SPARK k BEYOND

Benchmarking
Agent Optimizers

A PATH TO
SELF-OPTIMIZATION

Benchmarking Framework for Agent Optimization s e

da
Comprehensive Ground-Truth Problem Set O

.
ZANSNY

s
i
P4
v b
4 6
1 4 3
9 2
£ 1 1 7 2 2 7
/ v A\ / 8 5 8 &
. . O

Measuring Agents and Optimization Tools /eeeeeefe

From Static Evaluation to Continuous Improvement [ee

Following up on our announcements on Agentune and
Agentune-Simulate, we expand here on how to evaluate
and benchmark agent optimizers, extending our work on
benchmarking insight discovery from late 2024.

Today we are releasing a 3-component package for
evaluating insight-discovery tools/agents:

Agentune is an open-source engine that brings structure
to agent performance through a disciplined Analyze >
Improve > Evaluate cycle. It treats agents like teammates:
scoring real and simulated interactions, mining transcripts
for root causes, and iteratively shipping targeted
improvements.

1. Agithub repository implementing the benchmark
evaluation framework and the python package

2. Abenchmark curriculum folder containing insight-
discovery problems and ground-truth insights.

3. A python package insight_eval on pypi

We believe that operational Al agents in general, and
customer-facing Al agents in particular, can and should be
improved over time. Equipped with GenAl optimization
tools, there is no reason they should not evolve even more
effectively than top-performing human agents do.

To realize this vision, we focus on operational Al agents that
are designed and built with a KPI at mind, and in many cases
a combination of KPIs.

This article is about two different layers related to evaluating
agent optimization:

1. How to evaluate the agent wrt its KPIs

2. How to evaluate an agent-optimization technology

Highlights

Together with this article, we are releasing the benchmark
curriculum version 1.1, composed of 197 problems with
ground truth, each including the problem specification as
well as the problem data. The ground truth, includes in
addition to the insights to be discovered, the enriched data

with the computed values associated with the insights.

The new benchmark repository addresses feedback on
problem composition and the need for greater difficulty
variation. This version’s problems offer wide variety across
several dimensions: associated use case, number of
insights to be discovered, number of data tables, number
of columns in the primary table, strength of insights relative
to the target, and empirical problem difficulty. We focused
on fewer problem domains to achieve higher richness
within domains and keep the total number of problems
under 200.

We are also expanding the evaluation framework that was
introduced in the first version.

In order to avoid confusion in terminology, we will be
referring to agents when we talk about operational
customer-facing agents, and to insight-discovery-
tools when we talk about such tools used for agent
optimization.

Our focus is on understanding and evaluating LLM-based
tools for insight discovery, specifically their strengths and
limitations. Toillustrate, we compare the performance of
two insight-discovery tools on benchmark problems:

Both tools, Single-Step and Two-Iteration, attempted 197
problems, and provided 189, 190 solutions respectively.
However the number of valid solutions is significantly
different 186 (Single-Step) vs 149 (Two-Iterations).Below
you can see that the two-iterations tool performs ~10%
better than the simpler one.

Lo: Single-Step vs Two-Iteration Tool Performance

Single-Step Tool
EEm Two-Iteration Tool

0.8} 0.775

0.676

0.606

o
o

0.483

Metric Score

o
>

0.2r

0.0

More details in the Insight Discovery Evaluation section
below.

— |

bz

1. Recap of the Benchmarking
LLMs Insight Discovery article

The first version of the benchmarking evaluation framework
for insight-discovery outlined a novel approach composed
of 2 components:

+ Adynamic benchmark of insight-discovery problems,
including data and ground-truth insights

« An evaluation framework for insight discovery
capabilities in Al agents

The key challenges the framework is addressing are:

1. Create clarity and distinction between problem
specifications, problem data, and ground-truth insights.

2. Handle multi-table data, beyond the primary data
table, secondary tables provide important information

3. Benchmark problems should be attached to a set
of ground-truth insights; these insights are to be
seamlessly planted in the data.

4. Provide effective metrics to evaluate an Al agent
attempting the task of insight-discovery over the

benchmark.

We outlined a system to automatically generate insight
discovery problems, and attached a sample set of
benchmark problem specifications. We did not attach
problem data nor code for evaluation. These are part of
today's release.

Reminder, a problem specification provides the elements
required to generate a benchmark problem instance (data
and metadata) :Problem name, Problem domain, Problem
description, Required tables (and indication of the primary
table, Target name, Insights to be discovered, Comments (for
data, target and schema).

Finally, the article described a design of a dynamic
benchmark generation system, that automatically generates
problem specifications, and then problem and ground truth
data.

Problem Maker

Synthetic
Data
Generator
Problem

Specification
Generator m
Generate detailed
problem

Benchmark
Problems

Problem specifications with

Archetypes problem-description,
associated KPI,
insights / factors to be

discovered

2. On Agent Evaluation and
Optimization

To optimize an agent, whether it's a sales agent optimizing
conversion rates and order values, or a support agent
increasing resolution rates and reducing resolution times,

we systematically apply the cycle below to continuously drive
agent KPIs to the desired direction.

(Evaluate >) Analyze - Improve - Evaluate

That is, we measure the KPIs for the current behavior of
the agent, analyze what is driving each KPI up or down, and
then propose decisions and actions to improve each KPI

on its own and an overall KPI in case some of the KPIs are
conflicting with each other.

A common evaluation approach is creating a reference
benchmark and evaluating the agent against it, BUT how do
you create a benchmark in a setup where every response
of the agent changes the customer response? A static
benchmark, even if custom-built for the use case, would not
do the job. The same holds for historical data, labeled or
unlabeled.

Last week, we announced Agentune-Simulate,
empowering teams to iterate confidently toward better-
performing agents. It enables builders to test new agent
versions safely within realistic, context-specific, yet
use-case relevant simulations before going live.

Agentune-Simulate provides, together with the conversation
simulation, an indication of its outcome; the distribution

of these outcomes is what's needed to recalculate the
operational KPIs of the agent. Thus, this constitutes the
Evaluate component in the optimization cycle.

Later in 2025, we will release Agentune-Analyze, and
Agentune-Improve will follow early 2026.

This brings us to the second question - how could one
evaluate such agent-optimization technology?

3. Evaluating Agent
Optimization

As we expect agents to continuously improve over time, we
are logically bound to expect a technology optimizing agents
to continuously improve as well. Therefore, we choose

to apply the optimization cycle: Evaluate - Analyze >
Improve - Evaluate to our own development process.

This is exactly what we started last year, and continued
this year. The benchmark we present today is still mostly
focused on analyzing and finding insights in structured
operational data. We have not yet included problems
associated with customer-facing agents use-cases, and
in particular the logs of the conversations carried out by
such agents.

As we continue to develop the benchmark, we will make
the adjustments needed to address metrics related to
the conversational data, and incorporate the Agentune-
Simulate component to assess candidate agents.

As mentioned above, today's release includes an
expansion of the initial version of the evaluation
framework introduced last year (aka VO0). One of the
dimensions the new benchmark version improves on the
previous one is problem difficulty. In the next section we
explain how we assess problem difficulty and provide
various statistics of how problem difficulty varies by
multiple problem attributes.

4. Distribution of Problems

The problems in this version have a wide variety in several
dimensions: associated use case, problem domain, number
of insights to be discovered, number of data tables, number
of columns in the primary table, number of ground-truth
insights to be discovered, and the strength of these insights
wrt the target.

Note: the benchmark data is available here, where you will
find two directories:

1. problems

2. agents_solutions

When generating the problems, we also wanted to have
variety in the strength of the signal the ground-truth insights
have wrt the target. Each problem has up to 3 target

variations, differing only in the target column.

The target columns were generated using two computation
models:

- Logistic (Type 1)
- Linear (Type 2)
each paired with one of three signal strengths:

- Balanced (a), where all insight patterns have similar signal
weights

- Weakly Biased (b), where one of the patterns is weakly
biased

- Strongly Biased (c), where one of the patterns is strongly
biased.

As a result problems are named with the following
convention:

P[#]-[problem_name]-variation_[#]-type_[#][a | b]

Example: P6-Customer Churn Prediction-variation_2-type_2b
-> (this one is Linear and Weakly biased)

Below we show the different frequency distributions with
respect to several different problem attributes. Later,
when we explain problem difficulty estimation, we also
show how problem difficulty varies by different attributes

Problem Distribution by Domain

Telecommunications
Retail

Financial services
Energy and utilities
Healthcare
Banking

Beverage sales
Forestry

Power production
Retail banking
Retail e-commerce

Retail supermarket

0 10 20 30 40 50
Number of Problems

Distribution of # Tables per Problem
111

100
80

60

Count

40

20

Tables

Distribution of Ground-Truth Insights per Problem

9 10 11
Ground-Truth Insights

Note that out of the 200+ problems in VO, we kept 29
problems. We chose to focus on fewer problem domains,
with the intent to have higher richness within domains
and keep the number of problems under 200.

5. Evaluation Metrics - V1.1

The new evaluation framework (Insight-Eval) expands on
the metrics we introduced last year. While keeping the
major evaluation categories:

+ Coverage,

« Predictive Performance (which we also referred to as
Statistical Power), and

* Proper Use of Data

We observed that Correlation Coverage does not

always reflect the true extent to which the ground-truth
insights are captured by the solution. Specifically, when
a discovered feature captures the essence of a ground-
truth feature but does so via a non-monotonic mapping,
neither the Pearson nor the Spearman correlation would
adequately reflect this relationship.

To address this, we explored a variety of additional
coverage metrics. In this release, we introduce several of
these new metrics:

BenchEval V1.1 Metrics

Predictive Performance Proper Use of Data

« Target Leak Indicator

« Correlation Coverage « Exclusive Performance

« Incremental Performance s Inclusive Performance
Coverage €D

« Single-Column Predictive
Coverage

Coverage:

* Incremental Performance Coverage
« Single-Column Predictive Coverage
+ Predictive Coverage

+ Correlation Coverage (already part of VO)

Predictive Performance:
+ Exclusive Performance

* Inclusive Performance (already part of VO as Predictive
Performance /Statistical Power)

Analyzing the overlap and signal dominance across these
metrics, we identified the following two metrics as the
most effective:

* Incremental Performance Coverage
+ Single-Column Predictive Coverage

In addition to these two metrics, we introduce a holistic
Coverage Score, defined as a weighted average of these
two metrics, with respective weights of 0.3 and 0.7.

Detailed description of the new evaluation metrics is
provided in Evaluation Metrics

6. Summary of Tool Evaluation

1. We use the evaluation framework introduced in
our late 2024 article, and we add several evaluation
metrics for robustness.

2. We refer to the single-step-tool that we also
introduced last year. It is based on a single prompt
for generating insight candidates + python code
to execute them, and a non-LLM component for
selection of the insights based on their performance
wrt the target on a holdout sample).

3. The second tool performs two iterations over the
single-step procedure, then it merges the results to
get the best insight candidates (again by evaluating on
a holdout sample).

As expected the two-iterations approach is better than
the single-step approach when evaluated on a test set
(unobserved by the tools). We also observe that tools
performance varies by problem, thus concluding that

7. Problem Difficulty

We introduce an empirical problem difficulty metric,
based on evaluating both of the illustrative tools on a
problem wrt the evaluation metrics introduced in section
4.

We leverage the two insight-discovery prototypes
mentioned in section 5 to estimate the difficulty of
problems in the benchmark.

We identified key performance and coverage metrics and
assigned difficulty ranges and importance weight for each.

Thresholds
Performance thresholds: 0.6, 0.7, 0.8, 0.9
Coverage thresholds: 0.1, 0.2, 0.4, 0.6, 0.75
Weights:
Exclusive performance: 0.4
Mean correlation coverage: 0.0
Min incremental performance coverage: 0.18
Mean predictive coverage: 0.0
Mean single column predictive coverage: 0.42

The difficulty formula takes into account the minimum
and maximum of each metric for both tools (single-step
and two-iterations)and assigns a score in[0,1] according
to the thresholds above. It then averages the minimum
and maximum scores for each metric, and calculates the
weighted average of the scores wrt the weights defined
above. This is the overall difficulty score.

The detailed computation is taking place by the function
estimate_problem_difficult in repo_eval_stats.py.

The difficulty score is mapped to a qualitative difficulty
level: very easy, easy, medium, hard, very hard.

The below tables show how problem difficulty varies by
different problem attributes

Difficulty typically increases with the number of tables
with the most significant impact is from 2 to 3 tables and 3
to 4 tables

Average Problem Difficulty vs # Tables

0.6

0.497
05"

Average Difficulty
= o
w —

o
N

0.1r

00575 25 30 35 4.0 45 5.0 55 6.0
Tables

(*) The numbers below the scores represent the number of problems in each group

It appears that problem difficulty does not significantly
correlate with the problem domain.

Average Difficulty by Domain

Telecommunications

Healthcare

Retail

Energy and utilities 0.482

Financial services 0.514

00 01 02 03 04 05 06
Average Difficulty

(*) domains with low representation were omitted

8. Next steps on Agentune &
Towards Self-Improving Agent
Optimization

)2/)®@)3) 7,

Expand Conversation- Reflexive Self-improving
KPI evaluation based Analyze & platform
benchmark Improve

Agentune product roadmap toward self-improvement

About SparkBeyond

As we build Agentune - SparkBeyond’s agent optimization

platform, we will:

Continue expanding our frameworks to evaluate
customer-facing agents across their real KPIs

Extend our insight-discovery benchmark to
conversation-based data

Use these tools to reflexively improve our Analyze
and Improve components

so that agentune becomes a self-improving platform for
self-improving agents.

Ideas for the next version of the benchmarking
framework include:

Adding conversational data

Adding metrics for insight coverage for conversational
data

Adding metrics for semantic coverage of ground-truth
insights

If you are building customer-facing Al agents and want

them to optimize themselves over time, we'd love to

exchange ideas.

Sergey Davidovich
Co-Founder & President

%
Dr. Ron Karidi

CTO & Co-founder
ron@sparkbeyond.com

SparkBeyond is powering a new breed of market leaders, leveraging Al to accelerate the process of turning data

into impact. By augmenting internal data with external sources and massively scaling the interrogation of data,
SparkBeyond amplifies the discovery of hidden insights and drivers of positive outcomes. From risk scoring and i
fraud detection to demand forecasting and churn reduction, SparkBeyond helps global organisations drive tangible
and lasting impact across a broad range of use cases. Learn more at www.sparkbeyond.com. =

