
@BuoyantIO buoyant.io

Bailey Hayes, CTO at Cosmonic
Flynn, Technical Evangelist for Linkerd

Wasm 101 with Linkerd

➔ Intro to WebAssembly (Wasm)
➔ Intro to wasmCloud
➔ Quick intro to Linkerd
➔ Why you should care about this

stu 🙂
➔ DEMOS!
➔ Gotchas

What’s on the
agenda?

➔ hps://github.com/BuoyantIO/service
-mesh-academy/tree/main/wasmclou
d-and-linkerd

➔ For this demo, we’ll use Buoyant
Enterprise for Linkerd 2.18!
◆ But Linkerd edge-25.4.4 or later

will work, too

➔ I’ll be using a k3d cluster, but
prey much any cluster that can
support LoadBalancer services
should work

How do you follow
along?

➔ kubectl
hps://kubernetes.io/docs/tasks/tools/

➔ linkerd CLI
hps://linkerd.io/2/geing-started

➔ helm
hps://helm.sh/docs/intro/quickstart

➔ bat
hps://github.com/sharkdp/bat

➔ jq
hps://github.com/jqlang/jq

How do you follow
along?

Mesh Expansion
What is Wasm?

clang
--target=wasm32-wasip2

clang
--target=wasm32-wasip2

cargo component
build

runtimelabs

tinygo build –target
wasip2

componentize-py

An
y

Su
pp

or
te

d
Ar

ch
it

ec
tu

re

jco componentize

.wasm

What is WebAssembly (Wasm)?
It’s a portable compilation target supported by many languages

Why Wasm?

Capability-based
Security model

Unlike containers where you take
permissions away, only give

capabilities it needs

Zero cold start

Starts in microseconds
Scales to zero by default

Size

Small in size, typically ranging from
100s KBs to single digit MBs

Portable

Portable across architectures,
compile to wasm, run anywhere

��⚡ ����

Wasm components are composable

componentB.wasm

+

componentA.wasm

Language Interoperable
Compose components with any
other language

Strictly-defined Interfaces
API Driven design defines boundaries
across ecosystem

With fine-grained sandboxing

componentA componentB

componentC.wasm

Shared-Nothing Linking
Internals including globals and memory are
isolated to each component

Fast, Intra Process Execution
Isolation guaranteed via Wasm Runtime allows
for cross-component calls to run in nanoseconds

Interface Driven
Composed components may only communicate
via their exports and imports

Wasm-native
Orchestration

Deploy and manage Wasm applications
on any device, server or cloud

even your own!

Platform Evolution

5 Fatal Flaws of Containers

Default Open

Containers deploy into
an often unrestricted
POSIX environment

��
Cold Starts, High
Cost of Idle Infra

Even highly optimized
containers have a cold start

greater than a network request
- meaning to be available an

app must be idle

��
Often Bloated,
Low Density

Containers come in many
shapes and sizes - from the

very large to the petite

��
Anchored

Dependencies
Portable containers get
locked into a specific

deployment location via
dependencies

⚓
App-by-App
Maintenance

5000 teams, fixing the
same vulnerability, one

time

��
Problems with Containers

Development Without Lock-In
● Interface driven development
● Swap capabilities at runtime

Truly Portable Apps
● Compile once
● Run on any architecture

Custom Capabilities
● Interfaces for native

hardware
● Custom-built capabilities

Compose: Applications with Open Standards

● Started in 2019 as “WASI Snapshot Preview 1”

● Monolithic ABI

● Filesystem, I/O, Random, Clock

WebAssembly Systems Interface
(WASI) ^Standard ^s

WASI Subgroup of
WebAssembly
Community Group

(module
 ;; Import fd_write WASI function which will write
the given io vectors to stdout
 (import "wasi_snapshot_preview1" "fd_write" (func
$fd_write (param i32 i32 i32 i32) (result i32)))

14

WASIP2
● Released Jan 2024

● Modular, versioned interfaces

● Non-breaking releases every two months

● Support in several languages as

○ wasm32-wasip2

● New Networking Interfaces

API Repository

Clocks https://github.com/WebAssembly/wasi-clocks

Random https://github.com/WebAssembly/wasi-random

Filesystem https://github.com/WebAssembly/wasi-filesystem

Sockets https://github.com/WebAssembly/wasi-sockets

CLI https://github.com/WebAssembly/wasi-cli

HTTP https://github.com/WebAssembly/wasi-http

(component
 ;; note version and types
 (import "wasi:filesystem/types@0.2.0" "[method]descriptor.write"
 (func $wasi/v0.2.0/types.wasmimport_DescriptorWrite (;29;) (type 29)))15

https://github.com/WebAssembly/wasi-clocks
https://github.com/WebAssembly/wasi-random
https://github.com/WebAssembly/wasi-filesystem
https://github.com/WebAssembly/wasi-sockets
https://github.com/WebAssembly/wasi-cli
https://github.com/WebAssembly/wasi-http

wasmCloud architecture

wasmCloud architecture

wasmCloud architecture

wasmCloud/wasmcloud-operator

��

● Declarative wasmCloud management
via Kubernetes CRDs

○ Wadm! Application Manifests

○ wasmCloud Host Groups

● Service Endpoint integration

● Secrets integration

wasmCloud Operator

https://github.com/wasmcloud/wasmcloud-operator

Host Groups

C
O
N
F
I
G

S
T
A
T
U
S

Sets up wasmCloud instances for
Components & Capabilities hosting

● WasmCloudHostConfig CRD
○ Encodes best practices. Ex: NATS leaf

● Managed Kubernetes Deployment
Lifecycle

○ Configuration updates
○ Status reporting

● Integrates with manifest validators
(kubeconform)

https://github.com/yannh/kubeconform

Application Manifest

kubectl apply -f ./wadm.yaml

● Based on the Open Application Model
specification from oam.dev

● Supports describing the components,
providers, links, and configuration that
make up an application

https://oam.dev/

DEMO🤞

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

DEMO🤞

Mesh Expansion
What is Linkerd?

What is Linkerd?

Linkerd is a service mesh.

service mesh, n:
● An infrastructure layer providing security, reliability, and observability at

the platform level, uniformly, across an entire application.

What is Linkerd?

Linkerd is a service mesh.

service mesh, n:
● An infrastructure layer providing security, reliability, and observability at

the platform level, uniformly, across an entire application.
security reliability observability

● Microservices communicate over an
insecure, unreliable network.

The Microservices Architecture

● These are fundamental characteristics of the
way real networking is built; they cannot be
changed.

● Service meshes like Linkerd exist to make this
situation beer.

● Like most other meshes, Linkerd works by
adding a proxy (a sidecar) next to each
application pod.

Microservices and the Mesh

● Unlike any other mesh, Linkerd uses a
purpose-built, lightweight, ultrafast Rust
microproxy.

● These microproxies mediate and measure
all communications in the mesh, which
allows for all the mesh’s functionality.

● Mediating communications lets Linkerd
enforce rules and add capabilities:

Microservices and the Mesh

○ mTLS
○ advanced load balancing
○ multicluster communication
○ retries, timeouts, etc.

● Measuring communications lets Linkerd
provide observability:

Microservices and the Mesh

○ discover and display the actual
application call graph

○ measure and publish the golden
metrics (request rate, success rate,
latency)

Why is this important?

Security, reliability, and observability are not optional.

● You can get them from a mesh.
● You can get them by writing a lot of application code.
● You can’t do without them.

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

��

DEMO🤞

Mesh Expansion
Gotchas

Gotchas

● The big one: NATS must be marked opaque!
○ The good news is that this is not a subtle failure if you get it wrong.

● The other one: right now, all the Wasm components in a wasmCloud
host share a Linkerd identity.
○ We’re working on this. 🙂

● Developing Wasm components in Go is a lile rough because wasip2
isn’t yet in the standard library!
○ Working on this too! 🙂

● Wasm apps are sandboxed.
○ This is generally a good thing! but you need to understand what

the constraints of the sandbox.

Tell us how we can improve!
Your feedback maers!
(We promise it won’t take more than a few minutes, and it will help us
tremendously — thank you! 🙂)

Buoyant Enterprise for
Rust-based network security and reliability for modern
applications. Built on open source and designed for the
enterprise.

➔ Zero-trust security and compliance across your entire network
➔ Global traic management and control
➔ Full L7 application observability
➔ Built for the enterprise

Learn more & try it for free at buoyant.io/enterprise-linkerd

Get Certified!
With hands-on self-paced courses

 U
pdated Courses!

➔ Service Mesh 101
➔ Linkerd in Production

Up Next on July 17

Anti-Complex Multicluster:
Federated Services

SIGN UP TODAY!
buoyant.io/sma

Q&A

flynn@buoyant.io
@flynn on slack.linkerd.io

Thanks much!

