
@BuoyantIO buoyant.io

Flynn, Technical Evangelist for Linkerd
Reducing Costs with HAZL

➔ What is Linkerd?
➔ What is HAZL?

◆ and why should you care 🙂
◆ including an intro to zones, regions,

etc.

➔ DEMO!
➔ Gotchas

What’s on the
agenda?

➔ hps://github.com/BuoyantIO/
service-mesh-academy/
tree/main/reduce-costs-with-hazl

➔ For this demo, you will need
Buoyant Enterprise for Linkerd
2.18+!
◆ I’ll be using 2.18.3

➔ I’ll be using a multizone k3d
clusters, but the real requirement
here is multiple zones
◆ I’ll show how to set this up

How do you follow
along?

➔ k3d
hps://k3d.io/

➔ kubectl
hps://kubernetes.io/docs/tasks/tools/

➔ linkerd CLI
hps://linkerd.io/2/geing-started

➔ bat
hps://github.com/sharkdp/bat

How do you follow
along?

Mesh Expansion
What is Linkerd?

What is Linkerd?

Linkerd is a service mesh.

service mesh, n:
● An infrastructure layer providing security, reliability, and observability at

the platform level, uniformly, across an entire application.

What is Linkerd?

Linkerd is a service mesh.

service mesh, n:
● An infrastructure layer providing security, reliability, and observability at

the platform level, uniformly, across an entire application.
security reliability observability

● Microservices communicate over an
insecure, unreliable network.

The Microservices Architecture

● These are fundamental characteristics of the
way real networking is built; they cannot be
changed.

● Service meshes like Linkerd exist to make this
situation beer.

● Like most other meshes, Linkerd works by
adding a proxy (a sidecar) next to each
application pod.

Microservices and the Mesh

● Unlike any other mesh, Linkerd uses a
purpose-built, lightweight, ultrafast Rust
microproxy.

● These microproxies mediate and measure
all communications in the mesh, which
allows for all the mesh’s functionality.

Why is this important?

Security, reliability, and observability are not optional.

● You can get them from a mesh.
● You can get them by writing a lot of application code.
● You can’t do without them.

Mesh Expansion
What is HAZL?

HAZL: High Availability Zonal Loadbalancer

Ultimately, HAZL is a way to keep costs and latency down while preserving
reliability.

HAZL: High Availability Zonal Loadbalancer

Ultimately, HAZL is a way to keep costs and latency down while preserving
reliability.

OK, great, what’s this “zone” business?

Single-Zone Cluster

Single-Zone Cluster

Multi-Zone Cluster

zone A zone B zone C

$$

$$ $$

$$

Mesh Expansion
Why is cross-zone
traic expensive?

Multi-Zone Cluster

Multi-Zone Cluster

Node Hardware

Node Hardware

Data Centers

Zones
zone A zone B zone C

$$

Regions
zone A zone B zone C

region NA-01

Cheat Sheet

● Node failure
○ One of the Linux boxes has crashed

● A whole lot of Nodes fail
○ Maybe a server rack lost power… maybe a whole data center caught

on fire
● A Zone goes o the air

○ Hollywood version: Canada is invading Boston
○ Realistic version: Somebody screwed up BGP

● A Region goes down
○ Hollywood version: Major meteor strike
○ Realistic version: Somebody screwed up BGP 😂

Cheat Sheet

● Multizone clusters exist to help with a Zone failing
○ This is not common
○ On the other hand, it’s also hard to fix and slow to recover from

● Multizone clusters get expensive
○ Traic across zones costs money because bandwidth between

zones is more limited

Multi-Zone Cluster

zone A zone B zone C

$$

$$ $$

$$

Multi-Zone Cluster

zone A zone B zone C

Multi-Zone Cluster

zone A zone B zone C

$$

HAZL: High Availability Zonal Loadbalancer

HAZL does what that last slide shows.
● Keep traic in-zone if possible
● Allow traic to go out-of-zone if needed

Mesh Expansion
Demo Architecture

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

Faces (hp://github.com/BuoyantIO/faces-demo)

DEMO🤞

Mesh Expansion
Gotchas

Gotchas

● Routing happens where the request is made
○ This means that HAZL aects outbound traic, not inbound traic
○ Think of it like retries or circuit breaking

● Don’t forget that you configure HAZL with per-endpoint numbers!
○ …even though the metrics report scaled numbers

● You can’t currently configure HAZL per target: the HAZL load bands
aect outbound traic from a given pod.
○ This is a roadmap item.

hps://docs.buoyant.io/buoyant-enterprise-linkerd/
latest/reference/hazl/

Tell us how we can improve!
Your feedback maers!
(We promise it won’t take more than a few minutes, and it will help us
tremendously — thank you! 🙂)

Buoyant Enterprise for
Rust-based network security and reliability for modern
applications. Built on open source and designed for the
enterprise.

➔ Zero-trust security and compliance across your entire network
➔ Global traic management and control
➔ Full L7 application observability
➔ Built for the enterprise

Learn more & try it for free at buoyant.io/enterprise-linkerd

Get Service Mesh Certified!
With hands-on self-paced courses

SIGN UP TODAY!
buoyant.io/sma

Q&A

flynn@buoyant.io
@flynn on slack.linkerd.io

Thanks much!

