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The Valley of Code Reasoning: Scaling

Knowledge Distillation of Large Language
Models
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Distilling the thinking traces of a Large Language Model (LLM) with reasoning capabilities into a smaller
model has been proven effective. Yet, there is a scarcity of work done on how model performances scale
with the quantity of distillation data. In this work, we study the scaling trend of distilling competitive coding
skills on two small non-reasoning LL.Ms. We validate the hypothesis that there is a valley of code reasoning:
downstream performance on competitive coding first drops as data quantity increases, then it steadily increases
in a sharper-than-log-linear fashion. Having identified the trend, we further fine-tune the models at two different
distillation stages on the same data to ground conclusions on their respective learning phases. We learn that
across stages in the low and medium-low data regimes, small models benefit significantly from easier coding
questions than from harder ones. We also find that, surprisingly, the correctness of outputs in training data
makes no difference to distillation outcomes. Our work represents a step forward in understanding the training
dynamics of code reasoning distillation outside intuition. We are open-sourcing dataset splits used for all our
experiments at https://collinear.ai/valley-of-reasoning-data.
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1 Introduction

Test-time scaling techniques have enabled large language models (LLMs) to perform complex multi-step reasoning
through chain-of-thought (CoT) style processes. Models such as DeepSeek-R1 Guo et al. (2025) and QwQ-32B Team
(2025) demonstrated strong reasoning abilities, particularly in the domains of mathematics, science and coding. These,
in turn, have amplified efforts to distill test-time compute gains via supervised fine-tuning (SFT) into smaller fine-tuned
models. Recent work has demonstrated that LLMs can be taught to produce such long CoT reasoning through distillation
in a surprisingly data-efficient manner Muennighoff et al. (2025); Ye et al. (2025). For example, Li et al. (2025)
fine-tuned a 32B model on only 17k reasoning samples and achieved dramatic gains on competitive coding benchmarks
comparable to larger models. Despite the growing body of work on curating high-quality post-training data for reasoning
distillation for frontier coding performance Guha et al. (2025); Ahmad et al. (2025b), only limited focus has been given
to the training dynamics of these student models and how these dynamics influence the acquisition of reasoning abilities.

In this work, we investigate how reasoning abilities are distilled into non-reasoning student models, specifically asking
whether their reasoning abilities emerge linearly. We hypothesize that, for small non-reasoning LLMs in low to medium-
low data regime, distillation does not yield monotonic improvements: performance initially declines when trained on
small data, then steadily improves as data scales, which we refer to as the valley of reasoning. Grounding our findings
on model performances on LIVECODEBENCH (LCB) Jain et al. (2024), a competitive coding benchmark, we validate
this claim and observe a sharper-than-log-linear trend once the model gets out of the valley (Fig 1).

Inspired by the findings of Li et al. (2025), which argues that output structure rather than code correctness in data drives
improvement, we further whether this conclusion holds uniformly across stages of distillation. We find that both during
the non-reasoning phase and the intermediate phase where the model acquires decent reasoning skills, code correctness
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Figure 1 Evaluation scores on LCB of two distilled small models show that performances initially decreases by half but then steadily
increases in a log-linear trend toward the 30K data upper bound.

in data has little impact on evaluation performances. However, for both stages, we consistently observe that distillation
data containing easier coding questions outperform the one with harder questions. This suggests that at a low data
regime, small models can better study after easier examples to yield immediate gains.

2 Related work

SFT for Reasoning Distillation SFT on reasoning traces generated by reasoning models has proved effective at
improving smaller models Guo et al. (2025). Motivated by this, many works have investigated methods for per-
forming distillation. In particular, recent data-efficiency results show that small, carefully curated sets can already
induce strong reasoning behavior in large (32B+) models Ye et al. (2025); Li et al. (2025), complementing early self-
improvement/distillation antecedents Zelikman et al. (2022, 2024). Several studies probe the components of reasoning
traces: prefix-only supervision can enable highly efficient distillation Ji et al. (2025); reasoning quality of the distillation
traces can impact downstream performance Luo et al. (2025); Yu et al. (2025); and the CoT lengths in the mixture can
be tuned to optimize both token efficiency and model capabilities Wu et al. (2025); Ma et al. (2025); Xu et al. (2025).
Strikingly, Lietal. (2025), Ahmad et al. (2025b), and Guha et al. (2025) have found that for models in low-data regimes,
the correctness of the reasoning trace does not impact distillation quality. However, these works do not investigate how
data quality impacts different stages of training, a matter of practical importance in large-scale post-training processes.

Scaling Distillation for Coding OpenThoughts Guha et al. (2025), OpenCodeReasoning (OCR) Ahmad et al. (2025b),
and rStar-Coder Liu et al. (2025) find that competitive coding performance can be improved by scaling the reasoning
dataset to millions with high question duplication counts. These works evaluate on robust, contamination-controlled
code benchmarks such as LCB Jain et al. (2024) and CodeElo Quan et al. (2025), reinforcing the observed SFT-only
gains. Together, they demonstrate the potential of large-scale SFT for dramatic improvements in base-model capabilities,
but they do not focus on the model performance during intermediate data quantities. This motivates us to conduct an
in-depth study on the training dynamics and progress on downstream evaluations.

3 The Valley of Reasoning

In regards to the training dynamics of reasoning distillation, we want to answer three research questions (RQs): (i) Does
code reasoning performance scale monotonously with data quantity?, (ii) Does the correctness of the teacher’s responses



Size Metric Qwen 2.5 Llama 3.1 Dataset Qwen 2.5 Qwen 2.5-30K

K Completion rate 0.1842 0.4649 Baseline 0.126 0.264
Think tag rate 0.1406 0.0777 Correct 6K 0185 0347
10K Completion rate 0.3509 0.3459 Incorrect 6K 0.182 0.350
Think tag rate 0.3496 0.3496 Hard 4K 0137 0.296
30K Completion rate 0.5802 0.7080 Easy 4K 0.179 0.352
Think tag rate 0.5677 0.7068
Table 1 Completion and think tag rates of Qwen2.5 and Table 2 LCB scores of Qwen2.5 at two stages were further
Llama3.1 across training data sizes. trained on four partitions of data. Easy data significantly out-

performs hard data, but correctness has little impact.

matter for scaling student performance? and (iii) Does the difficulty of the input problems have an impact on the student
performance? We now discuss how these three questions inform our data curation strategies, and detail the findings in
section 4.

3.1 Datasets

To answer RQ-1, we create three quantity-controlled datasets based on a single code reasoning dataset of 30,000
examples. The questions are sourced from OpenCodeReasoning2 (OCR2) Ahmad et al. (2025a), which contains 34,125
unique competitive coding problems compiled from 4 data sources. The answers are generated using two models,
DeepSeek-R1-0528 and KAT-V1-40B Zhan et al. (2025), with an average duplication count of 7, chosen because of their
over 70% accuracy on LCB. As a reasoning dataset, each example contains a response that has <think></think>
tags wrapped around the teacher model’s thinking traces.

From this base set, we create a random subset of 10K examples, and then another random subset of 1K examples out
of the 10K subset. We explicitly conduct random sampling to ensure the subsets follow the same distribution as the
supersets and differ only in quantity. We train a model of choice on the three datasets and report their LCB scores to
study how dataset size impacts distillation outcomes.

To answer RQ-2, we take another in-distribution dataset of 13,583 reasoning examples whose questions are only sourced
from the TACO Li et al. (2023) dataset. As TACO provides test cases for each question, we label each model response
as either correct or incorrect based on whether it passes all test cases for the given question. We then select two
random subsets of 6K examples, one consisting of only correct responses and the other only incorrect responses. The
performance of models trained on these two separate datasets answers whether code correctness matters.

To answer RQ-3, we leverage the existing difficulty labels in TACO to partition examples into two groups:
examples labeled hard, very_hard, or medium_hard belong to the group of hard questions and the ones labeled
easy or medium belong to the group of easy questions. We randomly select from the two groups to create two mutually
exclusive datasets of size 4K. Models on the two datasets can provide useful signals on whether the model benefits from
learning to solve harder questions.

3.2 Training setup

We train on two small instruction-tuned models as the study of interest: Qwen2.5-7B-Instruct (Qwen2.5) and Llama3.1-
8B-Instruct (Llama3.1) Dubey et al. (2024). Neither has the ability to output CoT traces wrapped in <think> tags nor
a dedicated special <think> token in the tokenizer.

For Qwen2.5, we conduct a total of eleven experiments, which consist of the three runs on the 1K, 10K, and 30K
datasets to answer RQ-1, and four on the correctness- and difficulty-controlled datasets for both the instruct model and
the 30K finetuned checkpoint (Qwen2.5-30K) to answer RQ-2 and RQ-3. Running the same four experiments on two
checkpoints gives us signals on how the impact of the same data features changes as the model improves its reasoning
capacity. For Llama3.1, we conduct three runs on the 1K, 10K, and 30K datasets to study the data scaling trend relevant
to RQ-1.



We train each job using torchtune on 8 x Nvidia HI00 GPUs. We uniformly use a global batch size of 128, a learning
rate of 8e — 5 with a warmup ratio of 0.10, and the AdamW optimizer Loshchilov & Hutter (2017) to ensure fair
comparisons. We use a max sequence length of 32,768 due to Qwen’s architecture constraints. Each job takes a total of
5 epochs and is evaluated on the final checkpoint.

4 Empirical Findings

We now discuss the empirical findings that answer our three research questions in section 3.

RQ1: There is a ''valley of code reasoning'': the student model’s distillation performance initially drops, then
it increases as the training data quantity goes up. As is illustrated in Fig 1, for both Qwen2.5 and Llama3.1, the
same scaling trend holds: The model’s LCB score first decreases by more than half from the baseline when trained on
1K examples, then improves and surpasses the baseline by around 50% when the data size reaches 10K. On Qwen2.5
and Llama3.1, training on 30K examples further lifts the performance respectively by 50% and 100% upon the 10K
checkpoint, exhibiting or even surpassing the anticipated log-linear trend of improvement.

We observe similar trends in two auxiliary metrics that correlate strongly with the quality of the model’s reasoning
outputs. One of them is the completion rate, defined as the percentage of all model responses that finish within 32K
tokens. The completion rate is highly correlated with effective reasoning as incomplete responses often repeat the same
phrases before the eventual cutoff. We observe a steady 1.65-1.9 log-linear increase in the completion rate from the 1K
to the 30K checkpoint.

Another metric is the <think> tag occurrence rate, defined as the percentage of all responses that begin with a
<think> tag. A higher <think> tag occurrence rate shows the model is effectively learning the structure of its
outputs. Surprisingly, the <think> tag is hard for the model to learn, as both models starts with below 20%. As data
size scales up, we observe another log linear trend of 1.6-2.4 increase in the <think> tag occurrence rate all the way
to the later checkpoints.

RQ2: Training examples that have correct responses do not improve small models’ performances. For both
Qwen2.5 and the SFT checkpoint with 30K data (Qwen2.5-30K), we look at the performance lift of further training on
6K correct responses versus 6K incorrect responses (Table 2). Compared to each baseline, the two subsets both lift the
LCB score by around 50%, which suggests that the correctness of responses has no effect on distillation outcomes at
both stages of training.

Furthermore, as the model continues to improve on the additional 6K at a rate comparable to the initial rise to 30K, it
hints that model performance is far from saturation at the current 30K data scale.

RQ3: Small models benefit more from easy and medium-level examples than from hard examples. For both
Qwen2.5 and Qwen2.5-30K, we also compare their evaluation outcomes when trained on an additional 4K data with
hard-coded questions versus 4K easy and medium ones (Table 2). For both models, training on exclusively hard questions
provides only a modest boost: Qwen2.5 improves by 7%, whereas Qwen2.5-30K improves by 11%. In contrast, when
training on only easy and medium-difficult data, Qwen2.5 improves by 41%, while Qwen2.5-30K improves by 33%.
Therefore, we conclude that for small models in the medium-low data regime, examples containing easier questions
provide superior benefits to downstream code reasoning performances.

Curiously, in all training runs that answer RQ-2 and RQ-3, we observe that the completion rate and the <think> tag
occurrence rate are only weakly correlated with evaluation performances. However, they are strongly correlated with
data quantity, which jointly predicts the quality of code reasoning. For example, for both Qwen2.5 and Qwen2.5-30K,
training on hard questions yields the same completion rate and <think> tag occurrence rate as is in training on easy
questions. This suggests that the benefits of easier problems go beyond mere structural imitations of the teacher’s
reasoning traces.

5 Conclusion

In this work, we have demonstrated that for small LLMs in a low to medium-low data regime of around 1K-30K training
samples, distillation performance does not scale monotonously with data quantity. Instead, the model performance
follows a highly predictable pattern in the shape of a valley: It initially decreases by half, then increases log-linearly



with a higher completion rate and more <think> tag occurrences. Backed by this observation, we study the impact
of several data features in different stages of model training. We show that for small LLMs across stages, reasoning
examples with easier questions are more beneficial, but the correctness of model responses hardly matters. We will take
it upon ourselves to further work on showing how the trend scales up to the medium-high and high data regimes above
100K, and if the same conclusions about correctness and difficulty hold in those regions.
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