Sustainability indicators for Litecoin

Disclosures in accordance with Article 66 (5) MiCAR.

Preamble

About the Crypto Asset Service Provider (CASP)

Name of the CASP: System Pay Services (Malta) Limited

Street and number: TRQ SANT'ANDRIJA, Malta

City: SAN GILJAN Country: Malta

LEI: 984500640Z8ADE893D04

About this report

This disclosure serves as evidence of compliance with the regulatory requirements of MiCAR 66 (5). This requirement obliges crypto asset service providers to disclose significant adverse factors affecting the climate and the environment. In particular, this disclosure complies with the requirements of "Commission Regulation (EU) 2025/422 of December 17, 2024, supplementing Regulation (EU) 2023/1114 of the European Parliament and of the Council with regard to regulatory technical standards specifying the content, methods and presentation of information relating to sustainability indicators related to climate-related and other environmental impacts." The optional information specified in Article 6, par. 8 (a) to (d) DR 2025/422 is not included.

This report is valid until material changes occur in the data, which will result in an immediate adjustment of this report.

Sustainability indicators

Litecoin

Quantitative information

Field	Value	Unit
S.1 Name	System Pay Services (Malta) Limited	/
S.2 Relevant legal entity identifier	984500640Z8ADE893D04	/
S.3 Name of the crypto-asset	Litecoin	/
S.6 Beginning of the period to which the disclosure relates	2024-11-19	/
S.7 End of the period to which the disclosure relates	2025-11-19	/
S.8 Energy consumption	1267981453.95689	kWh/a
S.10 Renewable energy consumption	34.4781471084	%
S.11 Energy intensity	0.04390	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	522403.36487	tCO2e
S.14 GHG intensity	0.01808	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Litecoin, like Bitcoin, uses Proof of Work (PoW) as its consensus mechanism, but with a few key differences:

- 1. Scrypt Hashing Algorithm: Unlike Bitcoin's SHA-256 algorithm, Litecoin uses the Scrypt hashing algorithm, which is more memory-intensive. This makes mining Litecoin more accessible to regular users and limits the advantages of specialized hardware (like ASICs) in the early years.
- 2. Mining and Block Creation: Miners compete to solve cryptographic puzzles and, upon success, add new blocks to the blockchain. This process involves solving the Scrypt algorithm, which requires computational work. The first miner to solve the problem earns the block reward and transaction fees associated with the transactions in the block.
- 3. Block Time: Litecoin has a block time of 2.5 minutes, much faster than Bitcoin's 10 minutes. This means transactions confirm more quickly, increasing the overall network speed.
- 4. Block Reward Halving: Similar to Bitcoin, Litecoin has a block reward halving event approximately every four years. Initially, miners earned 50 LTC per block, but this reward decreases by half after each halving event. This process continues until the maximum supply of 84 million LTC is reached.
- 5. Difficulty Adjustment: Litecoin adjusts the mining difficulty approximately every 2,016 blocks (about every 3.5 days) to ensure that blocks continue to be mined at a consistent rate of 2.5 minutes per block, regardless of fluctuations in the total network hash rate.

S.5 Incentive Mechanisms and Applicable Fees

Litecoin, like Bitcoin, uses the Proof of Work (PoW) consensus mechanism to secure transactions and incentivize miners.

Incentive Mechanisms:

1. Mining Rewards:

Block Rewards: Miners are rewarded with Litecoin (LTC) for successfully mining new blocks. Initially, miners received 50 LTC per block, but this reward halves approximately every four years. Transaction Fees: Miners also earn transaction fees from the transactions included in the blocks they mine. Users pay fees to have their transactions processed by miners, especially when they need faster confirmation times.

2. Halving:

The halving mechanism ensures that over time, fewer Litecoins are introduced into circulation, creating a deflationary model. This makes mining more valuable as the circulating supply becomes scarcer, incentivizing miners to continue participating in the network even as block rewards decrease.

3. Economic Security:

The cost of mining (e.g., hardware and electricity) provides a strong economic incentive for miners to act honestly. If miners attempt to cheat or attack the network, they risk losing the computational work they invested, as invalid blocks will be rejected by the network.

Fees on the Litecoin Blockchain:

- Transaction Fees: Litecoin users pay a transaction fee for each transaction, typically calculated in LTC per byte of transaction data. The fees are dynamic and vary based on network congestion.
- Low Fees: Litecoin is known for its relatively low transaction fees compared to other blockchains like Bitcoin, which makes it ideal for smaller transactions and micro-payments.

- Fee Redistribution: Collected transaction fees are distributed to miners as part of their rewards for validating transactions and securing the network.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within which an economic calculation of the miners is assumed. Miners are persons or devices that actively participate in the proof-of-work consensus mechanism. The miners are considered to be the central factor for the energy consumption of the network. Hardware is pre-selected based on the consensus mechanism's hash algorithm: Scrypt. A current profitability threshold is determined on the basis of the revenue and cost structure for mining operations. Only Hardware above the profitability threshold is considered for the network. The energy consumption of the network can be determined by taking into account the distribution for the hardware, the efficiency levels for operating the hardware and on-chain information regarding the miners' revenue opportunities. If significant use of merge mining is known, this is taken into account. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

This report was provided by:

Crypto Risk Metrics

The IDW PS 951-certified SaaS tool "Crypto Risk Metrics" supports regulated financial institutions in the risk-based assessment of cryptocurrencies, Delta-1 Certificates ("Crypto ETPs") and tokenized securities. ESG data, market conformity checks and KARBV-compliant price data complete the product range.

As a professional compliance expert, we provide support with:

ESG data for White Papers for crypto-assets

Risk Compliant price data

Market conformity check