

Panic Button - PBTZB-110

Technical manual

Revised 29.08.2025

Table of Contents

	Caut	ionary notes	5
2	Feat	ures	. 6
2.1	Pa	nic Button - PBTZB-110	. 6
2.2	IAS	S Zone	. 6
2.3	Ke	y features	. 6
3	Endp	points	. 7
3.1	Zig	Bee Device Object (ZDO)	. 7
3.2	IAS	S Zone	. 7
3.3	On	ics Utility	. 7
	Supp	oorted Clusters	.8
	Со	mmon clusters for each end point	.8
		Basic – Cluster id 0x0000	.8
		Identify – Cluster id 0x0003	.8
	IAS	S Zone Device – EP 0x23	. 9
		IAS Zone - Cluster id 0x0500	. 9
		Power Configuration - Cluster id 0x0001	.11
	.2.3	Poll Control - Cluster id 0x0020	.11
		OTA Upgrade – Cluster id 0x0019	12
	.2.5	Time – Cluster id 0x000A	15
5	ММІ	user guide	16
5.1	Ac	cessing and re-enabling MMI menu	16
5.2	Pu	sh Button Menu	16
5.		EZ mode - Initiator	17
5.		EZ mode - Target	18
5.	2.3	Factory reset	18
5.3	Act	tion on Power On	18
6	Gene	eral network behaviour	19

6.1	Installation	19
6.2	Low battery]9
	Specifications	20
8	Contact Information	2

Copyright © Onics Denmark A/S (Formerly Develco Products Denmark A/S)

All rights reserved.

Onics assumes no responsibility for any errors, which may appear in this manual. Furthermore, Onics reserves the right to alter the hardware, software, and/or specifications detailed herein at any time without notice, and Onics does not make any commitment to update the information contained herein.

All the trademarks listed herein are owned by their respective owners.

RoHS **(€**

1 Cautionary notes

Onics Denmark A/S reserves the right to make changes to any product to improve reliability without further notice. Onics Denmark A/S does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under patent rights or the rights of third parties.

2 Features

2.1 Panic Button - PBTZB-110

The Panic Button is a programmable, Zigbee-based button that can be used for multiple purposes. For example, the Panic Button can be used as a safety button for emergencies, as a door lock button, or as a switch for lights or "all on/off" functionality that enables the user to switch multiple home appliances on or off in the press of a single button. You can program the button to fit the requirements of your solution.

You can program the wireless button as an alarm button for elderly or disabled, enabling them to easily alert friends and family or healthcare professionals, if an emergency occurs.

Being more vulnerable to all kinds of dangers, elderly and disabled can benefit from an easy way to call for help in case of an emergency. With the Panic Button, they can simply press a button to alert others if they need help. The Panic Button can help elderly and disabled gain more independence and security, and it can give friends and relatives peace of mind and reassurance that their loved one is safe.

2.2 IAS Zone

The Panic Button is implemented as a IAS Zone ZigBee end point according to ZigBee Home Automation profile "IAS Zone".

2.3 Key features

- Alarm sensor IAS Zone
- ZigBee OTA cluster for firmware upgrades
- ZigBee 3.0 stack supported
- Water repellent
- Standard ZigBee Home Automation security and stack settings are used

3 Endpoints

The device implements the following standard HA devices on different end points.

3.1 ZigBee Device Object (ZDO)

- End point number 0x00
- Application profile Id 0x0000
- Application device Id 0x0000
- Supports all mandatory clusters

3.2 IAS Zone

- End point number 0x23
- Application profile Id 0x0104 (Home Automation)
- Application device Id 0x0402

3.3 Onics Utility

- Application profile Id 0xC0C9 (Onics (Formerly Develco Products) private profile)
- Application device Id 0x0001
- Manufactor code for Onics (Formerly Develco Products) is 0x1015
- Private profile for internal Onics (Formerly Develco Products) use only.

Reference documents:

- [Z1] Zigbee Specification Rxx
- [Z2] Zigbee Cluster Library Specification Rx
- [Z3] Base Device Behavior Specification
- [Z4] PRO Base Device Behavior Specification

They can all be downloaded from:

https://csa-iot.org/developer-resource/specifications-download-request/

4 Supported Clusters

4.1 Common clusters for each end point

The ZCL "General Function Domain" clusters in this section are implemented as server clusters. Refer to ZigBee Cluster Library Specification Rx.

https://csa-iot.org/developer-resource/specifications-download-request/

4.1.1 Basic - Cluster id 0x0000

Only the first set has mandatory attributes, also the optional attributes that can be relevant to a Onics (Formerly Develco Products) device are all in set 0x000.

4.1.1.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0	ZCLVersion	Uint8	Type range	М	
0x4	ManufacturerName	String	0-32 byte	0	4.1.1.1.1
0x5	Modelldentifier	String	0-32 byte	0	4.1.1.1.2
0x6	DateCode	String	0-32 byte	0	
0x7	PowerSource	8 bit enum	Type range	М	

4.1.1.1.1 ManufacturerName

"Onics A/S" (Formerly "Develco Products A/S")

4.1.1.1.2 ModelIdentifier

"PBTZB-110"

4.1.2 Identify - Cluster id 0x0003

4.1.2.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance ref.	and
0x0000	IdentifyTime	Uint16	Type range	М		

4.1.2.2 Commands

The identify cluster has 2 commands as server.

ld#	Name	Payload	Man/Opt	Relevance and ref.
0x00	Identify	Uint16 - Identify Time (seconds)	М	0x00
0x01	Identify Query	none	М	0x01

The identify cluster has I command as client.

ld#	Name	Payload	Man/Opt	Relevance and ref.
0x00	Identify Query Response	Uint16 - Identify Time	М	0x00
		(seconds)		

4.2 IAS Zone Device - EP 0x23

4.2.1 IAS Zone - Cluster id 0x0500

The IAS Zone cluster is described in ZigBee Cluster Library Specification Rx.

4.2.1.1 Attribute

ld#	Name	Туре	Man/Opt	Relevance and ref.
0x0000	Zone State	8-bit	М	
0x0000	Zone State	Enumeration	1	
0x0001	Zone Type	16-bit	М	Hard coded to
0x0001	Zone Type	Enumeration	1	Personal emergency device
	Zone Status		М	The following bits are supported:
				Bit1: Alarm 2
0x0002		Uint16		Bit3: Battery
				Bit4: Supervision reports
				Bit5: Restore reports
0x0010	IAS CIE Address	Valid 64-bit IEEE	М	
	IAS CIL AUDIESS	address	1*1	

0x0011 ZoneID	Uint8	М

4.2.1.1.1 Zone State

The device will automatically start to scan the network for an IAS Zone client in a predefine interval. When the client is found it will automatically attempt to enrol. When it has successfully enrolled the Zone Status command is send to the IAS Zone client.

The attribute value will change from not enrolled (0x00) to Enrolled (0x01).

4.2.1.1.2 IAS CIE Address

Attribute specifies the address that commands generated by the server shall be sent to.

To un-enrol the device the back end system has to write a new address into this attribute. Any value is valid. If the back end system writes an IEEE address then it will try to enrol to this devices represented by the IEEE address.

4.2.1.1.3 ZoneID

A unique reference number allocated by the CIE at zone enrolment time.

Used by IAS devices to reference specific zones when communicating with the CIE. The *ZoneID* of each zone stays fixed until that zone is un-enrolled.

4.2.1.2 Commands

The IAS Zone cluster has 2 commands as server.

ld#	Name	Payload			Man/Opt	Relevance a	and
	Zone Status						
0x00	Change	Uint16 – bi	Uint16 – bit mask				
	Notification						
		Bits	16	16			
	Zone Enroll Request	Data	16 bit	UINT16			
OxOl		type	enum	OINTIO	M		
		Field	Zone	Manufactur			
		name	type	er code			

Init sequence – when the device has join the network it start to scan for an IAS zone client cluster. If a client is found a Zone enroll request command is send and a Zone Enroll response is expected. If it doesn't receive a response it will wait for 15 minutes and try again.

The following bits are supported in Zone status:

Bit1: Alarm 2

Bit3: Battery

Bit4: Supervision reports

Bit5: Restore reports

Bit0, Alarm

Note: How to clear a alarm in the "Zone status"

The sensor requests ZCL Default Response on the Zone Status Change notification, if any new Alarm bit has been set. Until the IAS CIE has acknowledged the received alarm by sending the mandated Default Response, the Alarm bits are not cleared – even if there is no longer an alarm situation. When the Default Response is received, a new Zone Status Change notification is sent with the Alarm bits cleared, if the alarm situation has disappeared since sending the Zone Status message with alarm set.

Bit3: When the battery is below 2.2 VDC. Battery bit is set high and "Zone Status" is transmitted to the coordinator.

4.2.2 Power Configuration - Cluster id 0x0001

The power configuration cluster is described in ZigBee Cluster Library Specification Rx.

4.2.2.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0×0020	BatteryVoltage	Uint8	0x00 - 0xFF		ZCL configure reporting
0x0020					is supported

Note: The attribute "BatteryVoltage" is measuring the battery voltage, in units of 100mV.

4.2.3 Poll Control - Cluster id 0x0020

The poll control cluster is described in ZigBee Cluster Library Specification Rx.

This cluster provides a mechanism for the management of an end device's MAC Data Request rate. For the purposes of this cluster, the term "poll" always refers to the sending of a MAC Data Request from the end device to the end device's parent.

Onics Denmark A/S Tangen 27 http://onics.com 8200 Aarhus N, Denmark info@onics.com

This cluster can be used for instance by a configuration device to make an end device responsive for a certain period of time so that the device can be managed by the controller.

4.2.3.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0000	Check-inInterval	Uint32	0x00 - 0xFF	М	Default value is 1 hour
0x0001	LongPoll Interval	Uint32		М	Default value is
	Longrott interval				disabled
0x0002	ShortPollInterval	Uint16		M	Default value is 3
					seconds
0x0003	FastPollTimeout	Uint16		М	Default value is 5
					minutes

Start up, auto scan for client poll control cluster on the coordinator. If it is support on the coordinator an auto bind is created and the smoke sensor will send a check-in command in the interval specified in attribute "Check-inInterval. The coordinator has to reply with a check-in response. The sensor supports the following commands send from the client (Typically the coordinator).

- 0x00 Check-in Response,
- 0x01 Fast Poll Stop,
- 0x02 Set Long Poll Interval,
- 0x03 Set Short Poll Interval,

If it doesn't find a poll client it will search again periodically.

4.2.4 OTA Upgrade – Cluster id 0x0019

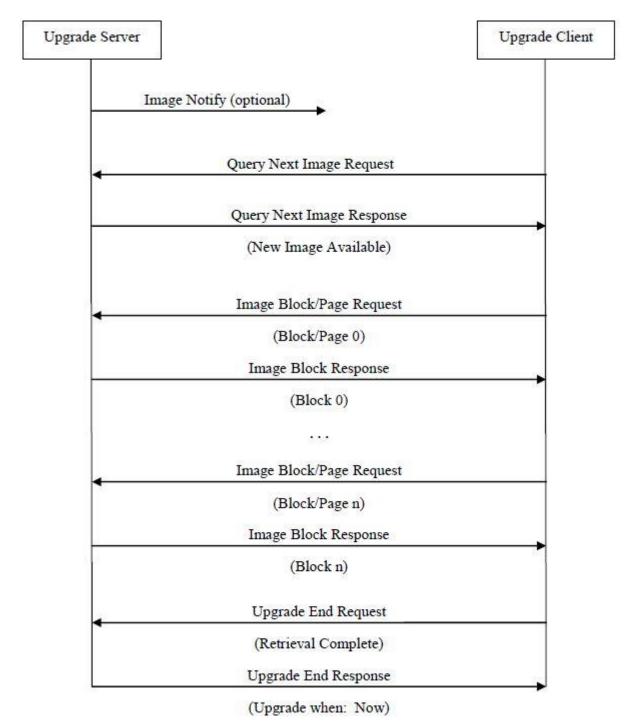
The cluster provides a ZigBee standard way to upgrade devices in the network via OTA messages. The devices support the client side of the cluster.

When the devices has joined a network it will automatically auto scan for a OTA upgrade server in the network. If it finds a server an auto bind is created and ones every 24 hour it will automatically send its "current file version" to the OTA upgrade server. It is the server that initiate the firmware upgrade process.

4.2.4.1 Attributes

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0000	UpgradeServerID	IEEE	-	М	
		Address			
0x0001	FileOffset	Uint32	Type range	0	
0x0002	CurrentFileVersion	Uint32	Type range	0	
0x0003	CurrentZigBeeStackVersion	Uint16	Type range	0	
0x0004	DownloadedFileVersion	Uint32	Type range	0	
0x0005	DownloadedZigBeeStackVers	Uint16	Type range	М	
	ion				
0x0006	ImageUpgradeStatus	8 bit	0x00 to	0	
		enum	OxFF		
0x0007	Manufacturer ID	Uint16	Type range	0	
0x0008	Image Type ID	Uint16	Type range	0	
0x0009	MinimumBlockRequestDelay	Uint16	Type range	0	

Above attribute description is to be found in section 6.7 "OTA Cluster Attributes" in ZigBee document – "Zigbee Cluster Library OTA Cluster (0x0019) Test Specification" provided by the Connectivity Standards Alliance.


4.2.4.2 Commands

The OTA Client cluster can send the following commands

ld#	Name	Man/Opt	Relevance and ref.	
OxOl	Query Next Image request	М	6.10.1 OTA Cluster Command	
			Identifiers	
0x03	Image Block Request	М	6.10.1 OTA Cluster Command	
			Identifiers	
0x06	Upgrade End Request	М	6.10.1 OTA Cluster Command	
			Identifiers	

4.2.4.3 OTA Upgrade Messages Diagram

4.2.5 Time - Cluster id 0x000A

The Time cluster is a general cluster for time it is based on a UTC time in seconds since 0 hrs 0 mins 0 sec on 1st January 2000. Refer to [Z2] for ZigBee specification of the time cluster.

The device will use this clusters as a client – provided that a suitable Time Server is available on the network (most likely on the Gateway).

4.2.5.1 Attribute

ld#	Name	type	Range	Man/Opt	Relevance and ref.
0x0000	Time	UTCTime	Туре	М	The module will
		(Uint32)	range		periodically update its
					clock by synchronizing
					through this cluster
0x0001	TimeStatus	8 bit bitmap	00000xxx	М	

5 MMI user guide

The MMI menu allows the user to perform various operations on the device. Its use is explained in section 5.2 Push Button Menu

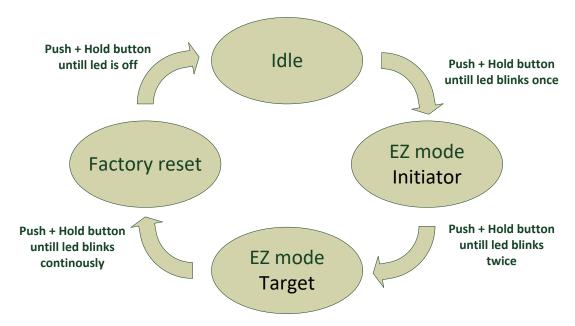
5.1 Accessing and re-enabling MMI menu

The MMI menu is accessible while the device is initially scanning for a network. When the device joins a network, the MMI menu is accessible for an additional 60 seconds. After this point, the MMI menu is inaccessible. To re-enable the MMI menu, use one of the two methods below.

WARNING: Using method 1 will temporarily put the device into alarm state until the MMI menu becomes active. If this is of concern, method 2 can be used instead.

Method 1:

 Press and hold the button for 10 seconds. When the LED flashes green, release the button immediately


Method 2:

• Remove the battery, wait 10 seconds and re-insert it into the device

5.2 Push Button Menu

When MMI menu is active the user can push the button and select the different menus described below. Pushing the button for longer (push, hold for a few seconds, and release) allows the user to set the device into a desired mode. A mode change happens at 5 second interval. Below, these modes are illustrated in a state chart.

When cycling through the menu modes, the state is indicated by a number of 100ms blinks on the LED. The device is supporting the ZigBee standardized EZ- mode Commissioning.

5.2.1 EZ mode - Initiator

If the devices is not on the network EZ-Mode Network Steering is invoked when the user enter this menu. The led blinks once every 1 sec until the devices has joined the network. If the device was already on the network it will broadcast the PermitJoin messages. It is the trust center policy that decides if the device is allowed to join the network.

When the device has joined the network EZ-Mode Finding and Binding is invoked and the device start to blink every 3 sec until a cluster match is found. When a match is found or the cluster examine is finished the blinking stops and the device sends a messages to the target device to stop the identify time.

The following clusters are support in EZ-mode finding and binding:

• Power configuration cluster

The EZ-mode time is hard coded to 3 minutes. This is the Minimum and recommended PermitJoin time broadcast for EZ-Mode Network Steering and minimum IdentifyTime set for EZ-Mode Finding and Binding. If the user enters the menu again another 3 minutes is started.

5.2.2 EZ mode - Target

If the devices is not on the network EZ-Mode Network Steering is invoked when the user enter this menu. The led blinks twice every 1 sec until the devices has joined the network. If the device was already on the network it will broadcast the PermitJoin messages. It is the trust center policy that decides if the device is allowed to join the network.

When the device has joined the network identify mode is invoke and the device start to blink twice every 3 sec until identify mode is stopped or after the EZ-mode time has expired. If the user enters the menu again another 3 minutes is started.

5.2.3 Factory reset

To allow a device to join a network, one either has to power up a device that has not previously joined a network or push the button until the Reset To Factory default mode is indicated – and subsequently release the button. This will cause the device to reset to its factory default state and scan for a suitable coordinator.

5.3 Action on Power On

As a general rule, all end devices and routers that have not previously joined a network (or have been reset to factory default) will start up and search for a network with join permit open. In this mode, the Yellow LED will flash while searching for a network to join

Once the device has joined the network, is will start scanning for an OTA server, Time server, Poll control client and an IAS Zone client.

If a device has joined a network and is powered down, it will attempt to rejoin this network upon power up. For the first 30 seconds hereafter, the device will be available for communication. This time can be expanded using the poll control cluster functionality.

6 General network behaviour

6.1 Installation

When the device is virgin and powered for the first time it will start looking for a ZigBee PAN Coordinator or router to join. The device will scan each ZigBee channel starting from 11 to 24. The LED will flash once every second until it joins a device.

#Scan mode - 1	#factory storage mode -	
Scan all 16	2	
ZigBee channel	MCU is in sleep mode	
until join	(Radio off)	
network or 3	Press button to	
minutes	reactivate scan mode	

Scan mode 1 will only be activated when the user presses the panic button. It the devices doesn't join a ZigBee network it will go back to factory storage mode. Press panic button again to reactivate scan mode

If the user invokes EZ-mode it will start scanning the next 3 minutes

In section 5 "MMI" it is explained how to put the device into a join or leave network mode.

Network settings are stored in NV-memory are after a power cycle the device re-join the same network.

If the device has to join a new PAN coordinator the MMI menu supports a "Reset To Factory Fresh Settings" mode. This will erase all current network information.

6.2 Low battery

The current battery voltage can be read from the power configuration cluster described in section 4.3.1. The attribute "BatteryVoltage" is measuring the battery voltage, in units of 100mV.

Low batt LED indication – RED LED will blink twice every 60 second.

7 Specifications

General			
Dimensions (L x B x H)	40 x 53 x 10,8 mm		
Colour	White – Optional Orange marking on the button		
Battery	Battery: CR2450 (Coin Cell)		
Battery life	Up to 5 year		
Radio	Sensitivity: -100 dBm		
	Output power: +10 dBm		
Environment	Water-resistant when used in the bathtub and shower		
	Operation temperature 0 to +50°C		
Function			
Button	Panic alarm		
Communication			
Wireless protocol	ZigBee Home Automation compliant		
	ZigBee end-device		
Certifications			
	Conforming to CE, RoHS and REACH directives		

8 Contact Information

Technical support: Please contact Onics for support.

products@onics.com

Sales: Please contact Onics for information on prices, availability, and lead

time.

info@onics.com

