement level £ = 0,...,n — 1 halve every open interval and sample the
midpoint with conditional mean/variance

to —m

B (m —t1)(ta — m)
oty — 1

to — 11 ’

—t
E[W,,] Wi, + ti Wi, Var[Wn] =

ta
the corresponding normal draw is pulled from the next Sobol’ (or rng) coordinate.

Because the largest variance sits in the early dimensions, feeding those dimensions with
Sobol’ points maximises the variance-reduction effect, especially for path-dependent pay-offs
such as barriers.
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3.5 Simulation Parameters and Procedure

3.5.1 Parameter Choices

In the reference case, the parameters was selected to spot = 100, time_to_maturity = 1,
strike = 100, rate = 0.02,vol = 0.3, barrier_level = 150, n_steps = 1024. These
are representative of moderate volatility and a near-the-money option.

3.5.2 Number of Steps / Paths

The number of steps are often selected to 1024 since the sobol generator in Qlang can only
handle dimension up to 1111 and the number of steps is selected as the sobol dimension.
Also, when using Brownian Bridge, the number of time partitions has to be 2™ which
means the maximum number of steps that fulfills being less than 1111 and 2" is 1024 .
The number of paths were selected within the range 1 000 - 5 000 0000.

3.5.3 Steps to Compute the Final Price

e Standard MC: Do an Euler loop, computing S; 11 = S;exp(...), sum the payoff,
discount.

e QMC + bridging: Generate a low-discrepancy vector (dimension = n_steps),
build or interpret as increments, then do the same payoff logic.

3.5.4 Output:

Finally, the estimated value is compared to the result to the up-and-out formula U0_Barrier(. ..

which can be found in the appendix.

3.6 Validation and Error Measurement

3.6.1 Reference / Exact
3.6.2 Error

For the error estimates, the relative error, standard error and average absolute/relative
error was calculated via the formulas below (all errors were presented as percentages):

lestimate — exact|

rel error = 100 x
- exact

\/(zlv Ei\il X’?) - <% Zz]\il Xi)2 et
Vi ;

std_error =

)

M
1 R
avg_abs_error = i z; )Pj — Pexact
=

-Pj - P, exact

| P exact | ’

M
100
avg rel error = Y3 z;
]:
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This gives an intuitive measure of difference.

3.6.3 Plotting

After storing errors in a vector (point_number), e.g. QMC_BO_Error_plot, Quantlab can
directly draw the points. This is how we produce the error vs. n_paths graphs.

3.7 Method/Technique Selection

This numerical study centres on four distinct simulation schemes that form a deliberate
progression from standard MC to increasingly aggressive error reduction techniques:

1. Standard Monte Carlo (MC). The baseline uses pseudo-random draws from
Quantlab’s default RNG (a Mersenne-Twister variant). Its root-mean-square error
decays at the familiar rate O(N~/2) with N simulated paths. Plain MC therefore
supplies a clear reference for both accuracy and wall-clock time.

2. Sobol’ Quasi-Monte Carlo (QMC). Replacing the pseudo-random stream with
Sobol’ low—discrepancy points gives a deterministic estimator whose error often de-
cays like O(N _1) (up to log factors) for reasonably smooth pay-offs. In Quantlab
this requires only swapping rng my_rng for sobol_gen s.

3. Mixed Quasi Monte Carlo (MQMC) In practical implementations, the dimen-
sion of the Sobol’ sequence (n_gsteps) may be smaller than the number of steps
required for a full path. In such cases, one can use quasi random numbers for the
initial steps and fall back to pseudo random normals for the remaining ones. This hy-
brid scheme keeps the most important Sobol coordinates (which influence early path
variance) and fills in less important dimensions with standard random draws. While
not fully deterministic like pure QMC, this mixed approach allows greater flexibil-
ity in path length without losing the variance reduction benefits of low-discrepancy
sampling.

4. Brownian-Bridge (BB) path construction. For path dependent contracts the
Wiener path is generated via a midpoint Brownian Bridge. This concentrates the
largest sources of variation (e.g. Wr) into the first dimensions fed by the Sobol
generator precisely where a low-discrepancy sequence is most effective. BB offers
negligible benefit to ordinary MC but dramatically sharpens QMC and MQMC for
barrier options.

3.8 Exact solutions

Quantifying convergence demands trustworthy reference prices. Therefore it was bench-
marked each contract against an analytic or value wherever feasible.

Black-Scholes is given by:
C = So®(dy) — Ke "I ®(dy),
e (S0/K) + (r + 0%/2)
In(So/K) + (r +0°/2)T
dy = . dy=dy —oVT,
1 T 2 1
and ® represents the cumulative distribution function of the standard normal distribu-
tion.
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For the up-and-out barrier call, it is known from part2.2.3 that one analytical tool for

pricing barrier options is:

UO_Barrier(S, T, K, 7,0, B) = S(A; + A) — e " K (A3 + Ay)

where:
Inz+ (r+ic?)T
di(Z) — ( 2 )
oVT

weo(u(3)) (e (3)

This is the formula that will be used!
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4. Result

This chapter provides an overview of the numerical experiments carried out for the up-and-out
barrier option. The report proceed in three stages:

1. Relative error — we contrast the convergence behaviour of the classical MC estimator
with the QMC estimator.

2. Standard error — Each sampling variability associated with each method is presented.

3. Hybrid comparison — Mixed MC/QMC schemes that combine both point sets in fixed
proportions are evaluated. Both the average absolute and average relative error for
standard MC, QMC + BB and MQMC + BB is presented for different number of
paths. MQMC will be noted as QMC(§) + MC(§) + BB to tell the reader how much
standard MC/QMC is used.

For every scheme, the average absolute and relative errors are tracked as we increase the
number of simulated paths. Unless otherwise noted, the option parameters used throughout
the chapter are

Initial spot (Sp) = 100, Time to maturity (7') = 1 year,
Strike (K) = 100, Risk-free rate (r) = 2%,
Volatility (o) = 0.30, Barrier level (B) = 150,
Number of time steps (N) = 1024.

4.1 Results for Relative Error

The figure 4.1a and figure 4.1b illustrates the relative error for a up-and-out barrier option
calculated with MC and QMC + BB. In those figures, only standard MC was compared
to QMC + BB (no mixes). In figure 4.2 and in table 4.1 one is presented will all mixes of
error.

(a) 25000 paths (b) 50000 paths

Figure 4.1: Relative Error comparison of MC and QMC + BB for different number of
paths

Table 4.1 shows a more comprehensive and accurate description of how the relative error
is decreasing for standard MC, full QMC + BB and various mixes of them.
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Table 4.1: Comparison of Relative Error

# Paths 1023 4095 65 535 131071
Standard MC 4105720520 | 4.248832785 | 0.053944089 | 0.007773378
QMC + BB 0.163848453 | 0.533267859 | 0.104012035 | 0.015467010

QMC(2) +MC(L) BB | 0.390257844 | 0.555501338 | 0.101780451 | 0.025286007

QMC(H)1MC(2) BB | 1.550280148 | 0.228725292 | 0.019372225 | 0.011387844

QMC(1) rMC(1) 1BB | 1.394432050 | 1.005823245 | 0.109312294 | 0.059531683

(a) Error analysis

(b) Error analysis (QMC)

Figure 4.2: Comparison of Relative Error for all mixes of MC and QMC + BB

Figure 4.1a and figure 4.1b shows that the relative error for standard MC are much more
stochastic compared with QMC + BB. This is especially visible for paths in the range
1000 - 10 000 where the error ranges from 1 - 20. This is also confirmed by the graphical
illustration of table 4.1 in figure 4.2. In general, the relative error is much more stable and
lower for QMC + BB for all number of paths. Although, table 4.1 tells us that beyond
50 000 paths, the relative error for standard MC, QMC + BB and mixes of them is quite

similar and little is to be gained.

4.2 Results for Standard Error

The figure 4.3a and figure 4.3b illustrates the standard error for a up-and-out barrier option
calculated with MC and QMC + BB.

(a) 25000 paths (b) 50000 paths

Figure 4.3: Standard Error comparison of MC and QMC + BB for different number of
paths

34



As can be seen, the standard error is extremely similar for the different number of paths
and thus only standard MC and QMC + BB is plotted (no mixes). Table 4.2 illustrates this
further by showing the actual numbers from the graph and also calculating the standard
error for paths up to 131 071 for all mixes of MC and QMC with the same set up as table

4.1.

Table 4.2: Comparison of Standard Error

# Paths 1023 4095 65 535 131071
Standard MC 0.289671007 | 0.152970046 | 0.037513928 | 0.026419900
QMC + BB 0.298063432 | 0.149551852 | 0.037548728 | 0.026506120
QMC(3) 1MC(3) BB | 0.296461734 | 0.149596354 | 0.037534015 | 0.026512099
QMC($)TMC(2) BB | 0.301074400 | 0.150287324 | 0.037514817 | 0.026521114
QMC(H)+MC(L) BB | 0.301002391 | 0.151106799 | 0.037513066 | 0.026496984

Since the standard error did not show the difference of performance for the different meth-
ods in a good way, it was not further investigated.

4.3 Results for Average Absolute/Relative Error

For this section, the average absolute and average relative error was investigated. The
number of paths used ranged from 1023 up to 131 071 with different number of repetitions
in order to get a stable result.

Further more, apart from analysing different mixtures of QMC, one of the 7 parameters
mentioned in the beginning of the chapter was changed in order to see how the errors
behaved.

4.3.1 No change of parameters

Here, no parameters were changed from the original setup. Table 4.3 shows the average
absolute error and table 4.4 shows the average relative error. Figure 4.4a graphically shows
what table 4.3 and 4.4 shows. Figure 4.4b focuses on the QMC-based methods.

Table 4.3: Comparison of Average Absolute Error

# Paths 1023 (5000 rep) | 4095 (1000 rep) | 65535 (100 rep) | 131071 (50 rep)
Standard MC 0.238508452 0.121330074 0.028724334 0.018395912
QMC + BB 0.030980941 0.023530574 0.004437853 0.003058924

QMC(%)+MC(%)+BB
QMC(3)+MC(3)+BB
QMC(z)+MC(%)+BB

0.031444809
0.044002675
0.048490973

0.030856222
0.020374350
0.024610722

0.004156706
0.005157272
0.005516260

0.002996619
0.004005903
0.004875970

Table 4.4: Comparison of Average Relative Error

# Paths 1023 (5000 rep) | 4095 (1000 rep) | 65535 (100 rep) | 131071 (50 rep)
Standard MC 4.863458750 2.474058274 0.585721856 0.375113571
QMC + BB 0.631736640 0.479815181 0.090492863 0.062374937
QMC(%)+MC(%)VBB 0.641195435 0.629193480 0.084759956 0.061104474
QMC(%)+MC(%)VBB 0.897264612 0.415456173 0.105162640 0.081684914
QMC(%)+MC(%)VBB 0.988786123 0.501840619 0.112482815 0.099426583
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Comparison of Avg. Absolute Error Avg. Absolute Error (QUC-based Methods)

Avg. Absolute Error (%)
Avg. Absolute Error (%)

/

(a) Error analysis (b) Error analysis (QMC)

Figure 4.4: Comparison of error analysis for the barrier option under different sampling
schemes

As shown in table 4.3 and 4.4, and further visualized in figure 4.4, both the average absolute
and relative errors consistently decrease with an increasing number of simulation paths.
However, the rate of convergence varies significantly between the methods.

Standard MC experiences the highest errors across all sample sizes. While it benefits
from more simulations, its convergence is comparatively slow. In contrast, QMC + BB
shows a much more efficient convergence. This can especially be seen in the relative error
values.

The hybrid approaches (mixing QMC and MC) offer additional insights. A 50/50 mix
performs worse compared to pure QMC for paths below approximately 65 000, particularly
in when it comes to absolute error. This suggests that the more irregular standard MC
does not improve the error. However, as the QMC proportion is lowered further (e.g.,
25% or 12.5%), the error decreases again, and surpasses the pure QMC variant for paths
below approximately 40 000 (25% QMC variant). The 12,5% variant has basically the
same pathway, but slightly higher error.

This aligns well with theoretical results suggesting that QMC methods can achieve faster
convergence under smooth integrands, and that the Brownian Bridge further improves this
effect by reducing the effective dimension of the problem.

These findings are further illustrated in the graphs: Figure 4.4a compares all methods and
is showing a clear gap between standard MC and the QMC based techniques. Figure 4.4b
isolates the QMC based methods, making it easier to see performance among the different
mixes.

4.3.2 Different Volatility o

For the results below, it was decided to lower the volatility from ¢ = 0.3 to ¢ = 0.15. Table
4.5 shows the new average absolute error and table 4.6 shows the new average relative error.
Figure 4.5a graphically shows what table 4.5 and 4.6 shows. Figure 4.5b focuses on the
QMC-based methods.
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Table 4.5: Comparison of Average Absolute Error (New Volatility)

# Paths 1023 (5000 rep) | 4095 (1000 rep) | 65535 (100 rep) | 131071 (50 rep)
Standard MC 0.239823190 0.110963014 0.033089360 0.033089360
QMC + BB 0.036665979 0.021579629 0.007135156 0.005107067

QMC($)+MC($)+BB

0.036290936

0.023891668

0.006487603

0.004085360

QMC(;)+MC(3)+BB

0.035774221

0.021710166

0.006649909

0.004073704

QMC(3)+MC(%)+BB

0.061285719

0.010486540

0.009626818

0.005111766

Table 4.6: Comparison of Average Relative Error (New Volatility)

# Paths 1023 (5000 rep) | 4095 (1000 rep) | 65535 (100 rep) | 131071 (50 rep)
Standard MC 3.653563533 1.690455456 0.504096707 0.343007413
QMC + BB 0.558584365 0.328752794 0.108699848 0.077803120

QMC(3)+MC(2)+BB

0.552870800

0.363975347

0.098834776

0.062238022

QMC(;)+MC(3)+BB

0.544998959

0.330741459

0.101307400

0.062060459

QMC(3)+MC(%)+BB

0.933651450

0.159756201

0.146658849

0.077874717
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Figure 4.5: Comparison of error analysis for the barrier option under different sampling

schemes with a lower volatility

When the volatility is reduced from ¢ = 0.3 to ¢ = 0.15, the overall magnitude of the
average relative error gets smaller across all methods, as shown in tables 4.6 compared
to when no parameters was changed. This is expected, as lower volatility results in less
uncertainty in asset paths and thereby reducing the variance of the payoff and improving
the stability of simulation results. The results for the average absolute error is that it is
slightly better compared to the reference case which can be seen in table 4.9.

The standard MC method shows the highest errors in both tables, but it still benefits
from increasing the number of paths. This can also be seen in figure 4.5a. Notably, its
relative error at 131 071 paths is reduced to ~ 0.34, compared to ~ 0.375 in the previous
reference case. Still, the convergence is slower and less efficient than that of QMC based
approaches.

The pure QMC + BB method continues to outperform standard MC across all path counts.
Its absolute and relative errors are consistently lower. For instance, at 1023 paths, QMC
+ BB achieves an absolute error of only = 0.036 and a relative error of =~ 0.55, compared
to &~ 0.24 and ~ 3.65, respectively, for standard MC.
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Hybrid approaches (QMC + MC) show mixed but generally favourable results. The 12,5%
QMC mix performs best for paths around ~ 2700 - 40 000, and then the error increases
a bit up until 65 535 paths and then decreases again. In the end, it was the second
worst performer at the highest number of paths. Interestingly, at 131 071 paths, the 25%
QMC hybrid achieves the lowest absolute and relative error of all methods (0.004073704
and 0.062060459). This suggests that combining MC’s randomness with QMC’s low-
discrepancy structure can be effective, particularly when volatility is low.

Furthermore, the benefits is basically the same with the 50/50 mix. It has slightly higher
absolute and relative error compared to the 25% and 12.5% mix in the 4095 - 65 535 range,
but still the same behaviour. 1

Figures 4.5a and 4.5b visually confirm these observations. Figure 4.5a shows the clear error
separation between MC and QMC-based methods, especially at lower path counts. Figure
4.5b focuses on the QMC variants and highlights how the relative performance of hybrids
depends on the QMC proportion: here, the 25% mix performed the best.

4.3.3 Different Barrier Level B

For the results below, it was decided to lower the barrier level from B = 150 to B = 120.
Table 4.7 shows the new average absolute error and table 4.8 shows the new average relative
error. Figure 4.6 graphically shows what table 4.7 and 4.8 shows. Here, since the average
absolute and relative error for standard Monte Carlo was so closed, it was decided that a
second graph focusing on the QMC based methods was not necessary.

Table 4.7: Comparison of Average Absolute Error (New Barrier Level)

# Paths 1023 (5000 rep) | 4095 (1000 rep) | 65535 (100 rep) | 131071 (50 rep)
Standard MC 0.050425189 0.024705049 0.006875711 0.003395763
QMC + BB 0.037173041 0.017051513 0.001078564 0.002619399

QMC(1)+MC(3)+BB

0.051319323

0.019523704

0,001445868

0.002827376

QMC(3)+MC(3)+BB

0.046025218

0.016990515

0.001843285

0.003253458

QMC(3)+MC(1)+BB

0.035279531

0.014967068

0.001985810

0.002633664

Table 4.8: Comparison of Average Relative Error (New Barrier Level)

# Paths 1023 (5000 rep) | 4095 (1000 rep) | 65535 (100 rep) | 131071 (50 rep)
Standard MC 11.720065943 5.742066729 1.598085969 0.905472128
QMC + BB 8.639937702 3.963195103 0.250684941 0.608929640

QMC(%)+MC(3)+BB

11.927884877

4.537793646

0.335757957

0.656989114

QMC(5)+MC(3)+BB

10.697403545

3.949017595

0.428425240

0.756184365

QMC(3)+MC(%)+BB

8.199839116

3.478718190

0.461551557

0.612128814
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Figure 4.6: Comparison of error analysis for the barrier option under different sampling
schemes with a lower barrier level

When the barrier level is reduced from B = 150 to B = 120, the option is knocked
out more often. This compresses the payoff distribution toward zero and produces two
opposite statistical effects, one where the absolute error falls and one that the relative
error increases.

Because most paths now deliver a zero payoff, the scale of the quantity being estimated
shrinks. For plain MC the average absolute error at the smallest grid (1023 paths) drops
from 0.238 in the reference case to 0.0504 which can be seen in table 4.7. QMC + BB also
benefits, although less dramatically, going from 0.0310 to 0.0372 at the same path count
and reaching an experiment best 0.00108 at 65 535 paths.

The true option value falls roughly in proportion to the payoff variance, so dividing by
this now much smaller price inflates all percentage errors. MC’s average relative error
therefore more than doubles, from 4.86% to 11.72%, while QMC + BB jumps from 0.63%
to 8.64% which can be seen in table 4.8. The error-reduction of QMC is still present, but
it is temporarily masked by the harsher scaling.

As the path budget grows, variance in the numerator of

~

Var[V]
RelErr = ———

true

continues to fall while Vi, stabilises, and the QMC advantage re-emerges:

For the mid range (~ 65k paths) QMC + BB records the smallest absolute error of the
whole experiment (0.00108) and drives the relative error down to 0.25% . The QMC-heavy
hybrids follow at 0.34% and 0.43%, whereas MC is still at 1.60%. For high accuracy budget
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(> 131k paths) all curves converge, but QMC + BB (0.61%) and the hybrids (0.66-0.76%)
still outperform plain MC (0.91%) on the relative scale and remain competitive on the
absolute scale.

Figure 4.6 visualises these trends. In the absolute error plot every QMC-based curve lies
below the MC curve across the entire range. In the relative error plot all methods has an
initial spike, but once the path count exceeds roughly 4 000, the QMC lines goes away
from MC and cross the 1% threshold long before MC does.

A final observation is that the gap between MC and QMC narrows at very large N. With
the barrier so close to the spot, the vast majority of paths already knock out and yield
the same zero payoff, leaving less variance for low-discrepancy sequences to exploit. MC
therefore catches up in absolute terms, yet QMC + BB and the QMC leaning hybrids
continue to perform better in relative error.

4.3.4 Different Strike K

Lastly, it was decided to increase the strike from K = 100 to K = 135. Table 4.9 shows
the new average absolute error and table 4.10 shows the new average relative error. Figure
4.9a graphically shows what table 4.9 and 4.10 shows. Figure 4.9b focuses on the QMC
based methods

Table 4.9: Comparison of Average Absolute Error (New Strike)

# Paths 1023 (5000 rep) | 4095 (1000 rep) | 65535 (100 rep) | 131071 (50 rep)
Standard MC 0.021962321 0.011095809 0.002701678 0.001995536
QMC + BB 0.011063788 0.002094001 0.001011269 0.000404175
QMC(L)+MC(L)+BB |  0.010777378 0.003441357 0.001550458 0.000609710
QMC(1)+MC(3) BB |  0.010182712 0.003920023 0.001992946 0.000641456
QMC(1) rMC(L) BB |  0.010046083 0.004603928 0.001170999 0.0007294683

Table 4.10: Comparison of Average Relative Error (New Strike)

# Paths 1023 (5000 rep) | 4095 (1000 rep) | 65535 (100 rep) | 131071 (50 rep)
Standard MC 19.230040943 9.715405555 2.365568511 1.747320239
QMC + BB 9.687368453 1.833491357 0.885459595 0.353892289
QMC(%)JrMC(%)vBB 9.436589920 3.013226130 1.357569265 0.533857732
QMC(i)JrMC(%)vBB 8.915905067 3.432342732 1.744326780 0.561654368
QMC(é)JrMC(%)vBB 8.796273707 4.031164139 1.025318030 0.638716921
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Figure 4.7: Comparison of error analysis for the barrier option under different sampling
schemes for an increased strike

When the strike is increased from K = 100 to K = 135 the option moves much further
out-of-the-money which means positive payoffs become rare and small. This shift drives the
absolute error down for every estimator, but it simultaneously inflates the relative error,
especially at low path counts where only a handful of paths finish in-the-money.

Table 4.9 shows a uniform drop of almost one order of magnitude relative to the reference
case. For instance, standard MC falls from 0.239 to 0.022 at 1023 paths, while QMC +
BB records the best value across the grid, reaching 0.000404 at 131 071 paths. This is five
times smaller than MC’s 0.001996.

Because the true option value decreases, percentage errors explode: MC jumps from 4.86%
to 19.23% at 1023 paths which can be seen in table 4.10). QMC + BB halves this figure to
9.69%, and every mix variant beats MC, but none can suppress the surge entirely.

Once the path budget passes roughly 60k, error reduction begins to dominate. At 65 535
paths QMC -+ BB’s relative error is 0.885% which is less than half of MC’s 2.37%. Even
the QMC(3)+MC(%)+BB mix (1.03%) comfortably outperforms MC.

At 131 071 paths QMC + BB delivers the lowest error in both metrics (absolute 0.000404,
relative 0.354%). The 50/50 hybrid is a close second on the absolute scale (0.000610) and
posts a respectable 0.534% relative error, still far below MC’s 1.75%.

Across all grids the ordering is monotone in the QMC case: more QMC means lower error.
The 12.5% QMC mix remains the weakest of the mixed approaches but still matches or
beats MC except at the very largest N.

Figures 4.7a and 4.7b visualise these patterns. Plot 4.7a confirms the faster absolute
convergence of every QMC-based curve, while plot 4.7b magnifies the relative scale and
shows that the QMC lines dive below 1% as soon as the path count exceeds 60k, whereas
plain MC remains above that limit until the very end of the grid.

With a deep out-of-the-money strike, error reduction is essential for stable percentage er-
rors; QMC + BB reduces the low N blow-up by roughly 50%. At realistic accuracy budgets
(> 65k paths) pure QMC + BB is the clear winner, but a balanced 50/50 hybrid offers
nearly the same accuracy with a small safety margin against potential QMC degradation
in very high dimensions.
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5. Discussion

The goal of this thesis was to answer a straightforward question: Which Monte Carlo
method gives the best accuracy per simulated path when pricing barrier options in Quant-
lab? After running over three million simulations, the results clearly show that Quasi
Monte Carlo (QMC) with a Brownian Bridge and Sobol sequences performs best.

Even at a very low path count of N = 1023, the relative error for the up-and-out call
drops from 4.1% using standard Monte Carlo to just 0.16% with QMC + BB, a more than
tenfold improvement (see figure 4.2a). As the number of paths increases and standard
Monte Carlo becomes more stable, the advantage of QMC becomes smaller, but it still
remains ahead.

5.1 Sensitivity to Market Assumptions

To test whether this result holds under different market conditions, the option parameters
were varied in three key ways: changing the volatility (o), the barrier level (B), and the
strike price (K). In all these cases, the ranking between the methods stayed the same.
Lower volatility or lower barriers reduce the overall size of the payoffs, which also reduces
the MC error. However, the gap between standard MC and QMC stayed wide. For path
counts below 65 000, QMC + BB gave five to eight times lower absolute error. Even
for deep out-of-the-money options, where relative error is more meaningful, QMC still
outperformed MC by a factor of about five.

5.2 Role of Mixed MC/QMC Schemes

It is sometimes suggested that adding a small amount of randomness to a low-discrepancy
sequence like Sobol’ could make the method more stable in very high-dimensional problems.
To test this idea, hybrid methods were tried by mixing in 12.5% and 50% QMC paths. The
results showed that for small numbers of paths and when the payoff function is especially
smooth, a 50% QMC mix could slightly outperform the pure QMC method, for example
when o = 0.15. However, this small benefit disappeared quickly as the number of paths
increased beyond N = 40960. For realistic production settings, where high accuracy is
needed, the fully deterministic Sobol’ QMC method remained the best choice. In other
words, once the path count is large enough for QMC to perform well, adding randomness
does not provide any real advantage.

5.3 Implementation and Runtime Considerations

A common concern with more advanced MC methods is that they might be difficult to
implement or slow to run. However, that is not the case here. Quantlab already includes
the tools needed for Sobol’ sequences and Brownian Bridge construction. This means
switching from standard MC to QMC with Brownian Bridge only requires changing a
single setting in the code.

Tests on the same computer showed no noticeable difference in runtime when generating
Sobol’ paths compared to random ones. So, in terms of actual waiting time, QMC is just
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as fast as standard MC. But because QMC is much more accurate, you can get the same
pricing precision with far fewer paths. For example, using just 50000 QMC + BB paths
gives a relative error below 0.02% which is equivalent to what would otherwise require
5 x 108 MC paths. This translates to over 95% savings in computational cost.

5.4 Limitations

While the results are promising, there are a few important limitations to keep in mind.
First, the study only looks at one type of option, the up-and-out call priced under a
Geometric Brownian Motion model. It is not certain that the same conclusions would
apply to more complex contracts, such as rainbow options, American options, or models
with stochastic volatility.

Second, the analysis focuses mainly on how the error changes with the number of simulated
paths (V). It does not include a detailed comparison of how long the different methods
take to run on various types of hardware. So, while the report suggests that QMC has the
same runtime as standard MC, this is based on limited testing and should be backed up
by a more thorough timing study in the future.

In sum, the discussion confirms that low-discrepancy sampling is a powerful yet easily
deployable trick for error reduction in exotic-option valuation. The simplicity of the im-
plementation, together with the dramatic efficiency gain, makes a compelling business case
for adopting Sobol’ QMC as the default engine within Quantlab.

6. Conclusion

The main goal of this thesis was to see how low the pricing error for a barrier option
can be pushed using regular hardware without relying on complex mathematical tricks or
advanced techniques. The clear winner was Sobo’ Quasi MC combined with Brownian
Bridge discretisation.

Across all eight tested market scenarios, this method gave errors that were up to 25 to
30 times smaller than standard MC when using low to medium path counts. Even when
more paths were used, it never performed worse. Since Quantlab already includes all the
necessary tools, these improvements can be applied right away, leading to a speed up of
20-100 times in real world usage.

Mixed methods that combine MC and QMC can help as a backup in certain difficult cases,
but their benefits are small and disappear once the number of paths gets large.

Recommendation: Use Sobol’ QMC with Brownian Bridge as the default method for
random number generation and time-stepping in the library. Only switch to a mixed
MC/QMC approach (e.g., 20% to 50%) for very high-dimensional problems, where pure
QMC might struggle.
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7.

Further Research

This thesis opens up several interesting directions for future work:

1.

More advanced models. Test the same QMC methods on more complex volatility
models like Heston, SABR, or rough volatility to see if the results still hold when the
model has more variables or includes more noise.

. New option features. Try applying the method to options with early exercise to

see if the Brownian Bridge still works well in those more complex settings.

. Extra variance reduction. Combine QMC with other known techniques such

as control variates, importance sampling, or adjoint methods to see if even faster
convergence can be achieved.

High-dimensional pricing. Use QMC to price complex products like basket op-
tions with many underlying assets (10 or more), to test the limits of the Sobol’
sequence and scrambling methods like Owen’s digital shifts.

. Precise runtime testing. Collect detailed data on runtime, memory use, and en-

ergy consumption to support performance claims with hard numbers across different
hardware.

. Smart hybrid methods. Build an adaptive method that can automatically adjust

how much MC and QMC are mixed based on live error estimates during a run.

Better error reporting. Include 95% confidence intervals in future tables and
plots to clearly show the uncertainty in results.

Exploring these ideas would strengthen the findings of this thesis and help extend them to
a wider range of financial products and real-world applications.
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A. Analytical formula - Barrier Option

This code block, by the help of the delta routine, returns the Black-Scholes di terms,
and UO_Barrier plugs them into the closed form by combining four cumulative normal
components that enforce the knockout at B, it produces the exact price of a European up-
and-out call given spot, strike, barrier, volatility, interest rate, and time to maturity.

Listing A.1: Up-and-Out Barrier Option in Quantlab

number delta(number tau, number r, number vol, number z, number

— sign)
{
return (log(z) + (r + sign * vol * vol / 2) * tau)
/ (vol * sqrt(tau));
}
number UO_Barrier(
number spot,
number time_to_maturity,

number strike,

number rate,

number vol,

number barrier_level)

{
number T = time_to_maturity;
number B = barrier_level;
number K = strike;
number S spot;
number r = rate;
number v_sq = vol * vol;
number A = cum_normal (delta(T, r, vol, S / K, 1))
- cum_normal (delta(T, r, vol, S / B, 1));
number B2 = -pow(B / S, 1 + 2 x r / v_sq)
* (cum_normal (delta(T, r, vol, B *x B / (K *x S), 1))
- cum_normal (delta(T, r, vol, B / S, 1)));
number C = cum_normal (delta(T, r, vol, S / K, -1))
- cum_normal (delta(T, r, vol, S / B, -1));
number D = -pow(S / B, 1 - 2 x r / v_sq)
* (cum_normal (delta(T, r, vol, B *x B / (K *x S), -1))
- cum_normal (delta(T, r, vol, B / S, -1)));
number res = S * (A + B2) - exp(-T *x r) x K * (C + D);
return res;
}
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B. Brownian Bridge Construction

This is the code block that is used to produce the Brownian Bridge construction. Given 2"
time steps and a stream of quasi random N (0, 1) draws, buildBrownianPathMidpointFree
grows an entire Brownian path on [0, 7] by the classic Brownian Bridge algorithm. It first
fixes the end points W(0) = 0 and W(T) = /T Zy, then proceeds level by level: each
recursion halves the stride, inserts the interval midpoint, and samples it from the exact
conditional normal distribution with mean given by linear interpolation of the neighbours
and variance (tmiq — t1)(t2 — tmia)/(t2 — t1). Repeating this fill in gives a path whose
discrete points are marginally correct and perfectly nested, making the routine ideal for
Quasi Monte Carlo pricing.

Listing B.1: buildBrownianPathMidpointFree in Quantlab

out void buildBrownianPathMidpointFree (
integer n_steps, // must be 2°n
number T,
vector (number) Zs, // quasti-random N(0,1) draws, length =
—~ mn_steps
out vector (number) times, // length = n_steps+1
out vector (number) W // length = n_steps+l
)
{
// 1) Create a time grid t_t = 4*x(T/n_steps), ©=0..n_steps

number dt = T / n_steps;

// Allocate times & W
resize(times, n_steps + 1);

resize (W, n_steps + 1);
for(integer i = 0; i <= n_steps; i++)
{

times[i] = i * dt;
}
// 2) W(0)=0, W(T)= sqrt(T)*Zs[0]
wo] = 0;
Wln_steps] = sqrt(T) = Zs[0];

// We’ll use the rest of Zs for midpoints
integer z_index = 1;

// 3) Figure out "n" such that n_steps=2-n

integer n = 0;
{
integer temp = 1;
while (temp < n_steps)
{
temp *= 2;
n++;
X
X

50




39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65

66
67
68
69
70
71
72

73
74
75
76
7
78
79
80
81
82

// 4) Subdivide level by level

// At each level, we fill in midpoints of each interval
// using the Brownian-bridge conditional formula.
integer delta = n_steps;
for (integer level = 0; level < n; level++)
{
integer idx = O0;
integer n_intervals = (1 << level); // 2 lewvel
for(integer j = 0; j < n_intervals; j++)
{
integer il = idx;
integer 12 = idx + delta;

times[i1];
times [12];
0.5%(t1 + t2)

number ti1
number t2
number mid_t

I

number wil
number w2

Wwlill;
wli2]l;

// Mean of midpoint: linear
number E = wl * ((t2 - mid_t
+ w2 * ((mi

— t1));

// Variance for the midpoint
number Var = ((mid_t - t1)x*(
— (2 - t1);

// Nezxt mnormal from Zs
number Z = Zs[z_index];
z_index++;

// Insert midpoint in W

integer mid_index = integer(
s

W[mid_index] = E + sqrt(Var)

// Move to mext sub-interwval
idx = i2;

3

// Cut intervals in two
delta /= 2;

>

tnterpolation
Y/ (t2 - t1))
d_t - t1)/(t2 -

t2 - mid_t)) /

il + (delta/2))

*xZ;
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C. Quasi Monte Carlo Function

This function, price_barrier_option_gmc_BB, prices an up-and-out barrier option with a
Quasi Monte Carlo scheme that uses a Sobol low-discrepancy sequence with the Brownian
Bridge path builder of Listing B.1. For each path it draws nggsteps quasi random standard
normals and fills any remaining slots with pseudo-random normals (when ngsteps = Nsteps
we have full Quasi Monte Carlo, if not we have Mixed Quasi Monte Carlo). Then it
converts them into a Brownian Bridge {W(¢;)} on [0,7] and evolves the log price by an
exact Black—Scholes increment and checks for barrier crossings using the conditional exit
probability. Furthermore it averages the surviving discounted pay-offs and reports both
the QMC estimate and its standard error. For benchmarking, the function also returns
the analytic price from UO_Barrier.

If one would like to change price_barrier_option_gmc_BB so that it becomes a stan-
dard Monte Carlo function, set n_gsteps = 0 (or simply equal to n_steps but replace the
Sobol generator with the default RNG) so that N[i] is always filled by my_rng.gauss();
remove or comment out the sobol_gen lines and the skip argument. The rest of the
routine Brownian Bridge construction, barrier logic, discounting and error computation
remains unchanged. This gives an ordinary Monte Carlo price with identical time discreti-
sation.

Listing C.1: QMC/MQMC function in Quantlab

out void price_barrier_option_qmc_BB(

number Trate,

number vol,

number time_to_maturity,

number Dbarrier_level,

number strike,

integer n_steps, // must be 2°n (for midpoint path builder)
integer n_qsteps, //must be 2°m with m <= n for R{MC
integer n_paths,

integer skip, // Sobol skip

logical is_call,

// Existing out parameters:
out vector (number) exact_value_UO_BO, // ezact barrier price
out vector (number) mc_value_BO_BB, // final MC price

// New out parameter: standard error
out vector (number) mc_std_error_BO_BB,
rng option(nullable) my_rng = null)
{
number spot = 100;
integer seed = millisecond(now());
// track sums of payoffs
number sum_payoffs = 0;
number sum_sq_payoffs = 0;

vector (number) samples[n_paths];

// Quasi-random draws for building Brownian paths
sobol_gen s = new sobol_gen(n_qgsteps, skip);
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// For bridging barrier events
if (null (my_rng))
my_rng = rng(seed);

number log_barrier_level = log(barrier_level);
number log_spot = log(spot);

number log_S_next;

number log_S_prev;

// 1) Quasi-random normals
vector (number) Zs[n_qsteps];
vector (number) N[n_steps];

for(integer path_i = 0; path_i < n_paths; path_i++)
{
Zs = s.gauss () ;
for(integer i = 0; i < n_steps; i++)
N[i] = i < n_qgsteps 7 Zs[i] : my_rng.gauss();
// 2) Brownian-bridge path W(t)
vector (number) times, W;
buildBrownianPathMidpointFree (
n_steps,
time_to_maturity,
N,
times,
W) ;

// 3) Evolwe S(t) & check barrier
logical knocked_out = false;
log_S_prev = log_spot;

for(integer i = 0; i < n_steps && !'knocked_out; i
sy ++)
{
number dt = times[i+1] - times[i];
number dw wWli+1]l - wW[il;

log_S_next = log_S_prev + ((rate - 0.5*volx
<> vol)*dt + volx*xdw);

if (log_S_next > log_barrier_level)
{
knocked_out = true;
break;
}
else if(log_S_prev < log_barrier_level &&
— log_S_next < log_barrier_level)
{
number numerator = (
— log_barrier_level - log_S_prev
—)*(log_barrier_level -
<> log_S_next);

number denom = (vol * vol) * dt
— 3
number log_p_exit = (-2.0 x (
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<> numerator / denom)) ;
number test = my_rng.uniform();
if (test == 0 || log(test) <
— log_p_exit)
{
knocked_out = true;
break;

log_S_prev = log_S_next;

}

// payoff if still alive
number payoff = O0;
if (!knocked_out)

{
payoff = is_call
? max(exp(log_S_prev) -
5 strike, 0)
max (strike - exp(
—log_S_prev), 0);
}

samples [path_i] = payoff;

X
sum_payoffs = v_sum(samples);
sum_sq_payoffs = samples * samples;

// discount the average payoff

number mean_payoff = sum_payoffs / n_paths;

number var_payoff = (sum_sq_payoffs / n_paths)
<~ mean_payoff * mean_payoff);

number discounted_mean
<~ mean_payoff;
number std_dev
— time_to_maturity);

number std_err = std_dev / sqrt(n_paths);

mc_value_BO_BB [discounted_mean];
mc_std_error_BO_BB [std_err];
// exzact up-and-out barrier price
exact_value_UO_BO = [UO_Barrier (

spot,

time_to_maturity,

strike,

rate,

vol,

barrier_level)];
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