onics.

Intelligent Smoke Alarm - SMSZB-120

Technical manual

Revised 27.08.2025

Table of Contents

	Caut	ionary notes	5
2	Feat	ures	6
2.1	Sm	noke Alarm - SMSZB-120	6
2.2	IAS	S Zone	6
2.3	Тег	mperature	6
2.4	Ke	y features	6
3	Endr	points	7
3.1	Ziç	Bee Device Object (ZDO)	7
3.2	IAS	S Zone	7
3.3	Tei	mperature Sensor	7
3.4	Or	ics Utility	7
	Supp	oorted Clusters	8
	Со	mmon clusters for each end point	8
4		Basic – Cluster id 0x0000	8
4		Identify – Cluster id 0x0003	9
	IAS	S Zone Device – EP 0x23	9
4		IAS Zone - Cluster id 0x0500	9
4		Power Configuration - Cluster id 0x0001	12
4	1.2.3	Poll Control - Cluster id 0x0020	13
4		IAS WD – Cluster id 0x0502	.14
4	1.2.5	OTA Upgrade - Cluster id 0x0019	15
4	1.2.6	Time – Cluster id 0x000A	17
4		Binary Input Cluster - Cluster id 0x000F	17
4.3	Тег	mperature Sensor Device – EP 0x26	. 18
4	1.3.1	Temperature Measurement – Cluster id 0x0402	. 18
5	ММІ	user guide	20
5.1	Pu	sh Button Menu	20

5.1.1	1 EZ mode - Initiator	20
5.1.2	2 EZ mode - Target	21
5.1.3	3 Factory reset	21
5.2	Action on Power On	21
6 G	General network behaviour	22
6.1	Installation	22
6.2	Normal – Keep alive	22
6.2.	.1 Network lost	22
6.3	Low battery	23
6.4	Test/Alarm button	23
6.4.	.1 Short Press	23
6.4.	.2 Long Press	23
	.3 Press During Alarm	
7 S	pecifications	25
8 C	Contact Information	26

Copyright © Onics Denmark A/S (Formerly Develco Products Denmark A/S)

All rights reserved.

Onics assumes no responsibility for any errors, which may appear in this manual. Furthermore, Onics reserves the right to alter the hardware, software, and/or specifications detailed herein at any time without notice, and Onics does not make any commitment to update the information contained herein.

All the trademarks listed herein are owned by their respective owners.

RoHS (

(€

1 Cautionary notes

Onics Denmark A/S reserves the right to make changes to any product to improve reliability without further notice. Onics Denmark A/S does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under patent rights or the rights of third parties.

2 Features

2.1 Smoke Alarm - SMSZB-120

Smoke-level and temperature monitoring for optimal fire detection.

With the Smoke Alarm from Onics (Formerly Develco Products), you will never have to worry about fire or smoke in your home again.

The Smoke Alarm will alert you about smoke while at home using a loud sound as a warning. While away you can be alarmed through an internet connected gateway.

Moreover, the Smoke Alarm will report the status and temperature every two minutes via the system you have in your home.

The wireless Smoke Alarm is battery powered and easily mounted to the ceiling with the included screws.

2.2 IAS Zone

The Smoke Alarm is implemented as a IAS Zone ZigBee end point according to ZigBee Home Automation profile "IAS Zone".

2.3 Temperature

The temperature sensor measures temperature with a resolution of 0.1°C.

It supports standard ZigBee reporting (on change or interval).

The end point is configured as the Home Automation profile "Temperature Sensor"

2.4 Key features

Key features are:

- Alarm sensor IAS Zone
- Warning device IAS WD
- Temperature sensor
- Binary Input cluster
- Certified ZigBee Home Automation application profile
- ZigBee PRO is supported
- Standard ZigBee Home Automation security and stack settings are used.

3 Endpoints

The device implements the following standard HA devices on different end points.

3.1 ZigBee Device Object (ZDO)

- End point number 0x00
- Application profile Id 0x0000
- Application device Id 0x0000
- Supports all mandatory clusters

3.2 IAS Zone

- End point number 0x23
- Application profile Id 0x0104 (Home Automation)
- Application device Id 0x0402

3.3 Temperature Sensor

- End point number 0x26
- Application profile Id 0x0104 (Home Automation)
- Application device Id 0x0302

3.4 Onics Utility

- Application profile Id 0xC0C9 (Onics (Formerly Develco Products) private profile)
- Application device Id 0x0001
- Manufactor code is 0x1015
- Private profile for internal Onics (Formerly Develco Products) use only.

Reference documents:

- [Z1] Zigbee Specification Rxx
- [Z2] Zigbee Cluster Library Specification Rx
- [Z3] Base Device Behavior Specification
- [Z4] PRO Base Device Behavior Specification

They can all be downloaded from:

https://csa-iot.org/developer-resource/specifications-download-request/

4 Supported Clusters

4.1 Common clusters for each end point

The ZCL "General Function Domain" clusters in this section are implemented as server clusters. Refer to ZigBee Cluster Library Specification Rx.

https://csa-iot.org/developer-resource/specifications-download-request/

4.1.1 Basic - Cluster id 0x0000

Only the first set has mandatory attributes, also the optional attributes that can be relevant to a Onics' (Formerly Develco Products) device are all in set 0x000

4.1.1.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
OxO	ZCLVersion	Uint8	Type range	М	
0x4	ManufacturerName	String	0-32 byte	0	4.1.1.1.1
0x5	Modelldentifier	String	0-32 byte	0	4.1.1.1.2
0x6	DateCode	String	0-32 byte	0	
0x7	PowerSource	8 bit enum	Type range	М	

4.1.1.1.1 ManufacturerName

4.1.1.1.2 ModelIdentifier

4.1.1.2 Manufacture Specific Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x8000	PrimarySwVersion	OctetString		М	SW version

ZCL header setting – Manufactor code for Onics (Formerly Develco Products) is 0x1015

[&]quot;frient A/S" or "Develco Products A/S" – depending on the product version.

[&]quot;SMSZB-120"

4.1.2 Identify - Cluster id 0x0003

4.1.2.1 Attribute

ld#	Name	type	range	Man/Opt	Relevance and ref.
0x0000	IdentifyTime	Uint16	Type range	М	

4.1.2.2 Commands

The identify cluster has 2 commands as server.

ld#	Name	Payload	Man/Opt	Relevance and ref.
0x00	Identify	Uint16 - Identify Time (seconds)	М	
0x01	Identify Query	none	М	

The identify cluster has I command as client.

ld#	Name	Payload	Man/Opt	Relevance and ref.
0x00	Identify Query	Uint16 - Identify Time	М	
	Response	(seconds)		

4.2 IAS Zone Device - EP 0x23

4.2.1 IAS Zone - Cluster id 0x0500

The IAS Zone cluster is described in ZigBee Cluster Library Specification Rx.

4.2.1.1 Attribute

ld#	Name	Туре	Man/Opt	Relevance and ref.
0x0000	Zone State	8-bit	М	
0.0000	Zone State	Enumeration	1 1 1	
0x0001	Zone Type	16-bit	М	Hard coded to 0x0028
0.0001		Enumeration		FireSensor
	Zone Status			The following bits are
0x0002		Uint16	М	supported:
				Bit0: Alarm 1

				Bit3: Battery (30 days
				left)
				Bit4: Supervision reports
				Bit5: Restore reports
				Bit8: Test
0x0010	IAS CIE	Valid 64-bit IEEE address	М	
000010	Address	Valid 07-bit ILLL address		
0x0011	ZoneID	Uint8	М	

4.2.1.1.1 Zone State

The device will automatically start to scan the network for an IAS Zone client in a predefine interval. When the client is found it will automatically attempt to enrol. When it has successfully enrolled the Zone Status command is send every 5 minutes.

The attribute value will change from not enrolled (0x00) to Enrolled (0x01)

4.2.1.1.2 IAS CIE Address

Attribute specifies the address that commands generated by the server shall be sent to.

To un-enroll the device the back end system has to write a new address into this attribute. Any value is valid. If the back end system writes an IEEE adr then it will try to enrol to this devices represented by the IEEE adr.

4.2.1.1.3 ZoneID

A unique reference number allocated by the CIE at zone enrollment time.

Used by IAS devices to reference specific zones when communicating with the CIE. The *ZoneID* of each zone stays fixed until that zone is unenrolled.

4.2.1.2 Commands

The IAS Zone cluster has 2 commands as server.

ld#	Name	Payload			Man/Opt	Relevance and ref.
0x00	Zone Status Change Notification	Uint16 – bi	t mask		М	The status is report to the coordinator every 5 min
		Bits	16	16		
0x01	Zone Enroll Request	Data type	16 bit enum	UINT16	М	
		Field name	Zone type	Manufacturer code		

Init sequence – when the device has join the network it start to scan for an IAS zone client cluster. If a client is found a Zone enroll request command is send and a Zone Enroll response is expected. If it doesn't receive a response within 15 sec it gives up and will continue to scan x number of attempts. When the init sequence is over it will enter a state where it scans for a client every 12 hour.

The following bits are supported in Zone status:

Bit0: Alarm 1

Bit3: Battery

Bit4: Supervision reports

Bit5: Restore reports

Bit8: Test

Bit0: Alarm

Note: How to clear a alarm in the "Zone status"

The sensor requests ZCL Default Response on the Zone Status Change notification, if any new Alarm bit has been set. Until the IAS CIE has acknowledged the received alarm by sending the mandated Default Response, the Alarm bits are not cleared – even if there is no longer an alarm

situation. When the Default Response is received, a new Zone Status Change notification is sent with the Alarm bits cleared, if the alarm situation has disappeared since sending the Zone Status message with alarm set.

Bit3: When the battery is below **2.8 VDC**. Battery bit is set high and "Zone Status" is transmitted to the coordinator.

4.2.2 Power Configuration - Cluster id 0x0001

The power configuration cluster is described in ZigBee Cluster Library Specification Rx.

4.2.2.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0020	BatteryVoltage	Uint8	0x00 - 0xFF	0	ZCL configure reporting is supported
0x0031	BatterySize	enum8	CR123A (0x08)	0	
0x0033	BatteryQuantity	Uint8	1	0	
0x0034	BatteryRatedVoltage	Uint8	30	0	Unit is in 100 mV
0x0036	BatteryVoltageMinTh reshold	Uint8	28		Unit is in 100 mV
0x003E	BatteryAlarmState	Мар32		0	BitO: BatteryVoltageMinThres hold Is set if BatteryVoltage has been below BatteryVoltageMinThres hold or other internal circuits has deemed the supply to be inadequate. This bit will only reset after a power cycle. The condition will also be shown on the MMI LED, see MMI description.

		Reportable. Default Min
		12 hours, max 12 hours

Note: The attribute "BatteryVoltage" is measuring the battery voltage, in units of 100mV.

4.2.3 Poll Control - Cluster id 0x0020

The poll control cluster is described in ZigBee Cluster Library Specification Rx.

This cluster provides a mechanism for the management of an end device's MAC Data Request rate. For the purposes of this cluster, the term "poll" always refers to the sending of a MAC Data Request from the end device to the end device's parent.

This cluster can be used for instance by a configuration device to make an end device responsive for a certain period of time so that the device can be managed by the controller.

4.2.3.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0000	0x00 - Ox00 - M		М	Default value is 1 hour	
			OxFF		
0x0001	LongPoll Interval	Uint32		М	Default value is 7.5 seconds
0x0002	ShortPollIntervall	Uint16		М	Default value is 1 seconds
0x0003	FastPollTimeout	Uint16		М	Default value is 5 minutes

Start up, auto scan for client poll control cluster on the coordinator. If it is support on the coordinator an auto bind is created and the smoke sensor will send a check-in command in the interval specified in attribute "Check-inInterval. The coordinator has to reply with a check-in response. The sensor supports the following commands send from the client (Typically the coordinator).

- 0x00 Check-in Response,
- 0x01 Fast Poll Stop,
- 0x02 Set Long Poll Interval,
- 0x03 Set Short Poll Interval.

If it doesn't find a poll client it will search again periodically.

4.2.4 IAS WD - Cluster id 0x0502

The IAS WD cluster is described in ZigBee Cluster Library Specification Rx.

Using this cluster, a ZigBee device can access a ZigBee enabled IAS WD device and issue alarm warning indications (Smoke siren) when a system alarm condition is detected.

4.2.4.1 Attribute

Id#	Name	Type	Range	Man/Opt	Relevance and ref.
0x0000	MaxDuration	Uint16	Type range	М	Default is 240 sec

The *MaxDuration* attribute specifies the maximum time in seconds that the siren will sound continuously, regardless of start/stop commands.

4.2.4.2 Commands

The IAS WD cluster has I command as server.

ld#	Name	Man/Opt	Relevance and ref.
0x00	Start warning	М	

4.2.4.2.1 Command - Start warning

This command starts the WD operation. The WD alerts the surrounding area by audible (siren).

The Start Warning command payload shall be formatted as illustrated

Command Data	Size	Description
Warning	1 by # 0	0 = Siren off
warning	1 byte	1 = Siren On
Warning duration	2 byte	Warning duration is sec

Note: The start warning command doesn't set the alarm bit in the IAS Zone status.

The alarm is only triggered if the devices detect smoke or fire.

4.2.5 OTA Upgrade - Cluster id 0x0019

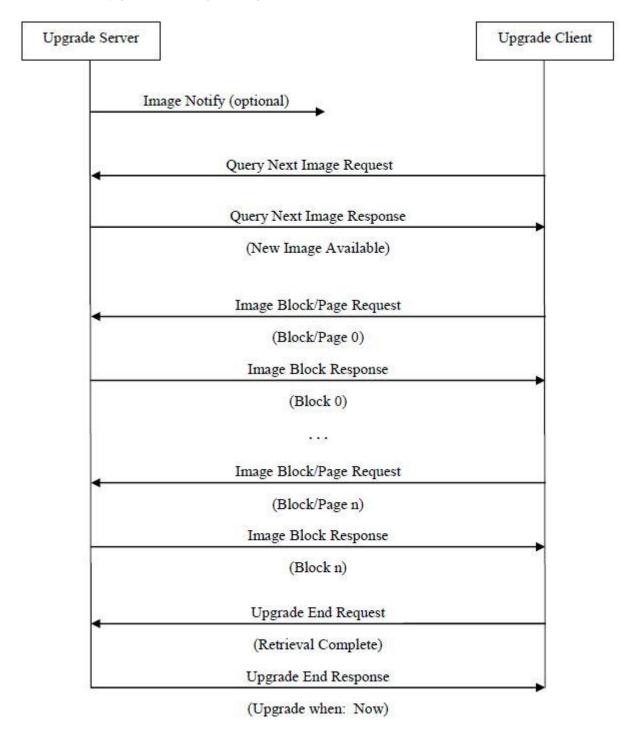
The cluster provides a ZigBee standard way to upgrade devices in the network via OTA messages. The devices support the client side of the cluster.

When the devices has joined a network it will automatically auto scan for a OTA upgrade server in the network. If it finds a server an auto bind is created and ones every 24 hour it will automatically send its "current file version" to the OTA upgrade server. It is the server that initiate the firmware upgrade process.

4.2.5.1 Attributes

ld#	Name	Туре	Range	Man/	Relevance and
		. 7		Opt	ref.
0x0000	UpgradeServerID	IEEE	_	М	
		Address			
0x0001	FileOffset	Uint32	Type range	0	
0x0002	CurrentFileVersion	Uint32	Type range	0	
0x0003	CurrentZigBeeStackVersion	Uint16	Type range	0	
0x0004	DownloadedFileVersion	Uint32	Type range	0	
0x0005	DownloadedZigBeeStackVersion	Uint16	Type range	М	
0x0006	ImageUpgradeStatus	8 bit	0x00 to	0	
σχοσσσ	imageopgradestatus	enum	OxFF		
0x0007	Manufacturer ID	Uint16	Type range	0	
0x0008	Image Type ID	Uint16	Type range	0	
0x0009	MinimumBlockRequestDelay	Uint16	Type range	0	

Above attribute description is to be found in section 6.7 "OTA Cluster Attributes" in ZigBee document – "Zigbee Cluster Library OTA Cluster (0x0019) Test Specification" provided by the Connectivity Standards Alliance.


4.2.5.2 Commands

The OTA Client cluster can send the following commands

ld#	Name	Man/Opt	Relevance and ref.
0x01	Query Next Image request	М	6.10.1 OTA Cluster Command Identifiers
0x03	Image Block Request	М	6.10.1 OTA Cluster Command Identifiers
0x06	Upgrade End Request	М	6.10.1 OTA Cluster Command Identifiers

4.2.5.3 OTA Upgrade Messages Diagram

4.2.6 Time - Cluster id 0x000A

The Time cluster is a general cluster for time it is based on a UTC time in seconds since 0 hrs 0 mins 0 sec on 1st January 2000. Refer to [Z2] for ZigBee specification of the time cluster.

The device will use this clusters as a client – provided that a suitable Time Server is available on the network (most likely on the Gateway)

4.2.6.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0000	Time	UTCTime (Uint32)	Type range	М	The module will periodically update its clock by synchronizing through this cluster
0x0001	TimeStatus	8 bit bitmap	00000xxx	М	

4.2.7 Binary Input Cluster - Cluster id 0x000F

The Binary input cluster is described in ZigBee Cluster Library Specification Rx.

4.2.7.1 Attribute

ld#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x001C	Description	String	Fire	0	
0x0051	OutOfService	Bool	False (0) or True (1)	М	If True, PresentValue will no longer follow the physical input, but will be writeable
0x0055	PresentValue	Bool	False (0) or True (1)	М	Reflects the state of the Smoke alarm, unless it is disabled by setting the OutOfService attribute to True.

					Reportable. Default Min
					1 sec, max 10 min
0,,000	Doliobillity	Enum8			0 – No Fault Detected
0x0067	Reliabillity	Enumo		0	Reportable.
					Bit1: Fault. If set, the
					source can be read in the
0x006F	StatusFlag	Мар8	0x00-0x0F	М	Reliability attribute
					Reportable. Default Min
					1 sec, max 10 min

4.3 Temperature Sensor Device – EP 0x26

4.3.1 Temperature Measurement – Cluster id 0x0402

The temperature measurement cluster is described in ZigBee Cluster Library Specification Rx section 4.4

4.3.1.1 Attribute

Id#	Name	Туре	Range	Man/Opt	Relevance and ref.
0x0000	MeasuredValue	Sint16	MinValue to	М	
			MaxValue		
0x0001	MinMeasuredValue	Sint16	0	М	
0x0002	MaxMeasuredValue	Sint16	5000	М	

4.3.1.1.1 MeasuredValue

Default reporting is set to

Min reporting interval: 60 sec

Max reporting interval: 600 sec

Reportable Change: 0.1 °C

If the temperature value is stable it will be send every 10 minutes.

If the temperature changes more than 0.1 $^{\circ}$ C it will be reported but not faster than every 1 minute since last reporting value.

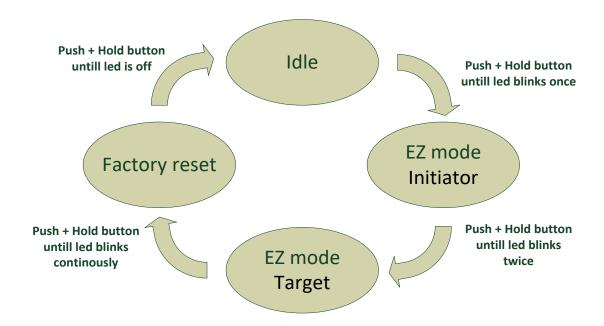
Note: Min reporting interval 0 sec is invalid when reportable change is configured.

4.3.1.1.2 MinMeasuredValue

The temperature sensor is NOT supporting temperature measurements below 0 degrees Celsius

4.3.1.1.3 MaxMeasuredValue

The temperature sensor is NOT supporting temperature measurements above 50 degrees Celsius



5 MMI user guide

5.1 Push Button Menu

Pushing the button on a device provides the user with several possibilities.

Pushing the button for longer (push, hold for a few seconds, and release) allows the user to set the device into a desired mode. A mode change happens at 5 second interval. Below, these modes are illustrated in a state chart.

When cycling through the menu modes, the state is indicated by a number of 100ms blinks on the LED. The device is supporting the ZigBee standardized EZ- mode Commissioning.

5.1.1 EZ mode - Initiator

If the devices is not on the network EZ-Mode Network Steering is invoked when the user enter this menu. The led blinks once every 1 sec until the devices has joined the network. If the device was already on the network it will broadcast the PermitJoin messages. It is the trust center policy that decides if the device is allowed to join the network.

When the device has joined the network EZ-Mode Finding and Binding is invoked and the device start to blink every 3 sec until a cluster match is found. When a match is found or the cluster examine is finished the blinking stops and the device sends a messages to the target device to stop the identify time.

The following clusters are support in EZ-mode finding and binding:

- Temperature cluster
- Power configuration cluster

The EZ-mode time is hard coded to 3 minutes. This is the Minimum and recommended PermitJoin time broadcast for EZ-Mode Network Steering and minimum IdentifyTime set for EZ-Mode Finding and Binding. If the user enters the menu again another 3 minutes is started.

5.1.2 EZ mode - Target

If the devices is not on the network EZ-Mode Network Steering is invoked when the user enter this menu. The led blinks twice every 1 sec until the devices has joined the network. If the device was already on the network it will broadcast the PermitJoin messages. It is the trust center policy that decides if the device is allowed to join the network.

When the device has joined the network identify mode is invoke and the device start to blink twice every 3 sec until identify mode is stopped or after the EZ-mode time has expired. If the user enters the menu again another 3 minutes is started.

5.1.3 Factory reset

To allow a device to join a network, one either has to power up a device that has not previously joined a network or push the button until the Reset To Factory default mode is indicated – and subsequently release the button. This will cause the device to reset to its factory default state and scan for a suitable coordinator.

5.2 Action on Power On

As a general rule, all end devices and routers that have not previously joined a network (or have been reset to factory default) will start up and search for a network with join permit open. In this mode, the LED will flash once every second.

Once the device has joined the network, is will start scanning for an OTA server, Time server, Poll control client and an IAS Zone client.

If a device has joined a network and is powered down, it will attempt to rejoin this network upon power up. For the first 30 seconds hereafter, the device will be available for communication. This time can be expanded using the poll control cluster functionality.

6 General network behaviour

6.1 Installation

When the device is virgin and powered for the first time it will start looking for a ZigBee PAN Coordinator or router to join. The device will scan each ZigBee channel starting from 11 to 24. The LED will flash once every second until it joins a device.

#Scan mode - 1	#Sleep mode	#Scan mode - 2	#Sleep mode	#Scan mode - 2
Scan all 16	MCU is in sleep	Scan all 16	MCU is in sleep	Scan all 16
ZigBee channels	mode (Radio off)	ZigBee ch x 1 or	mode (Radio off)	ZigBee ch x 1 or
until join	15 minutes	until join	15 minutes	until join
network or 15		network		network
minutes		~ 30 seconds		~ 30 seconds

The device will start up using scan mode 1. To increase battery lifetime when the device is joining a network for the first time a scan mode 2 will be used after scan mode 1 has expired. Scan mode 1 it will only be executed one time when the device is powered. If the user invokes EZ-mode it will start scanning the next 3 minutes

In section 5 "MMI" it is explained how to put the device into a join or leave network mode.

Network settings are stored in NV-memory are after a power cycle the device re-join the same network.

If the device has to join a new PAN coordinator the MMI menu supports a "Reset To Factory Fresh Settings" mode. This will erase all current network information.

6.2 Normal - Keep alive

The device is sending a "keep alive" message to the PAN coordinator every 15 minute to verify that the device is still connected to the network.

6.2.1 Network lost

If no "keep alive" responses are received 5 times in a row (Worst case 1h15m), the devices will start scanning as specified in the table below.

When the device is in scan mode the LED will flash once every second until it re-joins the network.

According to the ZigBee specification TX is NOT allowed to be enabled all the time and a TX silent period has to be defined.

#Scan mode - 1	#Sleep mode	#Scan mode - 2	#Sleep mode	#Scan mode - 2
Scan current ch	MCU is in sleep	Scan current ch 3	MCU is in sleep	Scan current ch 3
3 times	mode (Radio off)	times	mode (Radio off)	times
Scan remaining	15 minutes	Scan remaining	15 minutes	Scan remaining
15 ch 1 time		15 ch 1 time		15 ch 1 time
Scan all 16 ch 3				
times				

6.3 Low battery

The current battery voltage can be read from the power configuration cluster described in section 4.3.1. The attribute "BatteryVoltage" is measuring the battery voltage, in units of 100mV.

Low batt LED indication - RED LED will blink twice every 60 second

6.4 Test/Alarm button

The test button on the alarm has two modes. When pressing the test button, the siren will sound. This is referred as the 'Short Press'. If it is hold for 6.5 seconds and released, it will additionally perform what is here called a 'Long Press'

Please look at the installation manual section "testing" regarding location of the test button.

6.4.1 Short Press

As soon that the button is pressed, the siren will sound in order to verify that the device is operational.

6.4.2 Long Press

A network alarm test can be performed by holding down the test button for at least 6.5 seconds (count 2 sets of 3 sound sweeps). When this is activated, a zone status change is generated with the test bit set followed with a message two seconds later where the bit is cleared. The alarm will also start emitting small blips – these can be silenced by shortly pressing the button again.

6.4.3 Press During Alarm

The button can also be used to silence the siren. If the siren has been started by this device, it will also signal this by sending a zone status change with the alarm bit cleared. If smoke is still detected after 10 minutes, the siren will re-activate.

7 Specifications

General	
Dimensions (Ø x H)	Ø 65 x 40 mm
Colour	White
Power supply	Battery: 1 x CR123 exchangeable
	Battery life: up to 3 years, 5 minutes reporting
Radio	Sensitivity: -92 dBm
	Output power: +4 dBm
Environment	IP class: IP20
	Operation temperature 0 to +50°C
	Relative humidity 10-95% non-condensing
Function	
Smoke Alarm	Optical
	Siren output 85dB/3m
Temperature sensor	Range: 0 to +50°C
	Resolution: 0.1°C (Accuracy TYP ±0.5°C and Max ±2°C)
	Sample time: config.: 2s – 65,000s
	Reporting: configurable
Communication	
Wireless protocol	ZigBee Home Automation compliant
	ZigBee end-device
- 10	
Certifications	
	Conforming to CE, RED, EMC and RoHS directives
	DIN EN 14604 and DIN 14676 certified

8 Contact Information

Technical support: Please contact Onics for support.

products@onics.com

Sales: Please contact Onics for information on prices, availability, and lead

time.

info@onics.com

