

SPARK BEYOND

Al for 'Always Optimized' **Insurance Operations**

NumberIn of name > 1.

044 16.88 > W8116 > D1 > 200220216XX 103 11 URRLWEB A+='6R='+ESCAPE(URRLWEB D.REFERRER);

URALWEB_R+='60='*(URALWEB_S.COLORDEPTH?URALWEB_ _S.COLORDEPTH:URALWEB_S.P.IXELDEPTH): URALWEB_US=12:

3-3W.

DI IO-LINER, BG: CLRSS-FIXED-VOID-VOID IO-LINER, WRRP: CLRSS-SCROL, FIX, WRRP
FIXED LINER, WRRP-VOID IO-LINER-VOID-VOID-VOID

OID 10-BGX, LINER, BG: CLRSS-FIXED-VOID-VOID IO-BGX, LINER, WRRP
CLRSS-FIRRAL, FIX, WRRP FIXED-VOID IN-BGX, LINER-VOID IO-BGX, LINGER-VOID
CLRSS-FIRRAL, FIX, WRIGHT IO-BGX, LINER-VOID IO-BGX, LINGER-VOID
CLRSS-FIRRAL, FIX. WRIGHT IO-BGX, LINER-VOID IO-BGX, LINER-VOID ID-BGX, LINER-VOID ID-BGX, LINER-VOID ID-BGX, LINER-VOID ID-BGX, LINER-VOID ID-BGX, LINER-VOID IN-GIX LINER-VOID IN

P_HERD_LO' STYLE="WIDTH

CHECCHE RETORN

NAPLIGOTHES, EVENT.

(NOGROK TRUE PRIRINGS.

(_REF 'LEFT_NEV'));

CLRSS='LEFT_ROW';

<SPRIL

CLRSS-'LEFT_FIXER";

STORN

STORN

CLRSS-'LEFT_FIXER";

About us

Established in 2013 to accelerate Al-powered problem-solving.

Since then we have delivered \$Bns in tangible ROI for our customers across 100s of use cases.

Mission

Unlock Al-driven 'Always Optimized' KPIs for any organization

Global Footprint

Presence across Asia, Europe and US with employees spread across 8 countries

Partner first DnA

Partner-first organisation with global reach with GSIs

Industry Validated

100s of success stories across within Fortune 500 companies

Enterprise Ecosystem

Insurance Use Cases

Top-line and bottom-line impact generating

UNDERWRITING & FORECASTING

Underwriting

Improved efficiency and automation for automated underwriting, incorporate alternative data

Forecasting

Predict the frequency and severity of claims from FNOL for better loss reserve estimation

CLAIMS EXCELLENCE

Claims and Fraud Management

Audit the claims at scale to optimise claims payout and reduce claims leakage

Subrogation Recovery

Prioritize claims that are most frequently missed with potential for subrogation

Litigation Risk

Identify the claims that carry a higher risk of getting into litigation

DISTRIBUTION AND MARKETING

Churn Management

Predicting customer churn and proactive retention

Sales Optimization

Prioritizing prospects, predicting agent effectiveness

Cross Sell/Up Sell

Find the best product to be offered to existing insurance clients based on their life stage needs

Our Technology

Generative AI doesn't understand YOUR business.

For KPI optimization, AI must leverage knowledge from operational data

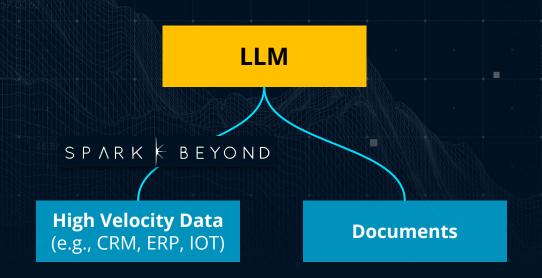
Challenges of LLMs

- Limited in understanding patterns hidden in complex operational data
- Unable to ground business reasoning in data.

High Velocity Data
(e.g., CRM, ERP, IOT)

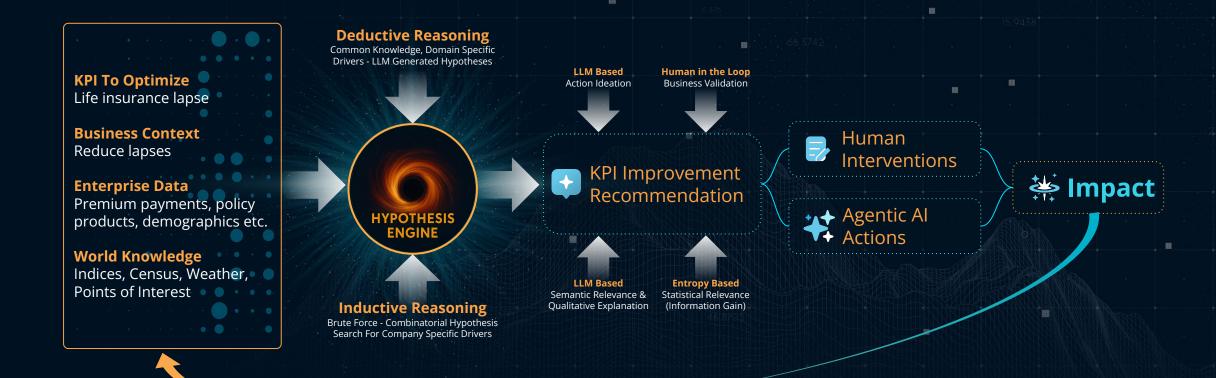
Documents

Unlocking LLM-powered KPI-optimization for solution-builders

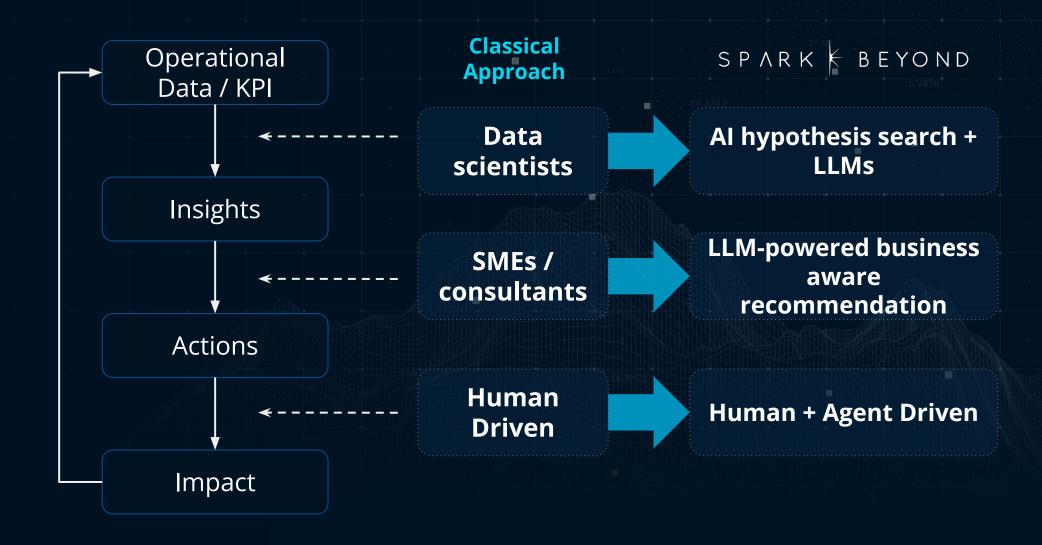


'Always Optimized' KPI Architecture

Continuous feedback loop creating impact from enterprise structured data



Making the paradigm shift to 'Always Optimized' KPI Optimization



AI CoE Platform

Accelerate Results - No Large Data Teams. No Consulting Roadshows.

Discover & Prototype in Weeks

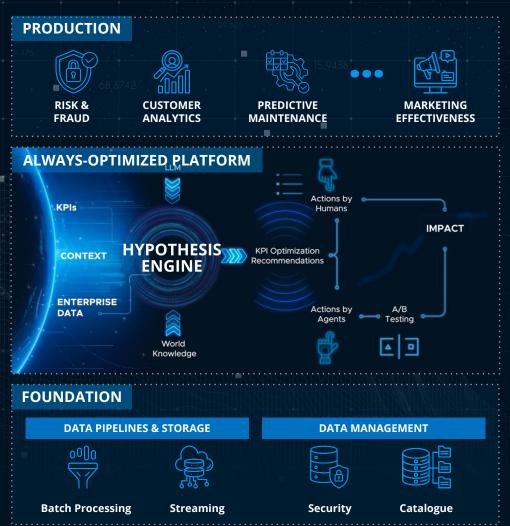
Bypass long discovery cycles. We'll help you rapidly prototype Al solutions that uncover the hidden drivers impacting your KPIs.

Prove ROI Before You Scale

Validate the P&L impact with a targeted pilot, delivering a concrete business case and tangible value from day one.

Scale to an "Always-Optimized" System

Empower a lean team to deploy and expand use cases, creating a continuous optimization loop for your business.



Why SparkBeyond for Your Modeling

Feature

Hypothesis Engine

Explainable Al

Open Integration

Battle Tested @ Scale

Unified ML & Gen Al

Rapid Deployment

Impact

Automatically discover and **engineer new features** from your operational and business data, surfacing **hidden drivers** of performance. Generate and test millions of hypotheses to identify true root causes and actionable levers for **KPI improvement**.

All insights and recommendations are delivered in clear, natural language—enabling business and operations leaders to *understand, trust, and act* on Al-driven findings. This transparency is critical for adoption and compliance.

SparkBeyond is cloud-agnostic and integrates seamlessly with Azure, CRMs, ERPs, and LLMs, ensuring *flexibility, scalability, and alignment* with your tech ecosystem.

The platform is **proven across 100+ Fortune 500 deployments**, with a track record of rapid time-to-value and measurable ROI.

SparkBeyond is a *unique combination* of advanced machine learning and LLM-enhanced agent workflows, providing a single foundation for a full spectrum of AI use cases.

Designed for *fast implementation* and operation in complex, distributed data environments—delivering actionable insights without requiring lengthy data warehouse projects.

Existing approaches to link LLMs to enterprise data are insufficient to address structured data needs

Overview of current approaches (not-exhaustive)

Pre-Training & Fine Tuning

What is it?

Pre-training a model on a selected corpus applicable to your enterprise domain Fine-tuning LLMs to answer domain specific questions

Limitations

- Expensive to re-train
- Does not address structured data sources
- Fine-tuning is better suited to teaching specialized tasks or styles and less reliable for factual recall.

Retrieval Augmented Generation

What is it?

Retrieve data from outside a foundation model and augment your prompts by adding the relevant retrieved data in context

Limitations

- Structured data requires a query for RAG based solution to retrieve
- Retrieved query needs to be LLM compatible
- RAG is largely limited to searchable documents

Code Interpretation & Generation

What is it?

LLM task to translate a query spoken in natural language into SQL/code automatically

Limitations

- User needs to define the intent and insights
- Path to using the insight in an LLM use case is several steps away for a user

In-Context Learning

What is it?

One/few-shot learning example to gain new knowledge (e.g. feeding an existing ppt report about a quantitative analysis)

Limitations

- Context needs to be textual
- Context document can get easily outdated

Continuously Reduce Claims Leakage in Health Insurance

SPARK | BEYOND

Saved \$750K and improved recovery rate by 30% through ML-powered claims auditing

CHALLENGE

- A global health insurer based in Australia wanted to reduce claims leakage and improve auditing
- Existing models had only an 18%
 recovery rate, and the goal was to
 quickly identify inconsistent claims to
 continuously review the process

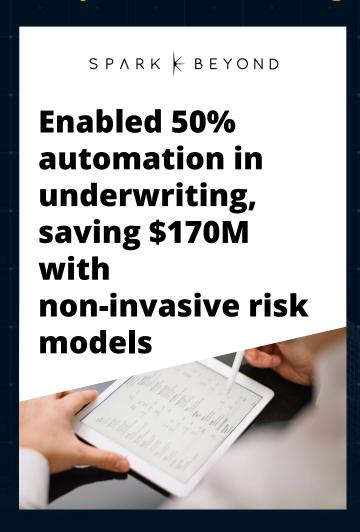
APPROACH

- Built an ML model to classify claim severity (DRG)
- Leverage trade flows at national/delivery points
- Combined internal claims data with ICD and ACHI codes

RESULTS

- Achieved a 30% increase in recoverable claims in pilot data
- Estimated \$750K in potential savings with <1-month payback
- Provided continuously updated insights to empower contracting teams in disputes

Adaptive Automating Underwriting in Life Insurance



CHALLENGE

- A leading U.S.-based health insurer wanted to reduce reliance on invasive medical exams for underwriting
- At the time, 93% of cases required medical tests, and the goal was to find alternative data sources to accurately assess risk

RESULTS

- **10x increase** in non-invasive risk classification
- ~50% of cases processed automatically, without manual intervention via continuously updating alternative risk indicators
- \$170M in potential savings through reduced costs and improved efficiency

APPROACH

Identified **latent risk predictors** from past underwriting decisions by combining internal and alternative data sources, including:

- Behavioral data
- Financial and credit health
- Non-invasive self-reported medical information
- Consumer digital footprint

Optimizing Digital Marketing in Auto Insurance

SPARK | BEYOND

Cut 30% of media spend and boosted conversions through predictive lapse modeling

CHALLENGE

- A leading online auto insurer wanted to improve value-based prospecting and digital marketing
- They needed a lapse propensity model to identify and explain the likelihood of customer churn and estimate lifetime value (LTV)

RESULTS

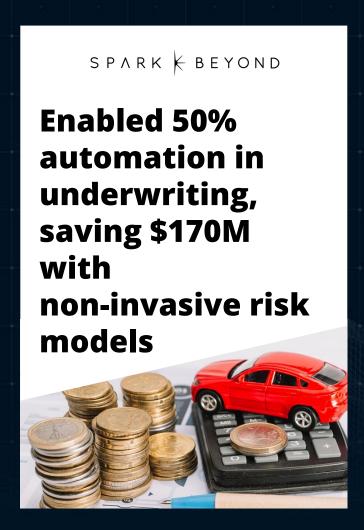
- Developed a highly accurate lapse model with continuous feature updates as customer behaviour evolved
- Cut out media spend for 30% of customers while increasing conversions
- Focused media on high-margin, high-lapse-risk, high-LTV customers

APPROACH

Identified **over 200 drivers** that predict lapse, including:

- Census
- Regional GDP
- OpenStreetMap
- Second-hand car sales data
- Synced predictive lapse, lifetime, and margin scores with a DMP to steer digital marketing and estimate customer LTV

Optimizing Market Pricing in Auto Insurance



CHALLENGE

- A leading Polish MTPL insurer wanted to predict the best price offer a customer could get in the market
- The goal was to use this predicted price as a variable in their quotation model to optimize deal closure

RESULTS

- Mapped the pricing ecosystem and how competitors priced policies
- ±\$17 average difference between actual and predicted quote
- Generated >\$800K in new and optimized policies, reflecting a 0.5% increase in new sold policies

APPROACH

Reverse-engineered competitors' pricing models by combining:

- Form data from insurance aggregators
- Geographic data
- Vehicular data
- Used insurer APIs to simulate and extract quotes, allowing predictive modeling based on observed outputs

Reducing Policy Churn in Group Retirement

CHALLENGE

- A leading U.S. life insurer was losing \$2.6 billion due to early termination of group retirement policies
- The goal was to identify drivers of churn and improve predictive models to reduce cancellations

APPROACH

Identified churn predictors in historical surrenders using internal and external data sources:

- Website data
- Transactions data
- Product and plans data
- Financial data
- Housing information

RESULTS

- Evaluated 1.2 million predictors and discovered 150 new unknown churn drivers
- Achieved 10% improvement in classification performance over baseline
- Generated \$26 million in impact through quick-win retention actions, with ongoing updates to drivers

