

SPARK BEYOND

Al for 'Always Optimized' Oil & Gas Operations

044 16.88 > W8116 > D1 > 200220216XX 103 11 URRLWEB A+='6R='+ESCAPE(URRLWEB D.REFERRER);

URALWEB_R+='60='*(URALWEB_S.COLORDEPTH?URALWEB_ _S.COLORDEPTH:URALWEB_S.P.IXELDEPTH): URALWEB_US=12:

3-3W.

DI IO-LINER, BG: CLRSS-FIXED-VOID-VOID IO-LINER, WRRP: CLRSS-SCROL, FIX, WRRP
FIXED LINER, WRRP-VOID IO-LINER-VOID-VOID-VOID

OID 10-BGX, LINER, BG: CLRSS-FIXED-VOID-VOID IO-BGX, LINER, WRRP
CLRSS-FIRRAL, FIX, WRRP FIXED-VOID IN-BGX, LINER-VOID IO-BGX, LINGER-VOID
CLRSS-FIRRAL, FIX, WRIGHT IO-BGX, LINER-VOID IO-BGX, LINGER-VOID
CLRSS-FIRRAL, FIX. WRIGHT IO-BGX, LINER-VOID IO-BGX, LINER-VOID ID-BGX, LINER-VOID ID-BGX, LINER-VOID ID-BGX, LINER-VOID ID-BGX, LINER-VOID ID-BGX, LINER-VOID IN-GIX LINER-VOID IN

P_HERD_LO' STYLE="WIDTH

CHECCHE RETORN

NAPLIGOTHES, EVENT.

(NOGROK TRUE PRIRINGS.

(_REF 'LEFT_NEV'));

CLRSS='LEFT_ROW';

<SPRIL

CLRSS-'LEFT_FIXER";

STORN

STORN

CLRSS-'LEFT_FIXER";

NumberIn of name > 1.

About us

Established in 2013 to accelerate Al-powered problem-solving.

Since then we have delivered \$Bns in tangible ROI for our customers across 100s of use cases.

Mission

Unlock Al-driven 'Always Optimized' KPIs for any organization

Global Footprint

Presence across Asia, Europe and US with employees spread across 8 countries

Industry Validated

100s of success stories across within Fortune 500 companies globally

Partner first DnA

Partner-first organisation with global reach with GSIs

SPARK | BEYOND

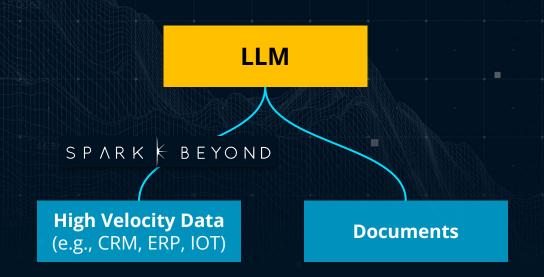
Oil & Gas Use Cases

Applying Generative AI across the full value chain

Our Technology

Generative AI doesn't understand YOUR business.

For KPI optimization, AI must leverage knowledge from operational data

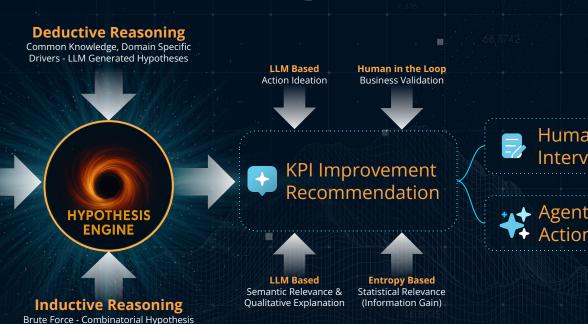

Challenges of LLMs

- Limited in understanding patterns hidden in complex operational data
- Unable to ground business reasoning in data.

High Velocity Data (e.g., CRM, ERP, IOT)

Documents

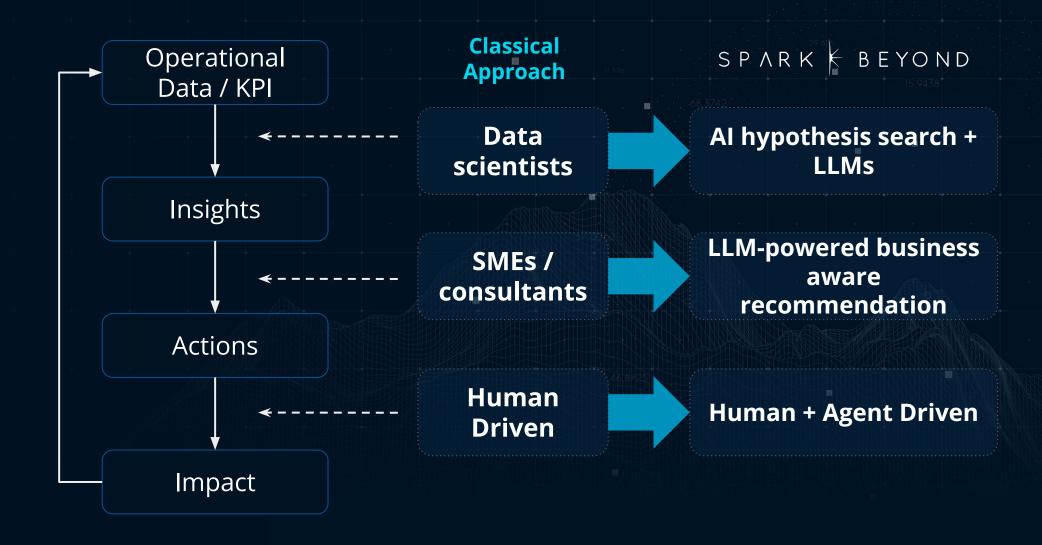
Unlocking LLM-powered KPI-optimization for solution-builders



'Always Optimized' KPI Architecture

Continuous feedback loop creating impact from enterprise structured data

Search For Company Specific Drivers



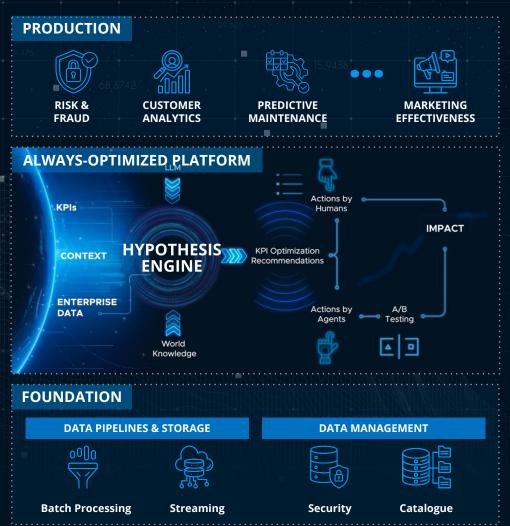
Making the paradigm shift to 'Always Optimized' KPI Optimization

AI CoE Platform

Accelerate Results - No Large Data Teams. No Consulting Roadshows.

Discover & Prototype in Weeks

Bypass long discovery cycles. We'll help you rapidly prototype Al solutions that uncover the hidden drivers impacting your KPIs.


Prove ROI Before You Scale

Validate the P&L impact with a targeted pilot, delivering a concrete business case and tangible value from day one.

Scale to an "Always-Optimized" System

Empower a lean team to deploy and expand use cases, creating a continuous optimization loop for your business.

Why SparkBeyond for Your Modeling

Feature

Hypothesis Engine

Explainable Al

Open Integration

Battle Tested @ Scale

Unified ML & Gen Al

Rapid Deployment

Impact

Automatically discover and **engineer new features** from your operational and business data, surfacing **hidden drivers** of performance. Generate and test millions of hypotheses to identify true root causes and actionable levers for **KPI improvement**.

All insights and recommendations are delivered in clear, natural language—enabling business and operations leaders to *understand, trust, and act* on Al-driven findings. This transparency is critical for adoption and compliance.

SparkBeyond is cloud-agnostic and integrates seamlessly with Azure, CRMs, ERPs, and LLMs, ensuring *flexibility, scalability, and alignment* with your tech ecosystem.

The platform is **proven across 100+ Fortune 500 deployments**, with a track record of rapid time-to-value and measurable ROI.

SparkBeyond is a *unique combination* of advanced machine learning and LLM-enhanced agent workflows, providing a single foundation for a full spectrum of AI use cases.

Designed for *fast implementation* and operation in complex, distributed data environments—delivering actionable insights without requiring lengthy data warehouse projects.

Existing approaches to link LLMs to enterprise data are insufficient to address structured data needs

Overview of current approaches (not-exhaustive)

Pre-Training & Fine Tuning

What is it?

Pre-training a model on a selected corpus applicable to your enterprise domain Fine-tuning LLMs to answer domain specific questions

Limitations

- Expensive to re-train
- Does not address structured data sources
- Fine-tuning is better suited to teaching specialized tasks or styles and less reliable for factual recall.

Retrieval Augmented Generation

What is it?

Retrieve data from outside a foundation model and augment your prompts by adding the relevant retrieved data in context

Limitations

- Structured data requires a query for RAG based solution to retrieve
- Retrieved query needs to be LLM compatible
- RAG is largely limited to searchable documents

Code Interpretation & Generation

What is it?

LLM task to translate a query spoken in natural language into SQL/code automatically

Limitations

- User needs to define the intent and insights
- Path to using the insight in an LLM use case is several steps away for a user


In-Context Learning

What is it?

One/few-shot learning example to gain new knowledge (e.g. feeding an existing ppt report about a quantitative analysis)

Limitations

- Context needs to be textual
- Context document can get easily outdated

Automated Biostratigraphy for Age Prediction

CHALLENGE

- Traditional age estimation of rocks by biostratigraphers is time-consuming and subjective
- Client wanted to automate the process using advanced analytics
- Needed a scalable solution to improve consistency and speed in age prediction

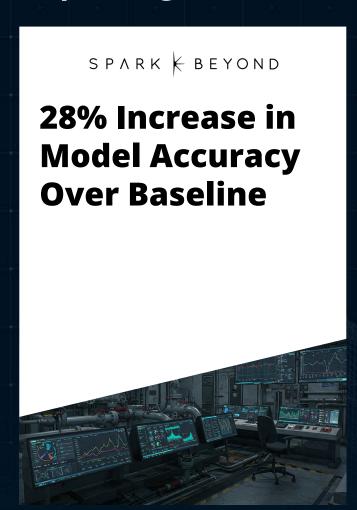
RESULTS

- 10x faster processing speed; 90% of samples no longer need manual review
- Age estimated continuously across depth levels
- Outputs categorized by confidence level, helping teams prioritize manual verification only where needed

- Expanded fossil species lookup from 100s to 60,000 to train the Al model
- Built a digital twin of the biostratigraphy process using historical well data (depth + fossil IDs)
- Trained AI engine to learn from historical patterns and predict age across depth continuously

Hydrocarbon Saturation Estimation

CHALLENGE


- Estimate hydrocarbon saturation levels across large sedimentary basins with hundreds to thousands of wellbores
- Traditional methods required manual expert analysis, which was time-consuming
- Client wanted to save time and man hours by automating the saturation estimation process

RESULTS

- 2 FTE years saved through automation of the saturation estimation process
- Enabled client to effectively scan entire basin for hydrocarbon signals and reprioritize Geo-Scientist time to focus on top-ranked prospects
- Achieved 20% higher accuracy compared to traditional expert-based methods

- Analyzed hundreds of wireline logs (resistivity, porosity, gamma ray) and supporting datasets (casing, formation group, geolocation)
- Used explainable and predictive variables to estimate saturation
- Built a model that imputes missing values in wireline logs, reducing need for expert review
- In **12 weeks**, addressed data gaps and predicted missing values for key logs

Improving Production Forecasts Using Water Cut and GOR Prediction

CHALLENGE

- Client aimed to increase oil rate by improving forecasts of:
- Water Cut (percentage of water in extracted fluid)
- Gas/Oil Ratio (GOR) to understand volume of oil vs. gas
- Allocated Rates to determine oil per sensor per branch

RESULTS

- 28% higher accuracy compared to baseline
- RMSE reduced from 9.2 to 6.6
- More precise oil production estimation

APPROACH

Used historical well test data, sensor readings, and allocated rates. Built a model through:

- Data preprocessing (removing outliers, time alignment, lookups)
- Feature engineering and iterative learning
- Trained prediction model using SparkBeyond platform
- Analyzed 3.9 billion explainable features

Predictive Maintenance of ESPs (Electrical Submersible Pumps)

CHALLENGE

- Client needed to anticipate and manage ESP failures to minimize production loss
- Built a model to predict the probability of ESP failure within the next 100 days
- Data Sets Used: Past ESP failures, sensor readings, well trajectories, coordinates, completions

RESULTS

- \$2M impact per early failure alert
- Enabled proactive maintenance, minimizing downtime and production loss

- Reframed task as remaining uptime prediction due to dataset imbalance
- Identified if an ESP is likely to fail within the next 100 days
- Used Discovery Platform with 8 datasets to uncover failure drivers
- Delivered insights as both code and natural language
- Provided daily SHAP-based predictions and explanations
- Outputs shared with maintenance teams to support preventive action

Forecasting Gas Futures to Maximize Trading Profitability

SPARK | BEYOND

24% More
Accurate
Forecasting of
Gas Futures
Contracts up to
100 Days Ahead

CHALLENGE

- Predict daily price changes of monthly futures up to 100 days before delivery
- Needed to understand complex price drivers in European gas markets: demand, supply, weather, geopolitical events, and financial indicators
- Goal: build a forecasting model as a decision support tool for the trading team

RESULTS

- Achieved 24% higher accuracy than benchmark models
- Enabled better-informed buy/sell decisions in futures markets
- Supported traders with early warning signals and optimized risk-reward positions

- Analyzed historical gas prices, weather, macro indicators, Bloomberg news, forward curves, and more
- Combined structured and unstructured data to train a model predicting the expected percentage change in gas futures contracts
- Forecasted **100 days ahead**, supporting traders with high-confidence insights

Predicting gas consumption for industrial clients in two European markets

SPARK | BEYOND

More Accurate Forecasts with 6.5% Higher Accuracy Than Benchmark

CHALLENGE

- Predicting gas demand within-day, 1 and 2 days ahead
- Consumption by industrial clients often fluctuates unpredictably, causing supply imbalances
- Needed to build a robust forecasting model to support operations and trading with better accuracy

RESULTS

- 6.5% higher accuracy compared to benchmark models
- Forecasts provided more reliable input for trading decisions
- Enabled proactive planning and reduced last-minute balancing costs

- Used historical offtake, metering data, weather data and client metadata
- Developed model to predict actual gas consumption more accurately than clients' nominated submissions
- Model tailored to two major European markets

Geosteering by synthetic bulk density and neutron porosity log prediction

CHALLENGE

 Predicting subsurface rock and fluid characteristics during drilling is difficult and costly, requiring data from multiple sensors located at varying distances behind the drill bit.

RESULTS

- Delivered 24/7 predictions supporting real-time geosteering decisions
- Improved accuracy in determining rock and fluid types, minimizing delay and uncertainty during drilling

- SparkBeyond used gamma, resistivity, and surface logging data to generate synthetic curves for Bulk Density and Neutron Porosity before real readings became available.
- Enabled early identification of **rock type (lithology)** and fluid type to improve real-time drilling decisions.

Automated Exploration in Oil & Gas

SPARK | BEYOND

Significant time savings and more accurate predictions of pay opportunities

CHALLENGE

 A major energy company operating in Norway needed to accelerate exploration decisions and reduce reliance on manual interpretation of drilling and geophysical data.

RESULTS

- Achieved significant time savings by streamlining the exploration data pipeline
- Delivered more accurate predictions of pay opportunities
- Enabled faster and more consistent decision-making during exploration

- Used SparkBeyond's platform to automate the analysis of raw drilling, mud gas, pressure, and wireline log data
- Calculated key reservoir and TOC (Total Organic Carbon) statistics
- Estimated porosity, HC phase, fluid properties, and burial depth
- Integrated data quality control for pressure metrics

Improving Well Efficiency through Mud Gas Analysis

SPARK | BEYOND

Maximized oil recovery and efficiency using advanced mud gas analytics

- A major energy company operating in Norway sought to improve oil production efficiency and optimize the exploration of new and existing wells
- Faced difficulty in fully leveraging available mud gas and petrophysical data for ROI-maximizing decisions

RESULTS

- Delivered tens of millions in ROI through better-informed exploration
- Enabled deeper understanding of new wells and untapped oil potential
- Increased efficiency in production by aligning data insights with drilling strategies

- Used SparkBeyond's platform to analyze advanced mud gas, PVT, and petrophysical logs
- Maximized value from existing mud gas data through automated logging analysis
- Improved accuracy in perforation and well placement

