onics.

Smart Humidity Sensor - HMSZB-110

Technical manual

Revised 29.08.2025

Table of Contents

	Caut	ionary notes	5
2	Feat	ures	6
2.1	Hu	midity Sensor - HMSZB-110	6
2.2	Hu	midity	6
2.3	Ter	nperature	6
2.4	Kej	y features	7
3		points	
3.1	Zig	Bee Device Object (ZDO)	8
3.2	Ter	mperature Sensor	8
3.3	On	ics Utility	8
	Supp	ported Clusters	9
	Ter	mperature Sensor Device – EP 0x26	9
		Basic – Cluster id 0x0000	9
		Power Configuration - Cluster id 0x0001	9
	1.3	Identify – Cluster id 0x0003	10
		Poll Control - Cluster id 0x0020	10
	1.5	Temperature Measurement – Cluster id 0x0402	11
	1.6	Relative Humidity Measurement – Cluster id 0x0405	.12
		OTA Upgrade - Cluster id 0x0019	.13
	1.8	Time – Cluster id 0x000A	.16
5	ММІ	user guide	.17
5.1	Pu	sh Button Menu	.17
5.1		EZ mode - Initiator	.17
5.1		EZ mode - Target	18
5.1	1.3	Factory reset	18
5.2	Ac1	tion on Power On	18
6	Gene	eral network behaviour	.19

6.1	Installation	19
6.2	Normal – Keep alive	19
6.	2.1 Network lost	19
6.3	Low battery	.20
	Specifications	21
8	Contact Information	22

Copyright © Onics Denmark A/S (Formerly Develco Products Denmark A/S)

All rights reserved.

Onics assumes no responsibility for any errors, which may appear in this manual. Furthermore, Onics reserves the right to alter the hardware, software, and/or specifications detailed herein at any time without notice, and Onics does not make any commitment to update the information contained herein.

All the trademarks listed herein are owned by their respective owners.

RoHS (

(€

1 Cautionary notes

Onics Denmark A/S reserves the right to make changes to any product to improve reliability without further notice. Onics Denmark A/S does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under patent rights or the rights of third parties.

2 Features

2.1 Humidity Sensor - HMSZB-110

Extreme temperatures and humidity levels can freeze pipes, cause leaks, encourage mold, and result in cost-intensive damage. Condensation and mold often form when certain rooms become too damp and humid. Protect your building and belongings by monitoring the temperature and humidity levels in any room and receive immediate alerts if the climate fluctuates to unsafe levels.

Supervising indoor climate

By supervising the indoor climate, the wireless Humidity Sensor helps maintain the ideal comfort level and protect interior, electronics, musical instruments, furniture, artwork, and any other humidity-sensitive household item.

Readings from the sensor can be sent via smart home system through SMS, e-mail, or web. The sensor operates under the ZigBee standard, ensuring compatibility with other ZigBee certified products. You can make the sensor activate an existing ventilation system to help reduce condensation levels, or you can trigger a thermostat, an aircondition, or a portable heater.

The sensor features long battery lifetime, long range, and accurate temperature and humidity reporting. The Humidity Sensor includes both adhesive tape and screws allowing you to easily mount the sensor on the wall, on the ground or near vulnerable and valuable items.

2.2 Humidity

The humidity sensor measures humidity with a resolution of 1% RH (accuracy 3%, 20-80% RH). Range 0 to 100% RH.

It supports standard ZigBee reporting (on change or interval).

The humidity sensor cluster in located on the temperature sensor end point.

2.3 Temperature

The temperature sensor measures temperature with a resolution of 0.1°C.

It supports standard ZigBee reporting (on change or interval).

The end point is configured as the Home Automation profile "Temperature Sensor".

2.4 Key features

Key features are:

- Humidity sensor
- Temperature sensor
- ZigBee Home Automation certified
- ZigBee PRO is supported
- Standard ZigBee Home Automation security and stack settings are used

3 Endpoints

3.1 ZigBee Device Object (ZDO)

- End point number 0x00
- Application profile Id 0x0000
- Application device Id 0x0000
- Supports all mandatory clusters

3.2 Temperature Sensor

- End point number 0x26
- Application profile Id 0x0104 (Home Automation)
- Application device Id 0x0302

3.3 Onics Utility

- Application profile Id 0xC0C9 (Onics (Formerly Develco Products) private profile)
- Application device Id 0x0001
- Manufactor code for Onics (Formerly Develco Products) is 0x1015
- Private profile for internal Onics (Formerly Develco Products) use only.

Reference documents:

- [Z1] Zigbee Specification Rxx
- [Z2] Zigbee Cluster Library Specification Rx
- [Z3] Base Device Behavior Specification
- [Z4] PRO Base Device Behavior Specification

They can all be downloaded from:

https://csa-iot.org/developer-resource/specifications-download-request/

4 Supported Clusters

The ZCL "General Function Domain" clusters in this section are implemented as server clusters. Refer to ZigBee Cluster Library Specification Rx.

https://csa-iot.org/developer-resource/specifications-download-request/

4.1 Temperature Sensor Device – EP 0x26

4.1.1 Basic - Cluster id 0x0000

4.1.1.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x000	ZCLVersion	Uint8	Type range	М	
0					
0x0004	ManufacturerName	String	0-32 byte	0	4.1.1.1.1
0x0005	Modelldentifier	String	0-32 byte	0	4.1.1.1.2
0x000	DateCode	String	0-32 byte	0	
6					
0x0007	PowerSource	8 bit enum	Type range	М	

4.1.1.1.1 ManufacturerName

"Onics A/S" (Formerly "Develco Products A/S")

4.1.1.1.2 ModelIdentifier

"HMSZB-110"

4.1.1.2 Manufacture Specific Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x8000	PrimarySwVersion	OctetString		М	SW version

ZCL header setting – Manufactor code for Onics (Formerly Develco Products) is 0x1015.

4.1.2 Power Configuration - Cluster id 0x0001

The power configuration cluster is described in ZigBee Cluster Library Specification Rx.

4.1.2.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0020	BatteryVoltage	Uint8	0x00 - 0xFF	0	ZCL configure reporting
					is supported

Note: The attribute "BatteryVoltage" is measuring the battery voltage, in units of 100mV.

To detect low battery the system can setup a reporting interval of 12 hours. When a voltage of 2.45V the battery should be replaced with a new one.

4.1.3 Identify - Cluster id 0x0003

4.1.3.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0000	IdentifyTime	Uint16	Type range	М	

4.1.3.2 Commands

The identify cluster has 2 commands as server.

Id#	Name	Payload	Man/Opt	Relevance and ref.
0x00	Identify	Uint16 - Identify Time (seconds)	М	
0x01	Identify Query	none	М	

The identify cluster has I command as client.

Id#	Name		Payload		Man/Opt	Relevance and ref.
0x00	Identify	Query	Uint16 - Identify	Time	М	
	Response		(seconds)			

4.1.4 Poll Control - Cluster id 0x0020

The poll control cluster is described in ZigBee Cluster Library Specification Rx.

This cluster provides a mechanism for the management of an end device's MAC Data Request rate. For the purposes of this cluster, the term "poll" always refers to the sending of a MAC Data Request from the end device to the end device's parent.

Onics Denmark A/S	Tangen 27	http://onics.com
	8200 Aarhus N, Denmark	info@onics.com

This cluster can be used for instance by a configuration device to make an end device responsive for a certain period of time so that the device can be managed by the controller.

4.1.4.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0000	Check-inInterval	Uint32	0x00 - 0xFF	М	Default value is 1 hour
0x0001	LongPoll Interval	Uint32		М	Disabled
0x0002	ShortPollIntervall	Uint16		М	Default value is 3 seconds
0x0003	FastPollTimeout	Uint16		М	Default value is 5 minutes

Start up, auto scan for client poll control cluster on the coordinator. If it is support on the coordinator an auto bind is created and the humidity sensor will send a check-in command in the interval specified in attribute "Check-inInterval. The coordinator has to reply with a check-in response. The sensor supports the following commands send from the client (Typically the coordinator).

- 0x00 Check-in Response,
- 0x01 Fast Poll Stop,
- 0x02 Set Long Poll Interval,
- 0x03 Set Short Poll Interval,

If it doesn't find a poll client it will search again periodically.

4.1.5 Temperature Measurement - Cluster id 0x0402

The temperature measurement cluster is described in ZigBee Cluster Library Specification Rx section 4.4.

4.1.5.1 Attribute

Id#	Name	Type	Range	Man/Opt	Relevance and ref.
0x0000	MeasuredValue	Sint16	MinValue to	М	
			MaxValue		
0x0001	MinMeasuredValue	Sint16	0	М	
0x0002	MaxMeasuredValue	Sint16	5000	М	

4.1.5.1.1 MeasuredValue

Default reporting is set to:

Min reporting interval: 60 sec

Max reporting interval: 600 sec

Reportable Change: 0.1 °C

If the temperature value is stable it will be send every 10 minutes.

If the temperature changes more than 0.1 °C it will be reported but not faster than every 1 minute since last reporting value.

Note: Min reporting interval 0 sec is invalid when reportable change is configured.

4.1.5.1.2 MinMeasuredValue

The temperature sensor is NOT supporting temperature measurements below 0 degrees Celsius.

4.1.5.1.3 MaxMeasuredValue

The temperature sensor is NOT supporting temperature measurements above 50 degrees Celsius.

4.1.6 Relative Humidity Measurement – Cluster id 0x0405

The relative humidity measurement cluster is described in ZigBee Cluster Library Specification Rx section 4.7.

4.1.6.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0000	MeasuredValue	Uint16	MinValue to	М	
			MaxValue		
0x0001	MinMeasuredValue	Uint16	0% RH	М	
0x0002	MaxMeasuredValue	Uint16	100% RH	М	
0x0003	Tolerance	Uint16	0 – 20% RH		3.5 % RH

4.1.6.1.1 MeasuredValue

Default reporting is set to:

Min reporting interval: 60 sec

Max reporting interval: 600 sec

Reportable Change: 3.0% RH

Onics Denmark A/S

Tangen 27

http://onics.com info@onics.com

8200 Aarhus N, Denmark

If the humidity value is stable it will be send every 10 minutes.

If the humidity changes more than 3% RH it will be reported but not faster than every 1 minute since last reporting value.

Note: Min reporting interval 0 sec is invalid when reportable change is configured.

4.1.6.1.2 Tolerance

The humidity sensor has a tolerance of 3.5 % RH.

4.1.7 OTA Upgrade - Cluster id 0x0019

The cluster provides a ZigBee standard way to upgrade devices in the network via OTA messages. The devices support the client side of the cluster.

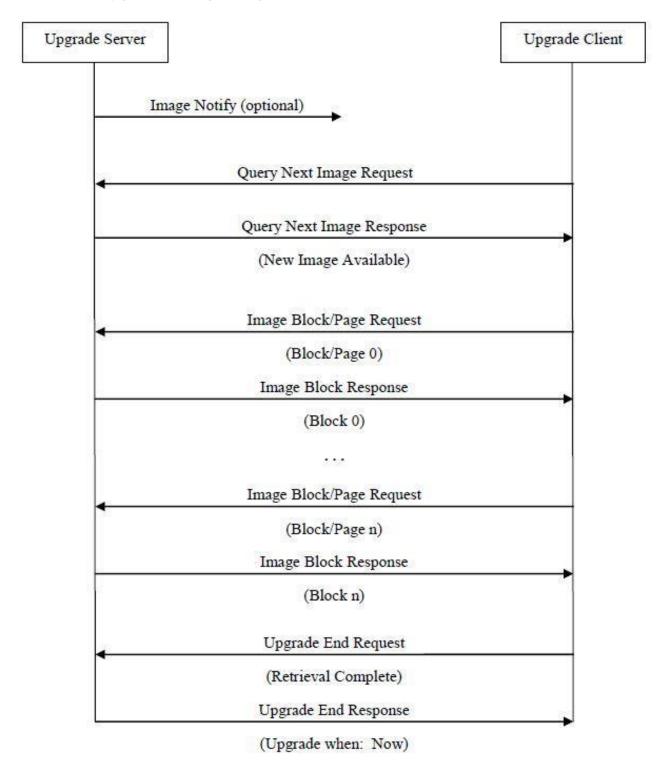
When the devices has joined a network it will automatically auto scan for a OTA upgrade server in the network. If it finds a server an auto bind is created and ones every 24 hour it will automatically send its "current file version" to the OTA upgrade server. It is the server that initiate the firmware upgrade process.

4.1.7.1 Attributes

ld#	Name	Туре	Range	Man /Opt	Relevance and ref.
0x0000	UpgradeServerID	IEEE Address	-	М	
0x0001	FileOffset	Uint32	Type range	0	
0x0002	CurrentFileVersion	Uint32	Type range	0	
0x0003	CurrentZigBeeStackVersion	Uint16	Type range	0	
0x0004	DownloadedFileVersion	Uint32	Type range	0	
0x0005	DownloadedZigBeeStackVersion	Uint16	Type range	М	
0x0006	ImageUpgradeStatus	8 bit enum	0x00 to 0xFF	0	

0x0007	Manufacturer ID	Uint16	Type range	0	
0x0008	Image Type ID	Uint16	Type range	0	
0x0009	MinimumBlockRequestDelay	Uint16	Type range	0	

Above attribute description is to be found in section 6.7 "OTA Cluster Attributes" in ZigBee document – "Zigbee Cluster Library OTA Cluster (0x0019) Test Specification" provided by the Connectivity Standards Alliance.


4.1.7.2 Commands

The OTA Client cluster can send the following commands:

ld#	Name	Man/Opt	Relevance and ref.
0x01	Query Next Image request	М	6.10.1 OTA Cluster Command Identifiers
0x03	Image Block Request	М	6.10.1 OTA Cluster Command Identifiers
0x06	Upgrade End Request	М	6.10.1 OTA Cluster Command Identifiers

4.1.7.3 OTA Upgrade Messages Diagram

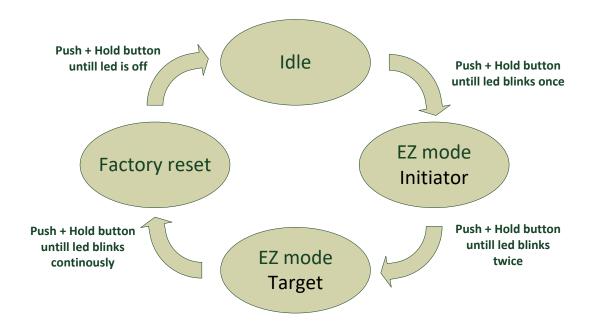
4.1.8 Time - Cluster id 0x000A

The Time cluster is a general cluster for time it is based on a UTC time in seconds since 0 hrs 0 mins 0 sec on 1st January 2000. Refer to [Z2] for ZigBee specification of the time cluster.

The device will use this clusters as a client – provided that a suitable Time Server is available on the coordinator in the network.

4.1.8.1 Attribute

Id#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0000	Time	UTCTime	Туре	М	The module will
		(Uint32)	range		periodically update its
					clock by synchronizing
					through this cluster
0x0001	TimeStatus	8 bit bitmap	00000xxx	М	



5 MMI user guide

5.1 Push Button Menu

Pushing the button on a device provides the user with several possibilities.

Pushing the button for longer (push, hold for a few seconds, and release) allows the user to set the device into a desired mode. A mode change happens at 5 second interval. Below, these modes are illustrated in a state chart.

When cycling through the menu modes, the state is indicated by a number of 100ms blinks on the LED. The device is supporting the ZigBee standardized EZ- mode Commissioning.

5.1.1 EZ mode - Initiator

If the devices is not on the network EZ-Mode Network Steering is invoked when the user enter this menu. The led blinks once every 1 sec until the devices has joined the network. If the device was already on the network it will broadcast the PermitJoin messages. It is the trust center policy that decides if the device is allowed to join the network.

When the device has joined the network EZ-Mode Finding and Binding is invoked and the device start to blink every 3 sec until a cluster match is found. When a match is found or the cluster examine is finished the blinking stops and the device sends a messages to the target device to stop the identify time.

The following clusters are support in EZ-mode finding and binding:

- Humidity cluster
- Temperature cluster
- Power configuration cluster

The EZ-mode time is hard coded to 3 minutes. This is the Minimum and recommended PermitJoin time broadcast for EZ-Mode Network Steering and minimum IdentifyTime set for EZ-Mode Finding and Binding. If the user enters the menu again another 3 minutes is started.

5.1.2 EZ mode - Target

If the devices is not on the network EZ-Mode Network Steering is invoked when the user enter this menu. The led blinks twice every 1 sec until the devices has joined the network. If the device was already on the network it will broadcast the PermitJoin messages. It is the trust center policy that decides if the device is allowed to join the network.

When the device has joined the network identify mode is invoke and the device start to blink twice every 3 sec until identify mode is stopped or after the EZ-mode time has expired. If the user enters the menu again another 3 minutes is started.

5.1.3 Factory reset

To allow a device to join a network, one either has to power up a device that has not previously joined a network or push the button until the Reset To Factory default mode is indicated – and subsequently release the button. This will cause the device to reset to its factory default state and scan for a suitable coordinator.

From SW version 3.4.2 the devices will send a network leave indication, if possible, before it starts factory resetting the devices.

5.2 Action on Power On

As a general rule, all end devices and routers that have not previously joined a network (or have been reset to factory default) will start up and search for a network with join permit open. In this mode, the LED will flash once every second.

Once the device has joined the network, is will start scanning for an OTA server, Time server, Poll control client and an IAS Zone client.

If a device has joined a network and is powered down, it will attempt to rejoin this network upon power up. For the first 30 seconds hereafter, the device will be available for communication. This time can be expanded using the poll control cluster functionality.

6 General network behaviour

6.1 Installation

When the device is virgin and powered for the first time it will start looking for a ZigBee PAN Coordinator or router to join. The device will scan each ZigBee channel starting from 11 to 24. The LED will flash once every second until it joins a device.

#Scan mode - 1	#Sleep mode	#Scan mode - 2	#Sleep mode	#Scan mode - 2
Scan all 16 ZigBee	MCU is in	Scan all 16 ZigBee	MCU is in	Scan all 16 ZigBee
channels until	sleep mode (Radio off) 15	ch x 1 or until join	sleep mode (Radio off) 15	ch x 1 or until join
join network or 15	, ,	network	minutes	network
minutes		~ 30 seconds		~ 30 seconds

The device will start up using scan mode 1. To increase battery lifetime when the device is joining a network for the first time a scan mode 2 will be used after scan mode 1 has expired. Scan mode 1 it will only be executed one time when the device is powered. If the user invokes EZ-mode it will start scanning the next 3 minutes.

In section 5 "MMI" it is explained how to put the device into a join or leave network mode.

Network settings are stored in NV-memory are after a power cycle the device re-join the same network.

If the device has to join a new PAN coordinator the MMI menu supports a "Reset To Factory Fresh Settings" mode. This will erase all current network information.

6.2 Normal - Keep alive

The device is sending a "keep alive" message to the PAN coordinator every 15 minute to verify that the device is still connected to the network.

6.2.1 Network lost

If no "keep alive" responses are received 5 times in a row (Worst case 1h15m), the devices will start scanning as specified in the table below.

When the device is in scan mode the LED will flash once every second until it re-joins the network.

According to the ZigBee specification TX is NOT allowed to be enabled all the time and a TX silent period has to be defined.

#Scan mode - 1	#Sleep mode	#Scan mode - 2	#Sleep mode	#Scan mode - 2
Scan current ch	MCU is in	Scan current ch	MCU is in	Scan current ch
3 times	sleep mode	3 times	sleep mode	3 times
Scan remaining	(Radio off) 15 minutes	Scan remaining	(Radio off) 15 minutes	Scan remaining
15 ch 1 time		15 ch 1 time		15 ch 1 time
Scan all 16 ch 3				
times				

6.3 Low battery

The current battery voltage can be read from the power configuration cluster described in section 4.3.1. The attribute "BatteryVoltage" is measuring the battery voltage, in units of 100mV.

To detect low battery the system can monitor the "BatteryVoltage" by setting up a reporting interval of every 12 hour. When a voltage of 2.45V is measured the battery should be replaced.

Low batt LED indication - RED LED will blink twice every 60 seconds.

7 Specifications

General	
Dimensions (Ø x H)	Ø 70 x 70 x 21 mm
Colour	White
Power supply	Battery: 2 x AA exchangeable
	Battery life: up to 5 years, reporting every 5 minutes
Radio	Sensitivity: -92 dBm
	Output power: +3 dBm
Environment	IP class: IP20
	Operation temperature 0 to +50°C
	Relative humidity 10-95% non-condensing
Function	
Humidity sensor	Range: 0 to 100% RH
	Resolution: 1% RH (accuracy TYP ± 3,5% rH, 20-80% rH)
	Reporting: configurable
Temperature sensor	Range: 0 to +50°C
	Resolution: 0.1°C (Accuracy TYP ±0.5°C and Max ±2°C)
	Sample time: config.: 2s – 65,000s
	Reporting: configurable
Communication	
Wireless protocol	ZigBee Home Automation 1.2 certified
	ZigBee end-device
Certifications	
	Conforming to CE, RED and RoHS and directives

8 Contact Information

Technical support: Please contact Onics for support.

products@onics.com

Sales: Please contact Onics for information on prices, availability, and lead

time.

info@onics.com

