

SPARK BEYOND

Al for 'Always Optimized' **Industrial Operations**

P_HERD_LO' STYLE="WIDTH

CHECCHE RETORN

NAPLIGOTHES, EVENT.

(NOGROK TRUE PRIRINGS.

(_REF 'LEFT_NEV'));

CLRSS='LEFT_ROW';

<SPRIL

CLRSS-'LEFT_FIXER";

STORN

STORN

CLRSS-'LEFT_FIXER";

044 16.88 > W8116 > D1 > 200220216XX 103 11 URRLWEB A+='6R='+ESCAPE(URRLWEB D.REFERRER); URRLWEB_JS=10:URRLWEB_S=SCREEN:

URALWEB_R+='60='*(URALWEB_S.COLORDEPTH?URALWEB_ _S.COLORDEPTH:URALWEB_S.P.IXELDEPTH): URALWEB_US=12:

About us

Established in 2013 to accelerate Al-powered problem-solving.

Since then we have delivered \$Bns in tangible ROI for our customers across 100s of use cases.

Mission

Unlock Al-driven 'Always Optimized' KPIs for any organization

Global Footprint

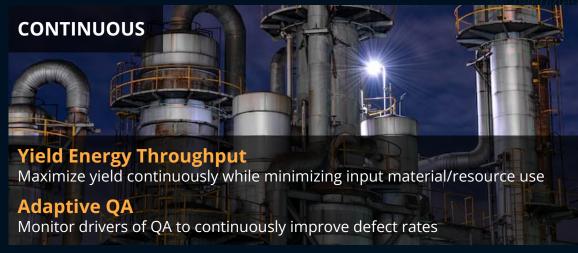
Presence across Asia, Europe and US with employees spread across 8 countries

Industry Validated

100s of success stories across within Fortune 500 companies globally

Partner first DnA

Partner-first organisation with global reach with GSIs



SPARK | BEYOND

Industrial IoT Use Cases

Select top-line and bottom-line impact generating use cases

Operator CopilotGuide operators to act effectively with automated root causes and SOPs

NPHR Optimization

Optimize plant heat rate by ongoing tuning of parameters to maximise output

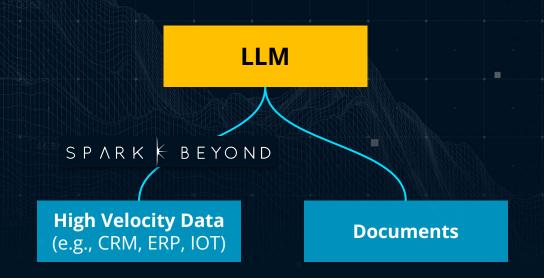
Predictive Maintenance

Detect root causes of potential failures for timely action

Our Technology

Generative AI doesn't understand YOUR business.

For KPI optimization, AI must leverage knowledge from operational data


Challenges of LLMs

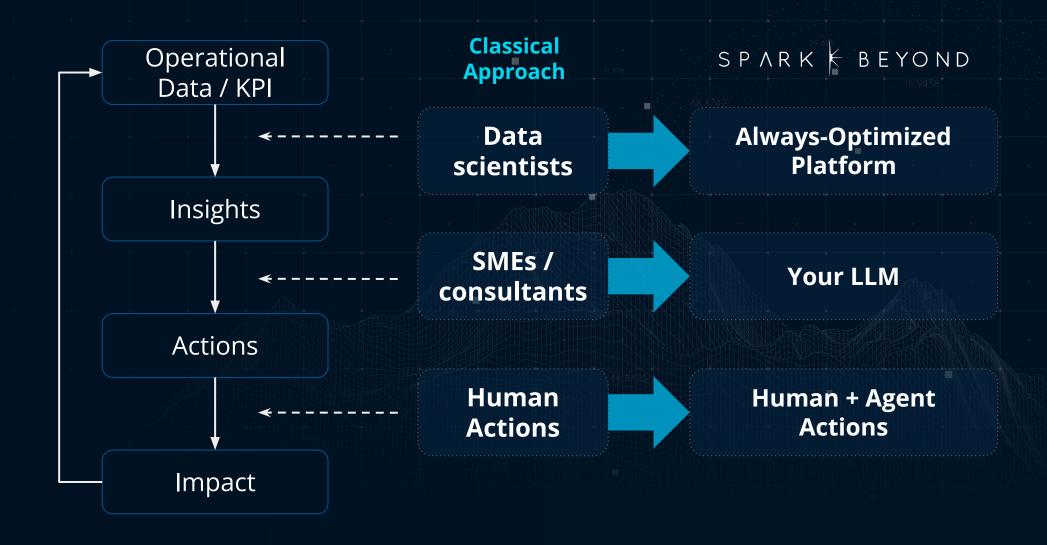
- Limited in understanding patterns hidden in complex operational data
- Unable to ground business reasoning in data.

High Velocity Data (e.g., CRM, ERP, IOT)

Documents

Unlocking LLM-powered KPI-optimization for solution-builders

'Always Optimized' KPI Architecture


Continuous feedback loop creating impact from enterprise structured data

🜞 Impact

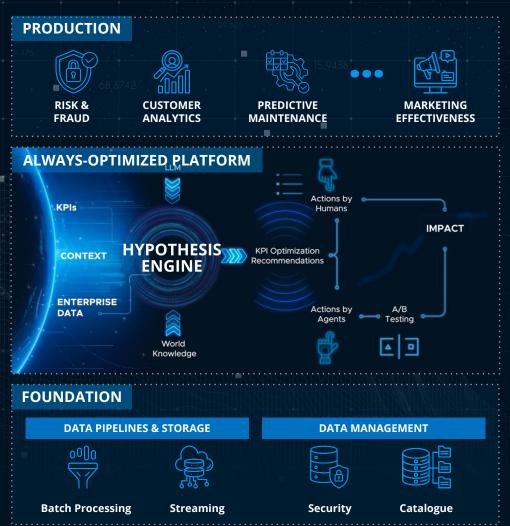
Making the paradigm shift to 'Always Optimized' KPI Optimization

AI CoE Platform

Accelerate Results - No Large Data Teams. No Consulting Roadshows.

Discover & Prototype in Weeks

Bypass long discovery cycles. We'll help you rapidly prototype Al solutions that uncover the hidden drivers impacting your KPIs.


Prove ROI Before You Scale

Validate the P&L impact with a targeted pilot, delivering a concrete business case and tangible value from day one.

Scale to an "Always-Optimized" System

Empower a lean team to deploy and expand use cases, creating a continuous optimization loop for your business.

Why SparkBeyond for Your Al CoE Platform

Feature

Hypothesis Engine

Explainable Al

Open Integration

Battle Tested @ Scale

Unified ML & Gen-Al

Rapid Deployment

Impact

Automatically discover and **engineer new features** from your operational and business data, surfacing **hidden drivers** of performance. Generate and test millions of hypotheses to identify true root causes and actionable levers for **KPI improvement**.

All insights and recommendations are delivered in clear, natural language—enabling business and operations leaders to *understand, trust, and act* on Al-driven findings. This transparency is critical for adoption and compliance.

SparkBeyond is cloud-agnostic and integrates seamlessly with leading hyper-scaler environments, CRMs, ERPs, and LLMs, ensuring *flexibility, scalability, and alignment* with your evolving tech stack.

The platform is **proven across 100+ Fortune 500 deployments**, with a track record of rapid time-to-value and measurable ROI.

SparkBeyond is a *unique combination* of advanced machine learning and Gen-Al agent workflows providing a single foundation for a broad spectrum of Al use cases.

Designed for *fast implementation* and operation in complex, distributed data environments—delivering actionable insights without requiring lengthy data warehouse projects.

Existing approaches to link LLMs to enterprise data are insufficient to address structured data needs

Overview of current approaches (not-exhaustive)

Pre-Training & Fine Tuning

What is it?

Pre-training a model on a selected corpus applicable to your enterprise domain Fine-tuning LLMs to answer domain specific questions

Limitations

- Expensive to re-train
- Does not address structured data sources
- Fine-tuning is better suited to teaching specialized tasks or styles and less reliable for factual recall.

Retrieval Augmented Generation

What is it?

Retrieve data from outside a foundation model and augment your prompts by adding the relevant retrieved data in context

Limitations

- Structured data requires a query for RAG based solution to retrieve
- Retrieved query needs to be LLM compatible
- RAG is largely limited to searchable documents

Code Interpretation & Generation

What is it?

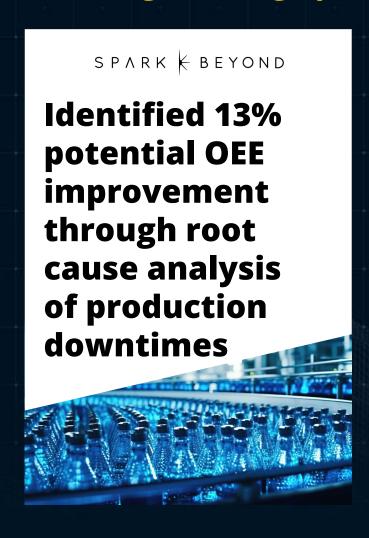
LLM task to translate a query spoken in natural language into SQL/code automatically

Limitations

- User needs to define the intent and insights
- Path to using the insight in an LLM use case is several steps away for a user


In-Context Learning

What is it?


One/few-shot learning example to gain new knowledge (e.g. feeding an existing ppt report about a quantitative analysis)

Limitations

- Context needs to be textual
- Context document can get easily outdated

Boosting beverage production line efficiency with root cause analysis

CHALLENGE

- A leading global beverage manufacturer wanted to improve Overall Equipment Effectiveness (OEE) for its filling and packaging lines
- Despite having Lean, Six Sigma, and excellence programs in place, they sought to use data to better understand root causes of downtime and to foresee breakdowns proactively

RESULTS

- Sparkbeyond autonomously pinpointed key root causes: volume output spikes, older product batches and failures at upstream machines
- Estimated 13% potential OEE improvement from addressing these causes

- Collected performance data on OEE shifts, outages, process orders, and machine status
- Identified "built-back" events as the biggest negative driver of OEE
- Applied predictive analytics to identify root causes and recommended targeted actions

Achieving fuel efficiency in mining with up to 10% savings

SPARK | BEYOND

Reduced fuel consumption by 10% in 4 months across mining fleet

CHALLENGE

- High fuel costs (30% of OPEX) pressured a mining fleet to cut consumption
- Needed to identify controllable drivers across a fleet of 100+ vehicles to reduce operational expenses
- Manual reviews are costly and time consuming prevent fuel used to be optimized

RESULTS

- Identified ~300 predictors of fuel efficiency, including payload, tire pressure, and driver behavior
- Rolled out dashboard monitoring for key fuel drivers
- Achieved a 10% fuel consumption reduction in 4 months, with ongoing optimization

APPROACH

SparkBeyond created a digital twin for each vehicle using:

- IoT Vehicle Management System (30+ onboard sensor data points)
- Fleet Management System (trip data)
- SAP maintenance logs
- External sources (weather, contextual data)

Each digital twin integrated 130+ data points per truck

Optimizing the Net Plant Heat Rate by 3.3% based on load conditions

CHALLENGE

- Low efficiency due to boiler and combustion losses
- Heat rate varies with operational load
- High volume of sensor data from over 3000 sensors from PI system but low actionable insights
- Need to reduce coal input costs and emissions

RESULTS

- Identified 23 high-impact controllable drivers and predicted NPHR impact per driver
- Estimated 3.3% heat rate improvement corresponding to ~3% reduction in CO₂ emissions

- Model NPHR by load condition levels (Low, Medium, High)
- Ran learning experiments to rank thousands of features
- Prioritized initiatives and actions via SME workshops
- Built RCA and ideal parameter setting dashboard for engineers

\$3m impact from optimizing alumina/caustic ratio in alumina refining

SPARK | BEYOND

Reduced variability in the alumina refining process, saving \$1.8m per year

CHALLENGE

- Controlling the A/C ratio in the digester is critical to the alumina refining process and a major production driver
- However, the client was relying on an outdated predictive model, resulting in high variability throughout the process

RESULTS

- SparkBeyond identified several ways to improve consistency in the A/C ratio, with one improvement alone potentially driving over \$3 million in added production value
- The client implemented changes valued at \$1.8 million annually

APPROACH

The team used SparkBeyond to improve model accuracy through:

- Analyzed internal sensor data from the existing DBO model
- An iterative process to identify optimal time windows and interactions between sensor readings
- Built several models, from linear regression to advanced boosted trees, to maximize impact

Reducing non-conformance rates in shaft annealing process for a bicycle manufacturer

Direct cost improvement from reducing scrap

CHALLENGE

 Automatically identify the root causes of non-conformance amongst a sample of annealed metal parts, augmenting engineering intuition of operators

APPROACH

- Combined visual inspection data with furnace sensor in historian, power consumption, nitrogen, oxygen levels and environmental factors (room temp, humidity)
- Generated hypothesis and identified root causes

RESULTS

 Identified nitrogen pressure and oxygen content levels during heating and cooling respectively, which when fixed, help reduce non-conformance rates from 29% to 4%

Proactive identification and resolution suggestion for industrial chiller trips at a bicycle manufacturing plant

Avoid throughput losses

CHALLENGE

 Greenfield site with new industrial chiller system for cooling tripped frequently and abruptly with no consistent explanation - each trip while lasts a short duration leads to plant downtime

APPROACH

- Generate hypothesis from sensor and other data from SCADA and operational systems.
- Use LLMs to bring engineering and physics knowledge to boost insights.
- Use LLMs + OEM manuals to validate actions and recommendations.

RESULTS

 Developed a highly accurate predictive model with 85% recall and 80% precision for identifying trips - \$ value for preventing temporary plant shutdown not known to SparkBeyond

Predictive Maintenance of ESPs (Electrical Submersible Pumps)

SPARK K BEYOND

\$2M Impact per Early Warning for Key ESP Failures

CHALLENGE

- Client needed to anticipate and manage ESP failures to minimize production loss
- Built a model to predict the probability of ESP failure within the next 100 days
- Data Sets Used: Past ESP failures, sensor readings, well trajectories, coordinates, completions

RESULTS

- \$2M impact per early failure alert
- Enabled proactive maintenance, minimizing downtime and production loss

- Reframed task as remaining uptime prediction due to dataset imbalance
- Identified if an ESP is likely to fail within the next 100 days
- Used Discovery Platform with 8 datasets to uncover failure drivers
- Delivered insights as both code and natural language
- Provided daily SHAP-based predictions and explanations
- Outputs shared with maintenance teams to support preventive action

Proactive Predictive Maintenance for PCP Pump Failures

SPARK | BEYOND **30+ Days Predictive Horizon | >50% Failure Detection** Accuracy 0-15% False Positive

CHALLENGE

- Improve the life of wells to increase production and reduce CapEx
- Build a predictive model despite incomplete data
- Integrate analytics with the client's IT infrastructure

RESULTS

- Identified >50% of system failures
 with a 0-15% false positive rate
- Defined 9 predictive parameters contributing to model power
- Achieved a 30+ day predictive horizon with additional system data

- Focused on Analytics & Insight and IT Integration
- Built a live model to predict failures in PCP sub-systems from incomplete data
- Delivered an integrated view of the IT infrastructure and provided software improvement recommendations

Predictive Maintenance for Bearing Failure in CMP wafer process

SPARK | BEYOND

Advanced analytics predicted failures weeks ahead, improving uptime.

CHALLENGE

- Short lead time limited predictive capacity
- Manual process unable to anticipate failures in advance
- **8-hour downtime** affects all 4 chambers

RESULTS

- **Earlier failure prediction** than manual process
- Weeks of advance warning enabled
- Improved maintenance scheduling
- Reduced unplanned downtime

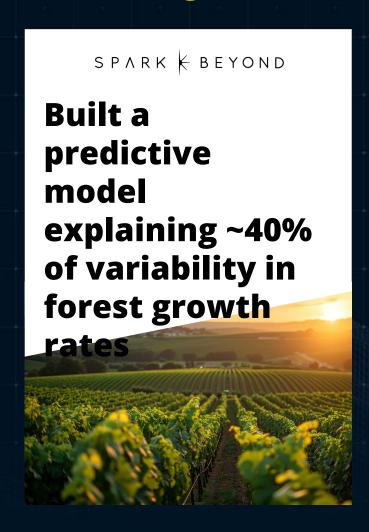
- Connected data from vibration and maintenance sources
- Used APC system to track sensor signals up to 0.5Hz
- Leveraged Maintenance records with free-text.
- Analyzed observations before bearing failures

Optimizing wind farm production by continuous temperature adjustment

SPARK | BEYOND

Improved wind farm throughput by 2% in just two weeks by managing temperature impact

CHALLENGE


- A large European energy company faced unexpected asset downtime across multiple wind farms, impacting production and IRRs
- Traditional methods were missing key drivers behind the downtime

RESULTS

- SparkBeyond uncovered that moving from cold to hot weather impacted turbine lubricant viscosity, and reduced performance over time - so "temperature rate of change" was the most valuable metric
- Initiatives to control the rate of change led to a 2% improvement in throughput in a two-weeks

- Automated time series analysis of sensor data across various periods (12h, 3 days, 1 week, 1 month)
- Identified **temperature sensors** as critical to performance
- Augmented internal data with weather datasets to uncover new drivers

Maximizing mean annual increment for a plantation

CHALLENGE

- A forestry company in Asia wanted to better identify predictors of tree growth
- They struggled with inconsistent data from two different MAI measurement methods and sought to develop a consistent methodology while discovering new opportunities to boost growth rates

RESULTS

- Identified human-controllable drivers of forest growth, validating expert knowledge
- Built an elaborate model explaining ~40% of MAI variability, even after excluding biological factors like tree diameter and height

- Reduced data preprocessing time and generated 100+ predictive models across two datasets, including time series models
- Identified **critical features** (e.g., text list variables) improving MAI predictions
- Detected gaps in maintenance and planting methods
- Paved the way for adaptive and autonomous Al systems to ensure quality results

Advanced Analytics for Semiconductor Manufacturing

SPARK ← BEYOND

Boosted semiconductor line efficiency with >40% defect reduction and predictive insights.

CHALLENGE

- Identify and reduce production inefficiencies.
- Improve productivity in high-precision semiconductor environment.
- Address recurring issues with long idle times and CPU overload.
- Predict equipment failures to prevent downtime.

RESULTS

- 40% reduction in yield detractors in target workcenter.
- **5 root causes identified** with clear mitigation actions.
- Predicted failures 4+ weeks in advance with ~10% false positives.
- Boosted maintenance capacity and line stability.

- Analyzed 13 months of I/O data and 20+ parameters.
- Used RCPS to identify 1,000+ statistical patterns and top 15 root causes.
- Applied predictive maintenance using vibration sensor data.
- Built failure prediction models with 90% event coverage.

Reducing Particle Contamination in CVD Process

SPARK | BEYOND

Eliminating root causes to reduce particle contamination in CVD.

CHALLENGE

- Particle defects drive downtime and wafer scrap.
- CVD issues cause 0.4% yield loss in production.
- Root causes behind contamination remain unclear.

RESULTS

- Uncovered key root causes of particle defects.
- Defined actions to reduce contamination levels.
- Improved stability and production quality.

- Combined top-down hypothesis testing with bottom-up modeling.
- Automated root cause analysis using process data.
- Tailored diagnostics for high-priority failure points.

Predicting Failures in Semiconductor Fabrication

SPARK | BEYOND

Advanced analytics reduced failures and improved fab performance.

CHALLENGE

- **High data volume** from advanced fab instrumentation.
- **Limited insight** due to reliance on vendors.
- Raw data underused for performance improvement.
- Needed to identify failure patterns across systems.

RESULTS

- **87% accuracy** in predicting failure events.
- **14% false positives**, improving reliability.
- **86% correct** predictions of normal operation.
- Enabled **data-driven operations** and maintenance.

- Integrated and cleaned diverse data sources.
- Modeled key performance and failure drivers.
- Extracted explanatory variables from large datasets.
- Validated predictions and implemented improvements.

