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Following up on our announcements on Agentune and 
Agentune-Simulate, we expand here on how to evaluate 
and benchmark agent optimizers, extending our work on 
benchmarking insight discovery from late 2024.

Today we are releasing a 3-component package for 
evaluating insight-discovery tools/agents:

Agentune is an open-source engine that brings structure 
to agent performance through a disciplined Analyze → 
Improve → Evaluate cycle. It treats agents like teammates: 
scoring real and simulated interactions, mining transcripts 
for root causes, and iteratively shipping targeted 
improvements.

1.	 A github repository implementing the benchmark 
evaluation framework and the python package 

2.	 A benchmark curriculum folder containing insight-
discovery problems and ground-truth insights. 

3.	 A python package insight_eval on pypi

We believe that operational AI agents in general, and 
customer-facing AI agents in particular, can and should be 
improved over time. Equipped with GenAI optimization 
tools, there is no reason they should not evolve even more 
effectively than top-performing human agents do.

To realize this vision, we focus on operational AI agents that 
are designed and built with a KPI at mind, and in many cases 
a combination of KPIs.

This article is about two different layers related to evaluating 
agent optimization:

1.	 How to evaluate the agent wrt its KPIs

2.	 How to evaluate an agent-optimization technology

Highlights
Together with this article, we are releasing the benchmark 
curriculum version 1.1, composed of 197 problems with 
ground truth, each including the problem specification as 
well as the problem data. The ground truth, includes in 
addition to the insights to be discovered, the enriched data 

with the computed values associated with the insights.

The new benchmark repository addresses feedback on 
problem composition and the need for greater difficulty 
variation. This version’s problems offer wide variety across 
several dimensions: associated use case, number of 
insights to be discovered, number of data tables, number 
of columns in the primary table, strength of insights relative 
to the target, and empirical problem difficulty. We focused 
on fewer problem domains to achieve higher richness 
within domains and keep the total number of problems 
under 200.

We are also expanding the evaluation framework that was 
introduced in the first version.

In order to avoid confusion in terminology, we will be 
referring to agents when we talk about operational 
customer-facing agents, and to insight-discovery-
tools when we talk about such tools used for agent 
optimization.

Our focus is on understanding and evaluating LLM-based 
tools for insight discovery, specifically their strengths and 
limitations.  To illustrate, we compare the performance of 
two insight-discovery tools on benchmark problems: 

Both tools, Single-Step and Two-Iteration, attempted 197 
problems, and provided 189, 190 solutions respectively. 
However the number of valid solutions is significantly 
different 186 (Single-Step) vs 149 (Two-Iterations).Below 
you can see that the two-iterations tool performs ~10% 
better than the simpler one. 

More details in the Insight Discovery Evaluation section 
below.



1. Recap of the Benchmarking 
LLMs Insight Discovery article
The first version of the benchmarking evaluation framework 
for insight-discovery outlined a novel approach composed 
of 2 components:

•	 A dynamic benchmark of insight-discovery problems, 
including data and ground-truth insights

•	 An evaluation framework for insight discovery 
capabilities in AI agents

The key challenges the framework is addressing are:

1.	 Create clarity and distinction between problem 
specifications, problem data, and ground-truth insights.

2.	 Handle multi-table data, beyond the primary data 
table, secondary tables provide important information 

3.	 Benchmark problems should be attached to a set 
of ground-truth insights; these insights are to be 
seamlessly planted in the data.

4.	 Provide effective metrics to evaluate an AI agent 
attempting the task of insight-discovery over the 

benchmark.

We outlined a system to automatically generate insight 
discovery problems, and attached a sample set of 
benchmark problem specifications. We did not attach 
problem data nor code for evaluation. These are part of 
today’s release. 

Reminder, a problem specification provides the elements 
required to generate a benchmark problem instance (data 
and metadata) :Problem name, Problem domain, Problem 
description, Required tables (and indication of the primary 
table, Target name, Insights to be discovered, Comments (for 
data, target and schema).

Finally, the article described a design of a dynamic 
benchmark generation system, that automatically generates 
problem specifications, and then problem and ground truth 
data.

2. On Agent Evaluation and 
Optimization
To optimize an agent, whether it’s a sales agent optimizing 
conversion rates and order values, or a support agent 
increasing resolution rates and reducing resolution times, 
we systematically apply the cycle below to continuously drive 
agent KPIs to the desired direction.

(Evaluate → ) Analyze → Improve → Evaluate

That is, we measure the KPIs for the current behavior of 
the agent, analyze what is driving each KPI up or down, and 
then propose decisions and actions to improve each KPI 
on its own and an overall KPI in case some of the KPIs are 
conflicting with each other.

A common evaluation approach is creating a reference 
benchmark and evaluating the agent against it, BUT how do 
you create a benchmark in a setup where every response 
of the agent changes the customer response? A static 
benchmark, even if custom-built for the use case, would not 
do the job. The same holds for historical data, labeled or 
unlabeled.



Last week, we announced Agentune-Simulate,  
empowering teams to iterate confidently toward better-
performing agents. It enables builders to test new agent 
versions safely within realistic, context-specific, yet 
use-case relevant simulations before going live. 

Agentune-Simulate provides, together with the conversation 
simulation, an indication of its outcome; the distribution 
of these outcomes is what’s needed to recalculate the 
operational KPIs of the agent. Thus, this constitutes the 
Evaluate component in the optimization cycle.

Later in 2025, we will release Agentune-Analyze, and 
Agentune-Improve will follow early 2026.

This brings us to the second question - how could one 
evaluate such agent-optimization technology?

3. Evaluating Agent 
Optimization
As we expect agents to continuously improve over time, we 
are logically bound to expect a technology optimizing agents 
to continuously improve as well. Therefore, we choose 
to apply the optimization cycle: Evaluate → Analyze → 
Improve → Evaluate to our own development process. 

This is exactly what we started last year, and continued 
this year. The benchmark we present today is still mostly 
focused on analyzing and finding insights in structured 
operational data. We have not yet included problems 
associated with customer-facing agents use-cases, and 
in particular the logs of the conversations carried out by 
such agents.

As we continue to develop the benchmark, we will make 
the adjustments needed to address metrics related to 
the conversational data, and incorporate the Agentune-
Simulate component to assess candidate agents.

As mentioned above, today’s release includes an 
expansion of the initial version of the evaluation 
framework introduced last year (aka V0). One of the 
dimensions the new benchmark version improves on the 
previous one is problem difficulty. In the next section we 
explain how we assess problem difficulty and provide 
various statistics of how problem difficulty varies by 
multiple problem attributes.

4. Distribution of Problems
The problems in this version have a wide variety in several 
dimensions: associated use case,  problem domain, number 
of insights to be discovered, number of data tables, number 
of columns in the primary table, number of ground-truth 
insights to be discovered, and the strength of these insights 
wrt the target. 

Note: the benchmark data is available here, where you will 
find two directories:

1.	 problems

2.	 agents_solutions

When generating the problems, we also wanted to have 
variety in the strength of the signal the ground-truth insights 
have wrt the target. Each problem has up to 3 target 
variations, differing only in the target column.

The target columns were generated using two computation 
models:

- Logistic (Type 1)

- Linear (Type 2)

each paired with one of three signal strengths:

- Balanced (a), where all insight patterns have similar signal 
weights

- Weakly Biased (b), where one of the patterns is weakly 
biased 

- Strongly Biased (c ), where one of the patterns is strongly 
biased. 

As a result problems are named with the following 
convention:

P[#]-[problem_name]-variation_[#]-type_[#][a|b]

Example: P6-Customer Churn Prediction-variation_2-type_2b 
-> (this one is Linear and Weakly biased)



Below we show the different frequency distributions with 
respect to several different problem attributes. Later, 
when we explain problem difficulty estimation, we also 
show how problem difficulty varies by different attributes

Note that out of the 200+ problems in V0, we kept 29 
problems. We chose to focus on fewer problem domains, 
with the intent to have higher richness within domains 
and keep the number of problems under 200. 

5. Evaluation Metrics - V1.1
The new evaluation framework (Insight-Eval) expands on 
the metrics we introduced last year. While keeping the 
major evaluation categories: 

•	 Coverage,

•	 Predictive Performance (which we also referred to as 
Statistical Power), and 

•	 Proper Use of Data

We observed that Correlation Coverage does not 
always reflect the true extent to which the ground-truth 
insights are captured by the solution. Specifically, when 
a discovered feature captures the essence of a ground-
truth feature but does so via a non-monotonic mapping, 
neither the Pearson nor the Spearman correlation would 
adequately reflect this relationship.

To address this, we explored a variety of additional 
coverage metrics. In this release, we introduce several of 
these new metrics:

Coverage:

•	 Incremental Performance Coverage

•	 Single-Column Predictive Coverage

•	 Predictive Coverage

•	 Correlation Coverage (already part of V0)

Predictive Performance:

•	 Exclusive Performance

•	 Inclusive Performance (already part of V0 as Predictive 
Performance /Statistical Power)



Analyzing the overlap and signal dominance across these 
metrics, we identified the following two metrics as the 
most effective:

•	 Incremental Performance Coverage

•	 Single-Column Predictive Coverage

In addition to these two metrics, we introduce a holistic 
Coverage Score, defined as a weighted average of these 
two metrics, with respective weights of 0.3 and 0.7.

Detailed description of the new evaluation metrics is 
provided in Evaluation Metrics

6. Summary of Tool Evaluation
1.	 We use the evaluation framework introduced in 

our late 2024 article, and we add several evaluation 
metrics for robustness.

2.	 We refer to the single-step-tool that we also 
introduced last year. It is based on a single prompt 
for generating insight candidates + python code 
to execute them, and a non-LLM component for 
selection of the insights based on their performance 
wrt the target on a holdout sample).

3.	 The second tool performs two iterations over the 
single-step procedure, then it merges the results to 
get the best insight candidates (again by evaluating on 
a holdout sample).

As expected the two-iterations approach is better than 
the single-step approach when evaluated on a test set 
(unobserved by the tools). We also observe that tools 
performance varies by problem, thus concluding that 

7. Problem Difficulty
We introduce an empirical problem difficulty metric, 
based on evaluating both of the illustrative tools on a 
problem wrt the evaluation metrics introduced in section 
4.

We leverage the two insight-discovery prototypes 
mentioned in section 5 to estimate the difficulty of 
problems in the benchmark.

We identified key performance and coverage metrics and 
assigned difficulty ranges and importance weight for each.

Thresholds

Performance thresholds: 0.6, 0.7, 0.8, 0.9

Coverage thresholds: 0.1, 0.2, 0.4, 0.6, 0.75

Weights:

   Exclusive performance: 0.4

   Mean correlation coverage: 0.0

   Min incremental performance coverage: 0.18

   Mean predictive coverage: 0.0

   Mean single column predictive coverage: 0.42

The difficulty formula takes into account the minimum 
and maximum of each metric for both tools (single-step 
and two-iterations)and assigns a score in[0,1] according 
to the thresholds above. It then averages the minimum 
and maximum scores for each metric, and calculates the 
weighted average of the scores wrt the weights defined 
above. This is the overall difficulty score.

The detailed computation is taking place by the function 
estimate_problem_difficult in repo_eval_stats.py.

The difficulty score is mapped to a qualitative difficulty 
level: very easy, easy, medium, hard, very hard.

The below tables show how problem difficulty varies by 
different problem attributes

Difficulty typically increases with the number of tables 
with the most significant impact is from 2 to 3 tables and 3 
to 4 tables 

It appears that problem difficulty does not significantly 
correlate with the problem domain.



(*) domains with low representation were omitted

8. Next steps on Agentune & 
Towards Self-Improving Agent 
Optimization

As we build Agentune - SparkBeyond’s agent optimization 
platform, we will:

•	 Continue expanding our frameworks to evaluate 
customer-facing agents across their real KPIs

•	 Extend our insight-discovery benchmark to 
conversation-based data

•	 Use these tools to reflexively improve our Analyze 
and Improve components

so that agentune becomes a self-improving platform for 
self-improving agents.

Ideas for the next version of the  benchmarking 
framework include:

•	 Adding conversational data

•	 Adding metrics for insight coverage for conversational 
data

•	 Adding metrics for semantic coverage of ground-truth 
insights

If you are building customer-facing AI agents and want 
them to optimize themselves over time, we’d love to 
exchange ideas.
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