

Thinking in Systems, Speaking in Prompts

How AI Thinking Models Can Transform Human
Communication, Leadership, and Problem-Solving

By Rick Giner

Revision: Nov 2025

[PREVIEW CHAPTER 1]

[NOT FOR REDISTRIBUTION]

Foreword

Most leadership failures I've witnessed were not failures of intelligence, effort, or intent. They were failures of thinking, made visible through communication.

A team ships the wrong thing, confidently. A software architecture decision calcifies because no one challenged the framing. A meeting produces alignment in the room and confusion the next day. A leader asks a reasonable question and accidentally shuts down the very thinking they were hoping to unlock.

In most organisations, we often treat these moments as execution problems. We reach for process, structure, or better artefacts. But beneath almost every persistent issue lies a simpler and more uncomfortable truth. We are asking the wrong questions, in the wrong way, inside environments that quietly undermine good thinking.

Then AI arrived.

As large language models moved from research labs into daily work, something unexpected happened. The people who got the best results were not the ones issuing clearer commands. They were the ones who understood how to structure thought. They learned to slow down reasoning, branch possibilities, surface assumptions, test hypotheses, and deliberately separate exploration from evaluation. In other words, they learned how thinking actually works.

Prompt engineering became the first widespread, practical discipline that made reasoning visible.

This book is not about AI as a tool. It is about what AI has accidentally taught us about ourselves.

AI thinking models such as direct prompting, chain-of-thought, tree-of-thought, ReAct, and deliberate reasoning are not interesting because machines use them. They are interesting because humans already do, poorly and implicitly. These models give us a language for something we have always needed but rarely named. How we move from ambiguity to clarity. How we explore before deciding. How we avoid premature answers. How we think together without collapsing into noise or hierarchy.

At the same time, machines reveal a limitation we cannot ignore. AI thinks clearly because it is given ideal conditions. Humans do not. We think inside social systems. Power dynamics, fear, urgency, identity, and emotion distort reasoning long before logic has a chance to help. That is why this book pairs AI thinking models with Nancy Kline's Thinking Environment. Not as a metaphor, but as a necessary counterbalance.

Clear reasoning requires both structure and safety. Models without environment become brittle. Environment without models becomes vague. Together, they form a system.

The structure of this book mirrors that journey.

Part I establishes the core thesis. It reframes communication as a system for shaping thought, not transmitting information, and introduces the idea that prompts and conversations are structurally the same thing. By the end of this section, the goal is not agreement, but recognition. You should start seeing everyday interactions as implicit thinking systems.

Part II introduces AI thinking models as a precise language for human reasoning. Each chapter translates a machine reasoning pattern into leadership and team practice, showing when it works, when it fails, and how to coach it. This section is about giving names to thinking, so it can be chosen deliberately rather than defaulted unconsciously.

Part III shifts the focus from models to conditions. It explores why reasoning degrades in human systems and how the Thinking Environment acts as a set of cognitive safeguards. The aim here is to show that better thinking is not just a skill. It is an environment that must be designed, protected, and maintained.

Part IV turns these ideas into a coaching discipline. It treats leadership as an act of prompt engineering for humans, diagnosing thinking failures, guiding reasoning under pressure, and scaling clarity beyond individual conversations. This is where the models move from theory into daily leadership behaviour.

Part V grounds everything in real work. It provides diagnostic patterns, prompt libraries, and extended case studies across software engineering, product, and organisational contexts. The intention is practical fluency. You should be able to recognise a failure, select a model, and intervene with confidence.

Part VI looks forward. It explores what becomes possible when human and machine reasoning are designed together, and what kind of cultures emerge when thinking itself becomes a first-class system. This is not speculation. It is a direction of travel that technical organisations are already on, whether they are conscious of it or not.

This book is written for people leaders, product leaders, and organisations navigating complexity at scale. As my background is in software engineering leadership, many of the examples come from software and technical organisations - but the patterns and challenges highlighted are ubiquitous in many industries. It assumes intelligence and good intent. It does not assume perfect conditions. Everything here is designed to be usable in the mess of real work. In meetings, in incidents, in strategy debates, in coaching conversations, and in the quiet moments where leaders decide what question to ask next.

You will not find prescriptions for what to think. You will find frameworks for how to think, how to help others think, and how to design environments where thinking improves over time.

If there is a single idea running through these pages, it is this: communication is not the transmission of information, it is the shaping of thought. Every question is a prompt; every meeting is a system; every leader, whether they intend to or not, is a designer of reasoning.

This book exists to help you design that system deliberately.

CONTENTS

Part I — The New Frontier of Communication

- Chapter 1. Why Thinking Models Matter Now
- Chapter 2. What a Prompt Really Is
- Chapter 3. Human Conversations Are Already Prompts

Part II — Thinking Models from AI: A New Language for Human Reasoning

- Chapter 4. Why Machines Think Clearly and Humans Don't
- Chapter 5. Direct Q&A Thinking
- Chapter 6. Chain-of-Thought for Humans
- Chapter 7. Tree-of-Thought: Divergence Without Chaos
- Chapter 8. Chair-of-Thought: Multiple Perspectives Without Groupthink
- Chapter 9. ReAct and Deliberate Reasoning
- Chapter 10. The Meta Models: When to Use What

Part III — Nancy Kline's Thinking Environment as a Human Parallel

- Chapter 11. The Ten Components Revisited
- Chapter 12. AI Thinking Models vs Human Thinking Safeguards
- Chapter 13. Designing Thinking Environments for Teams

Part IV — Coaching People Toward Better Thinking

- Chapter 14. Coaching as Prompt Engineering for Humans
- Chapter 15. Diagnosing Thinking Errors Using Model Analogies
- Chapter 16. The Leader as a Reasoning Guide
- Chapter 17. Thinking Partnerships at Scale

Part V — Applying the Models to Real Work

- Chapter 18. Diagnosing the Problem: Which Model Fixes What Failure?
- Chapter 19. The Prompt Patterns Handbook
- Chapter 20. Case Studies from Teams

Part VI — The Future of Reasoning: Human and Machine Together

- Chapter 21. Thought Partnerships with AI
- Chapter 22. Building Reasoning-Centric Cultures
- Chapter 23. The Next Evolution of Leadership

Acknowledgements

Author's Note

Part I — The New Frontier of Communication

The convergence of human communication and machine prompting

Most of the breakthrough moments I have seen in technical leadership have had very little to do with code quality, architectural elegance, or whatever new framework the team was arguing about that quarter. The turning points almost always came from conversations that finally did what they were supposed to do. A sentence that unlocked clarity. A question that forced someone to rethink an untested assumption. A meeting that ended with people thinking in a better way than when they walked in.

These moments were not accidents. They were the product of deliberate cognitive structuring (though perhaps the people involved would never describe it that way). When a senior engineer stops a discussion and asks “What problem are we actually trying to solve? they are not stalling - they are performing a mental refactor. They are rewriting the prompt.

For all our sophistication in software systems, we remain strangely primitive in how we communicate. We invest months formalising architectural decision records but still largely rely on vague briefs. We enforce linting rules but express our most critical thinking in half-formed sentences. We design distributed systems with latency budgets, yet we conduct conversations with no regard for psychological bandwidth. Human dialogue often behaves like an overgrown monolithic legacy system. Everyone knows it is messy, full of out-dated business logic, and impossible to debug - but no one wants to be the one who rips it apart and rebuilds it properly.

The rise in popularity and availability of AI models made this gap impossible to ignore. When engineers started writing prompts for large language models, an unexpected insight emerged: the techniques required to get clarity out of machines are the same techniques required to get clarity out of humans. The discipline of being explicit about constraints, specifying success criteria, naming context, sequencing instructions, and shaping reasoning is not an AI skill. It is a communication skill that we forgot how to teach.

This part of the book explores that convergence. We will look at why communication is the enabler of exceptional leadership, why mental models are the real dependency graph behind every conversation, and how the leaders who thrive in the next decade will not be the ones with the sharpest technical instincts but the ones who know how to structure thinking. Not with manipulation, and not with scripts - but with cognitive precision.

Consider this an upgrade to your conversational firmware. One which is less about talking more effectively rather than thinking more deliberately. In a world where the processes we use to build systems are increasingly automated, the quality of our leadership, and therefore our teams, will depend on the one thing we still do entirely by hand: how we think together.

Chapter 1. Why Thinking Models Matter Now

On a warm Tuesday morning in Melbourne, a software engineering team gathered in a glass meeting room to discuss why a critical feature had slipped again. The incident review the week before had already traced the delay to three separate misunderstandings, none of them technical. Everyone in the room was capable, experienced, and well intentioned but the team had still produced different mental models of the same requirement and different explanations for the same trade-offs.

In a moment of insight someone asked the question: “What problem were we actually solving last sprint?”

Three people responded. There were three different answers.

This scenario is not unusual. It is not even surprising. It is simply the cost of unstructured thinking in organisations. Teams fragment when the thinking behind decisions remains invisible. Alignment collapses when reasoning becomes compressed into vague statements, half-formed assumptions, or hurried messages. The overall effect is predictable. More process. More meetings. More handoffs. More documentation produced as a substitute for shared understanding.

Most teams do not fail because of bad decisions. They struggle because the thinking behind those decisions was never made explicit.

AI forces thinking into the open

For the first time in history, millions of people interact daily with systems that require explicit thinking. AI does not act until it is prompted; it does not know your intent; it does not fill in your missing reasoning; if your thinking is unclear, AI models will seek clarity by deciding your angle for you; and if your assumptions are wrong, the response is wrong.

More dangerous still, the sycophantic nature of most AI models means that if you haven’t put your own safeguards in place you’ll be repeatedly congratulated on your insights and wisdom as you go further and further down the path of mediocrity and mistakes.

This is confronting. AI has become a mirror for the parts of cognition we usually hide. Bad thinking produces bad prompts. Bad prompts produce bad output. The feedback loop is instant.

Working with AI makes a simple truth unavoidable: *you cannot communicate clearly without thinking clearly*. And you cannot think clearly unless you externalise the structure behind your thoughts.

This insight is not just relevant for interacting with machines, it is transformative for interacting with people.

The senior engineer who was “difficult”

A different team faced what appeared to be a performance issue. A senior engineer had a reputation for pushing back hard on design decisions. In meetings, he would challenge proposals with long sequences of probing questions, which frustrated the product manager and sometimes other engineers. Stakeholders thought he was argumentative and that he had low emotional intelligence. The instinctive conclusion was poor communication skills.

During a coaching session, the engineering manager asked him to externalise his reasoning using a whiteboard exercise. Step by step. No shortcuts. Every constraint, assumption, and potential risk had to be mapped out.

As he worked through a recent design discussion, the engineer revealed something no one had noticed. He was thinking far deeper than anyone realised - modelling dependencies, edge cases, failure modes, and downstream complexity. He wasn't resistant. He was meticulous. His questions weren't obstruction - they were discovery. What looked like arguing was actually problem-finding.

The manager encouraged a simple habit: work out loud on a whiteboard during discussions, mapping constraints, assumptions, trade-offs, and risks. The effect was immediate. The team could now understand the purpose of the questions and follow his reasoning which meant now they could also anticipate challenges, and surface issues before they became blockers. Meetings became faster, more constructive, and far less frustrating and the “difficult” engineer's reputation shifted from obstructionist to indispensable problem-solver.

The problem had never been the engineer. The problem was unshared thinking.

This is the untapped potential of thinking models. By making invisible cognition visible, teams can identify risks earlier, improve decision-making, and transform friction into clarity.

Research is catching up

Over the last decade, cognitive science has reinforced a truth that most leaders already know intuitively: human reasoning is not linear and is not automatically transparent.

Slow thinking requires friction

Daniel Kahneman's work in *Thinking Fast and Slow* (2011) showed that humans have two systems of thinking. We default to *System 1* thinking which is fast, intuitive reasoning except when deliberately slowed to *System 2*.

System 2 thinking is the deliberate, analytical mode and requires friction: a slowing down of instinctive responses to examine assumptions, weigh trade-offs, and explore alternative paths.

In practice, this friction can be artificially introduced through methods like reasoning prompts, checklists, or decision frameworks. These mechanisms encourage the brain to pause,

surface hidden constraints, and evaluate possibilities more rigorously, resulting in decisions that are not only more accurate but also more robust under uncertainty.

For teams, embedding these “friction points” in design reviews, planning sessions, or architecture discussions transforms invisible cognitive processes into shared understanding and reduces the likelihood of costly oversights or cognitive bias.

Psychological safety improves reasoning quality

Amy Edmondson’s research in *The Fearless Organization* (2019) demonstrates that teams consistently produce higher-quality decisions when individuals feel safe to share incomplete or tentative reasoning. In psychologically safe environments, team members can expose doubts, challenge assumptions, and surface hidden risks without fear of ridicule or negative consequences. This openness allows collective reasoning to explore possibilities more thoroughly, catch errors earlier, and generate more creative solutions.

Interestingly, AI interactions can mimic this dynamic: a model does not judge or criticise, which encourages externalisation of thought. When engineers articulate ideas to an AI such as mapping assumptions, trade-offs, or potential failure modes they often surface insights that would otherwise remain private, untested, or invisible.

By creating analogous psychological safety in human teams through explicit encouragement, structured thinking prompts, or collaborative whiteboarding, leaders can harness the same effect: turning tentative, fragmented reasoning into robust, shared understanding.

These findings support the central argument of this book. Thinking models work not because they are clever frameworks but because they reduce friction, increase safety, and externalise cognition.

Prompt engineering as a gateway to structured reasoning

Most people begin with direct commands:

Write this. Summarise that. Solve this for me.

This mirrors fast, compressed, System 1 communication.

But as anyone working with large models quickly learns, direct commands rarely produce high quality output. You need structure. You need clarity of intent. You need to unpack the reasoning. You need to think about the properties of the problem before you think about the answer.

This is exactly how strong leaders think, but often only internally.

Prompt engineering simply formalises what high quality cognition already looks like:

- Clarify the goal
- Identify missing information
- Choose the thinking model
- Explore reasoning paths

- Evaluate outputs
- Reflect and refine

These steps are as useful with people as they are with AI.

People think in prompts even when they do not realise it

A product trio was debating whether to rearchitect a legacy system. The conversation had drifted into abstract concerns and unspoken fears. The tech lead could not articulate why the proposed change felt risky, only that it did.

The engineering manager paused the debate and asked each person to write a prompt for the problem. Not a solution. A prompt. What question would you ask an AI model if you wanted the best possible answer to this decision?

The results were revealing. The product manager's prompt focused on customer value. The tech lead's prompt focused on complexity and operational stability. The designer's prompt focused on long term alignment to product vision and user experience. Each perspective was valid, but none had been articulated clearly until the prompts were written.

It became obvious that the team was not disagreeing on solutions. They were using different internal prompts shaped by their disciplines.

Once the prompts were surfaced, the opportunities and risks of the project could be better debated, and alignment quickly followed.

Thinking environment meets thinking models

Nancy Kline's Thinking Environment argues that the quality of everything we do depends on the quality of the thinking we do first (*Time to Think: Listening to Ignite the Human Mind*, 2002). Her insight aligns naturally with modern AI reasoning architectures. When you give someone time, attention, and space to think, their reasoning becomes richer and more structured. When you give an AI model space through chain-of-thought or deliberative prompting, the same phenomenon occurs.

Both systems become better when thinking becomes visible.

Both systems deteriorate when thinking is rushed, compressed, or interrupted.

The parallels are not contrived. They reveal something fundamental about cognition. Humans and machines both produce higher quality output when guided by:

- Explicit reasoning structure
- Clarity of intent
- Cognitive space
- Thoughtful sequencing
- Exploration before convergence
- Critique before commitment

Thinking models simply give us the language to apply this consistently.

Why this matters for leaders

Most organisations run on reasoning: every technical decision, every prioritisation debate, every product trade-off, every incident retrospective. When thinking is not shared, communication becomes noise. When reasoning is compressed, teams misalign. When assumptions are not surfaced, decisions appear arbitrary.

The next generation of leadership will not be defined by technical expertise alone. It will be defined by the ability to coach thinking. Not what to think, but how to think.

AI has given us a unique opportunity. By forcing us to externalise our thinking for machines, it has shown us how rarely we do it for people.

The leaders who learn to bridge this gap will outperform those who do not.

They will build teams that can reason, not just execute.

They will create clarity in environments that reward speed but punish confusion.

They will unlock the latent intelligence that already exists in their organisations.

Thinking is the foundation of communication. Prompting is the method that reveals it. At that intersection, a different kind of leadership becomes possible.