
Implementing The Phong Reflection Model With OpenGL

Lorcan Purcell

September 7, 2025

1 Introduction

1.1 OpenGL

OpenGL is a graphics API used for rendering 2D and 3D vector based graphics. OpenGL offers
very bare-bone assistance to the user and is utilized completely through function calls which are then
implemented through graphics drivers to render graphics. This is both a strength and a weakness, as
direct communication to the GPU allows for far more granular and low-level control, however, it also
significantly complicates tasks compared to established game engines such as Unreal or Unity if one
wishes to render something.

1.2 Phong Reflection Model

The Phong reflection model is a standard mathematical model that is used to show how light interacts
with surfaces. It is a combination of three lighting techniques, which are ambient lighting, diffuse
lighting, and specular lighting.

1.2.1 Ambient Lighting

Ambient light is constant lighting that gives an object some color (or otherwise it would not be visible).
An example would be the moon, where even during the night it is still possible to make rough outlines
and colors of objects. Furthermore, in real life objects are almost always illuminated simultaneously
by multiple light sources, and thus will still have all faces illuminated to some degree.

Figure 1 shows an orange cube without ambient lighting (not visible) and a white cube with ambient
lighting.

Figure 1: Cube without ambient lighting

Figure 2 shows what a surface looks like with ambient lighting but without directional lighting.

1



Figure 2: Sphere with ambient lighting (Source)

1.2.2 Diffuse Lighting

Diffuse lighting takes into account the directional impact a light source has on an object; when a light
is shined on something, the parts most illuminated are brighter in color than the parts not illuminated.

Figure 3: Orange cube with diffuse and ambient lighting

1.2.3 Specular Lighting

Lastly is specular, which deals with the bright spot that forms when objects are shiny. Interestingly,
the ‘hotspot’ of light created by specular lighting will be the color of the light source and not the
color of the object. When these three techniques are combined, one is left with Phong lighting which
simulates real world lighting decently well.

2

https://taskercode.wordpress.com/tutorials/opengl-primer/tutorial-7-lighting/


Figure 4: Blue cube with phong lighting (specular, ambient and diffuse lighting)

Here is a link to a live demo of my final project showcasing the Phong lighting model in real time

2 Math

2.1 Diffuse Lighting

To implement diffuse lighting, we have to find the normal vector at each fragment and then take the dot
product between the normal vector and the light ray. The light ray is the vector found by subtracting
the coordinates of the fragment from the coordinates of the light source. The greater the value of the
dot product, the brighter the fragment will be as the light source will cast light more directly onto the
fragment.

Figure 5: Diffuse lighting

As we only wish for the theta, the vectors will be normalized before taking the dot product.
Furthermore, if the dot product is less than 0, that means the light ray is perpendicular with the
fragment and will not illuminate it, thus negative results are ignored. Here is code section of my code
used to calculate the diffused lighting from the fragment shader:

1 uniform vec3 objectColor;

2 uniform vec3 lightColor;

3 uniform vec3 lightPos // coordinate of light cube

4 in vec3 FragPos; // coordinate of fragment

5 in vec3 Normal; // normal vector of fragment

6 // 1) calculate light ray vector , NB this is direction from surface to

light; then normalize (vec3 = x,y,z)

3

https://vimeo.com/manage/videos/1084466902/db33a4e5ce


7 vec3 lightDir = normalize(lightPos - FragPos);

8 // 2) Uses dot product to calculate how ’direct ’ the light ray is to the

fragment.

9 // dot(norm , lightDir) takes the dot product between normal vector and

light ray ,

10 // the closer the value is to 1, the more direct the lighting

11 // max(dot(norm , lightDir), 0.0); prevents negative values (no light from

behind)

12 float diff = max(dot(norm , lightDir), 0.0);

13 // 3) Scale by the lights color (white here , so it just carries the

intensity)

14 vec3 diffuse = diff * lightColor;

15 // 4) Combine constant ambient light with diffuse and then tine by the

objects base // colour then tint by the light sourcess base color

16 vec3 result = (ambient + diffuse) * objectColor;

17 // 5) Output the final color (RGB) plus alpha = 1 for full opacity

18 FragColor = vec4(result , 1.0);

The equation for diffuse lighting is as follows:

Idiffuse = kd Il max
(
0, N̂ · L̂

)
.

N represents the normal vector for the fragment
L represents the light ray vector

2.2 Specular

Specular lighting is calculated in a similar manner to diffuse, taking the normal vector of the fragment
along with the light ray; however, this time the light ray is reflected across the normal vector, and
then the dot product is taken between the reflected ray and the view direction.

Figure 6: Specular lighting

Here is the code from the fragment shader to calculate specular lighting:

1 uniform vec3 objectColor;

2 uniform vec3 lightColor;

3 uniform vec3 lightPos;

4 // Coordinates of camera

5 uniform vec3 viewPos;

6 in vec3 Normal;

7 in vec3 FragPos;

8 // Intensity of specular component. The closer to 1 the shinier the object

9 float specularStrength = 0.5;

10 vec3 lightDir = normalize(lightPos - FragPos);

4



11 // 1) Find vector from camera to fragment

12 vec3 viewDir = normalize(viewPos - FragPos);

13 // 2) reflects the light ray across the normal vector. As the reflect

function expects the vector to be pointing away from the light source ,

lightDir is negated , as before it was going from the fragment to the

light source.

14 vec3 reflectDir = reflect(-lightDir , norm);

15 // 3) This is the actual specular calculation , mathematical representation

can be seen below. First the dot product is taken between the view

direction vector (which comes from the camera position) and the

reflected light ray. Next , the greater value is chosen between the

result of the dot product and 0.0f, as negative values would indicate

the light source can not reach the fragment. Finally , the resulting

quantity is raised to an n factor that indicates shininess. The

greater the value , the more concentrated the specular highlight will

be.

16 float spec = pow(max(dot(viewDir , reflectDir), 0.0), 32);

17 // 4) finally , the result of the specular highlight is combined with the

diffuse and ambient values for the specific fragment and then

multiplied by the objects colour , the final result is then outputted

in a Vec4 (x,y,z,a), where a represents opacity.

18 vec3 result = (ambient + diffuse + specular) * objectColor;

19 FragColor = vec4(result , 1.0);

Here is the equation for specular lighting

kspec = ∥R∥ ∥V∥ cosnβ = max(0, (Â · B̂))
n
.

To elaborate on the previous equation:
R represents the reflected light ray across the fragment’s normal vector
V represents the viewing vector
Beta represents the angle between the two vectors
max takes the greater value between 0 and the result of the dot product.

2.3 Combining Into Phong

Combining the equation for specular, diffuse and ambient we get the following equation representing
the Phong reflection model

Ip = kaia +
∑

m ∈ lights

(kd(L̂m · N̂)im,d + ks(R̂m · V̂ )αim,s).

Here is a diagram showing each vector:

5



Figure 7: Vectors for calculating phong shading

All of the vectors in the figure have been discussed before with the exception of H, which is used
in a variant of Phong lighting called Blinn-Phong.

While the equation may appear complicated, it is simply the compilation of the previous work.
The right side inside the summation is the specular lighting dot product equation, raised to a value n.

ks (1)

is simply the SpecularStrength component from the code above that indicates the reflectiveness of the
material.

Im,s (2)

and
Im,d (3)

are constants which represent the color of the light source, in the code it is lightColor. The left side
is the equation for diffuse lighting, where the dot product is taken between the light ray and the
normal vector. The result is multiplied by the same constants as the specular result. The purpose
of the summation sign is to account for the existence of multiple light sources, though due to time
constraints the code contains only one light source, so m = 1. However, adding more to the code would
not be difficult and all the same math would apply. Lastly, the left most side of the equation is simply
the ambient contribution to the overall lighting.

3 High-level Code Review

The total code spanned over 600 lines across 7 different files and would take too long to describe in
detail, however, the following sections will showcase some of the important parts and briefly describe
their function. The code shown so far has been from fragment shaders only.

3.1 Initialization

6



Figure 8: OpenGL set up code

This first part initialized the GLFW library, GLAD and sets OpenGL version to 3.3. which allows
us to call modern OpenGL functions. It also sets the window size and defines a first-person-perspective
camera.

3.2 Vertices

Figure 9: Vertex and normal data for one cube face (repeated 5 more times)

Here is an array with all the vertices for the blue cube from the program. The first three floating
point numbers are for the location of the vertices in 3D and the second 3 points show the normal
vector for each vertices. Normals could have been calculated with a cross product formula, however in
this case listing them explicitly was more convenient.

3.3 Render Loop

7



Figure 10: Main render loop

This is the render loop which is called for every frame. During each frame, the position of the
light source is updated, camera movement is handled from keyboard and mouse input and the lighting
is calculated. Because the light source is moving, the lighting of the cube has to be recalculated at
each frame. This is done by passing the value of several variables (uniforms in previous code) into
the appropriate shaders which then process the proper calculations and color the scene appropriately.
Modern graphics both a front and back buffer, each frame, the GPU draws the next image into the
back buffer while the front buffer is being sent to the display. Once rendering finishes, the buffers
swap. This ensures the user always sees a complete, tear-free image rather than partial updates.

3.4 Cube Fragment Shader

8



Figure 11: Enter caption

This is a picture of one of the four shaders used in this project. In a nutshell, the fragment shader
takes in a variety of inputs like position and lighting and implements the correct color for each pixel.
It is called every frame within the render loop above and its inputs are updated to match changed
positions and/or textures. You might notice the code here is the same as the samples provided during
the explanation of each lighting technique, that is because the fragment shader is where all those
calculations are done!

4 Conclusion

This project translated otherwise abstract vector-math concepts such as the dot-product into a concrete
OpenGL application through use of the Phong lighting model. It took around 20 hours in total as I
discovered the hard way that there is a steep learning curve to graphics programming. Nevertheless,
this project was very fun and proved to be particularly edifying. Thank you for reading.

Bibliography

References

Online Resources

• OpenGL Programming Guide (“The Red Book”)

• Wikipedia—Phong Reflection Model

• Wikipedia—Specular Highlight

• LearnOpenGL (background and images)

9

https://w2.mat.ucsb.edu/594cm/2009/docs/RedBook.pdf
https://en.wikipedia.org/wiki/Phong_reflection_model
https://en.wikipedia.org/wiki/Specular_highlight
https://learnopengl.com/


• YouTube—Video on Phong Lighting

10

https://www.youtube.com/watch?v=LKXAIuCaKAQ

	Introduction
	OpenGL
	Phong Reflection Model
	Ambient Lighting
	Diffuse Lighting
	Specular Lighting


	Math
	Diffuse Lighting
	Specular
	Combining Into Phong

	High-level Code Review
	Initialization
	Vertices
	Render Loop
	Cube Fragment Shader

	Conclusion

