SPARK F BEYOND

Introducing

ma |

OPEN-SOURCE Al AGENT LS
OPTIMIZATION LIBRARY ;Iﬁ"ll!'|mp71 '

‘ kg 1 |
Jﬁ 1 ‘>m E‘iv) -
\/ |
Open-Source Al Agent Optimization Framework eee L O

X W sw/ WAz AN
e
~\ /// | (_90
Vi

,‘“ N

[
I
=

)

Simulated Environments for Risk-Free Testing /e e e

77777

TL;DR

Despite powerful LLMs and slick frameworks, real-world
agents often underperform—hallucinating policies,
misusing tools, or mishandling edge cases—because they
haven't been optimized for messy, domain-specific realities.
Moreover, agents underperform when they don't learn
from their own success and failure.

Agentune is an open-source engine that brings structure
to agent performance through a disciplined Analyze -»
Improve - Evaluate cycle. It treats agents like teammates:
scoring real and simulated interactions, mining transcripts
for root causes, and iteratively shipping targeted
improvements.

Last week we released the first Agentune module,
Agentune-Simulate which addresses the essential challenge
in Evaluate for agents: it lets teams evaluate agents safely
in the lab using synthetic customers and edge-case stress
tests. Coming soon, Agentune-Analyze and Insight-Eval will
apply SparkBeyond's proven insight discovery methods to
uncover and validate the true drivers of agent behavior.
The mission: transform raw LLM output into finely tuned,
high-performing agents - at machine speed, with open-
source transparency.

Why Great LLMs Still Ship
Mediocre Agents?

Despite powerful LLMs and slick agent frameworks
(LangGraph, AutoGen, DSPy, Guardrails, etc.), customer-
facing agents start far from optimal because real
performance hinges on messy, domain-specific realities
they haven't seen or been tuned for. Prompts that ace
sandbox evals crumble on live edge cases (billing disputes,
partial refunds, regional regulations). Tool use is brittle—
agents call the CRM API with the wrong ID schema, or never
call the pricing calculator when discounts matter. They
hallucinate policy (“We can waive that fee”) or over-escalate
to humans to stay safe. Tone control and compliance

drift across long chats; a sales bot pushes the flagship

plan to a student on a budget, while a support bot skips
authentication steps. Small upstream shifts—LLM version
updates, KB changes, new product SKUs—quietly degrade
behavior. Until you measure, dissect transcripts, and
iteratively coach them, these gaps stay invisible—and costly.

Where Mediocre Outputs

Meet Metrics: Enter Agent
Optimization

The gap between powerful models and mediocre frontline
behavior is exactly where agent optimization lives. Once
you see how often transcripts expose missed tools, policy
slips, and tone misfires, it's clear you need an explicit
discipline to close that gap—instrumenting agents like
products, not prompts. Optimization turns raw interaction
data (metrics + conversations/recordings) into hypotheses
about what to tweak, then tests those tweaks fast. In other
words: we don't just accept “good enough LLM output”; we
continuously coach the agent, just as we would a human
rep—only now with tighter loops and far more data.

What's Agent Optimization?

Al agent optimization is the disciplined practice of .. - ok
managing customer-facing bots—sales reps, e
support agents—like performance-tracked
teammates. Every interaction emits two

rich data streams: quantitative telemetry

(conversion rate, CSAT shifts, st s

handle time, escalation

paths) and the full

conversation text

or recording /

itself. Together, ‘ .

these let you see \

which prompts,

tools, skills, and

behaviors actually move

the metrics. The job is to close

the loop: instrument the agent, mine transcripts for
patterns and root causes, run controlled changes (new
skills, guardrails, reasoning styles, data access), and ship
improvements fast while preventing regressions. In short,
you analyze what drives outcomes, teach the agent new
tricks, prune bad habits, and continuously coach it—exactly
as you would a human team, just at machine speed and

scale.

— | 77/

v

Analyze - Improve - Evaluate

<>

/'hpro\le

4
s,
%,
o©

E Vs, %,
e /
®

S

Analyze - Improve - Evaluate is a tight feedback loop for
agent performance. Analyze takes hard KPIs (conversion,
CSAT, FCR, AHT) and soft signals from transcripts/
recordings (tone, compliance, hallucination flags), clusters
and tags those conversations, correlating behaviors and
tool usage with outcomes, and isolates root causes—
what prompts, skills, or routing choices helped or hurt.
Improve by shipping targeted fixes: refine prompts and
guardrails, add or revoke tools/knowledge, retrain skills,
adjust policies or handoff logic—then Evaluate by running
simulations, A/B testing and monitoring for regressions.
As the loop is now complete, feed the new data back into
the next analysis pass. Repeat until the curve flattens,
then raise the bar.

The Problem with Intuition-
driven Tuning

« “Gut feel” changes introduce biases and blind spots,
not solutions.

+ Anecdotal improvements rarely scale—data, not
intuition, defines success.

+ Unmeasured adjustments risk false confidence—
hidden failures remain unchecked.

+ Effective Al optimization demands disciplined,
systematic experimentation.

As Heraclitus observed, “No man ever steps in the same
river twice.” In today’s fast-paced business environment, no
optimization solution remains optimal for long. Continuous

adaptation and learning are now essential for success.

The transition from static efficiency to dynamic
optimization marks a pivotal moment in business
history. By embracing Al-driven continuous optimization,
organizations can achieve unprecedented levels of agility
and resilience—ensuring they remain competitive in an
ever-changing world.

Adopting a Scientific
Optimization Mindset

In an increasingly complex and data-rich world, objective
decisions, structured experimentation, rapid iteration, and
data-backed results are paramount for sustained growth
and efficiency.

Data-driven decisions eliminate bias and assumptions,
transforming decision-making into a science based on
verifiable facts and quantifiable metrics. This leads to more
accurate predictions and effective strategies.

Structured experimentation, using methodologies like
A/B testing, turns random improvements into predictable
progress by isolating variables and measuring the precise
impact of interventions. This systematic approach ensures
sustainable improvement.

Rapid iteration through controlled testing accelerates
meaningful improvements by enabling quick deployment
of new features, real-time feedback, and immediate
adjustments. This fosters continuous learning and
adaptation to evolving market demands.

Data-backed results create organizational buy-in and
measurable ROI. Quantifiable evidence of increased
revenue, reduced costs, or enhanced customer satisfaction
builds trust and confidence, paving the way for future
investment and expansion of data-driven practices.

277777

v/

—

v

Synthetic Customers, Real
Metrics: Simulation-Driven
Agent Evaluation

Evaluating customer-facing agents starts with rigorous,
always-on measurement: hard KPIs (conversion, CSAT proxy
scores, FCR, AHT, cost/interaction) plus qualitative rubrics for
tone, compliance, hallucinations, and tool usage. You score
each turn and whole conversations, ideally with a blend of
human review and LLM “judges” calibrated against humans.
Instrumentation should capture not just outcomes but
decision traces—what the agent knew, which tools it called,
why it escalated—so you can attribute success or failure

to specific behaviors. Batch replays of historical transcripts
against new policies or prompts let you estimate uplift
before risking production traffic.

A simulated world—especially one that models customer
behavior—lets you run those evaluations safely in the lab.
You spin up synthetic customers with goals, constraints,
emotions, and randomness (impatient churn risk, budget
shoppers, policy abusers), backed by a product/catalog/
policy “world model” that enforces realities like inventory or
refund rules. Multi-turn scenarios, noise injections (typos,
contradictory info), and edge-case generators stress-test
reasoning, tool orchestration, and guardrails. Because you
control the distribution of scenarios, you can oversample
rare but costly failures, do A/B/C testing at scale, and iterate
fast—then graduate only the best variants to real traffic.

From Optimizing Companies

to Optimizing Agents

The Analyze step is basically large-scale hypothesis
generation and driver discovery—the exact craft
SparkBeyond has honed for over a decade. Since 2013, the
company has built engines that automatically propose and
test millions of candidate signals, features, and explanations,

surfacing the real levers behind KPI movement and letting
teams prioritize fixes with evidence.

The kind of improvements we helped our partners drive:

+ Cut churn ~30% in three months for a European
media company by mining “thousands of clues” about
why readers leave

+ 600 new stores targeted by Zabka; SparkBeyond
generated millions of hypotheses to optimize location
& revenue per store

We believe in the world of agents, closing the loop can
be much faster as the change management process is
smoother.

Benchmarking Agent KPI driver
discovery

In the Analyze step, we move from “how did the agent
perform?” to “why did it perform that way?"—and the
SparkBeyond benchmark gives us a ready-made template
for answering that why. SparkBeyond's “insight discovery”
benchmark formalizes what good analysis looks like: start
with a clearly defined KPI and problem spec, explore the ..
underlying tables, and judge success by whether you
rediscover the ground-truth drivers with statistical
lift and clean methodology. That's exactly the
discipline Analyze needs: not ad-hoc hunches,

but systematic surfacing and validation of

factors that actually move the

needle.

We can wire those

same metrics— /

coverage of [

true insights, N

predictive power \

of the features built

from them, and data

hygiene checks—directly into

our Analyze scorecard. Every time our
agent proposes a hypothesis (“customers on plan X churn
more after event Y"), we score it the way the benchmark
does, creating an objective bar the Improve phase must beat
on the next iteration. In short: the SparkBeyond framework
becomes our unit test suite for Analyze, ensuring we're
optimizing against verified insight quality, not just prettier
dashboards.

\

1/137.8369998

Introducing Agentune

Agentune is our end-to-end engine for the Analyze >
Improve > Evaluate cycle, but the first module you'll get
hands-on with is Agentune-Simulate which we've just
released. It lets you replay and perturb realistic customer
behavior, so you can grade agents in a safe lab before they
ever touch production. Think A/B tests, edge cases, and
counterfactual “what ifs” on tap—so Evaluate is reproducible,
and Analyze has rich, labeled traces to mine.

Agentune

+ Simulate real-world customer conversations
+ Highlight weak spots and failure points

+ See clear metrics and intent analysis

* Run locally in seconds.

Whether you need a realistic virtual customer or full
conversation simulations, Agentune Simulate has you
covered.

How to use Agentune:

1. Upload 100+ real conversations from your Al or human
agents

2. Agentune builds a simulated user model
3. Connect your Al Agent and simulate full dialogues

4. You getinsights on what worked, what failed, and how
to improve

Try it now: Agentune-Simulate is live!
Repo: github.com/SparkBeyond/agentune

Install: pip install agentune-simulate

What's next?

Over the next weeks and months, we will extend Agentune
with a range of useful tools, starting with:

+ Agentune-Analyze: a toolkit to uncover what
drives agent performance and suggest actionable
improvements.

+ Benchmark for Agent Insight Discovery - a standard for
evaluating how well systems identify and explain what's
working (or not).

+ The first release will tackle generic insight discovery
challenges. Up next: analysis of agent conversations and

structured data like CRMs.

Dr. Ron Karidi
CTO & Co-founder
ron@sparkbeyond.com

Sergey Davidovich
Co-Founder & President

