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W Check for updates

Differentiating sequencing errors from true variants is a central genomics
challenge, calling for error suppression strategies that balance costs and
sensitivity. For example, circulating cell-free DNA (ccfDNA) sequencing

for cancer monitoring is limited by sparsity of circulating tumor DNA,
abundance of genomic material in samples and preanalytical error rates.
Whole-genome sequencing (WGS) can overcome the low abundance of
ccfDNA by integrating signals across the mutation landscape, but higher
costs limitits wide adoption. Here, we applied deep (-120%) lower-cost

WGS (Ultima Genomics) for tumor-informed circulating tumor DNA
detection within the part-per-million range. We further leveraged lower-cost
sequencing by developing duplex error-corrected WGS of ccfDNA, achieving
7.7 x107 error rates, allowing us to assess disease burden in individuals

with melanoma and urothelial cancer without matched tumor sequencing.
This error-corrected WGS approach will have broad applicability across
genomics, allowing for accurate calling of low-abundance variants at
efficient cost and enabling deeper mapping of somatic mosaicismas an
emerging central aspect of aging and disease.

Distinguishing sequencing errors from true variants continues to
challenge the genomics field, with tradeoffs between cost and error
suppression strategies. These challenges are magnified when iden-
tifying ultrarare variants. For example, profiling circulating cell-free
DNA (ccfDNA) is a promising clinical tool for noninvasive cancer
detection'®. Sequencing of somatic variants in circulating tumor
DNA (ctDNA)’ " can aid in detection of low-burden disease, such as
cancer screening, minimal residual disease (MRD)"*"* and relapse
monitoring'”’®, However, when disease burden is low, robust detection
requires methods with exquisite sensitivity to detect ctDNA signal over
thebackgroundrate of sequencing or library preparation errors. This
technical challenge is typically overcome by increasing sequencing
depth at select genomic locations, accompanied by approaches that
decrease sequencingerror rate, including unique molecular identifier
(UMI) error suppression techniques'®” or duplex sequencing'>?°2,
whichenableincreased accuracy indifferentiating true somatic variants
fromsequencingartifacts to optimize detection of low-burden disease.

Prevailing methods of ctDNA detection use targeted sequencing,
whichincreases the number of genomes sequenced at atargeted loca-
tion. However, high-throughput targeted sequencing rapidly exhausts
available genomes (1,000-10,000 genome equivalents (GEs) per ml of
plasma®), setting a ceiling on ctDNA detection, where further increases
in sequencing depth at targeted sites afford no advantage after the
limited number of GEs has already been sequenced. Alternatively,
whole-genome sequencing (WGS) approaches exploit breadth of cover-
age to supplant depth, eliminating the reliance on detecting few sites
to increase ctDNA characterization in low tumor fraction settings.
For example, our recent methods MRDetect' and MRD-EDGE** use
matched primary tumor mutational profiles to inform genome-wide
tumor single-nucleotide variant (SNV) detection in ccfDNA, such
that the available number of GEs is no longer the limiting factor for
ctDNA detection.

The detection challenges presented by sparsity call for broad,
accurate and deep ccfDNA sequencing. Thus, whole-genome, low-error,

e-mail: alexandre.cheng@etsmtl.ca; dlandau@nygenome.org

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-025-02648-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-025-02648-9&domain=pdf
mailto:alexandre.cheng@etsmtl.ca
mailto:dlandau@nygenome.org

Article

https://doi.org/10.1038/s41592-025-02648-9

high-coverage methods are necessary for robust ctDNA analysis.
However, the costs associated with these approaches are often pro-
hibitive. Although genome sequencing costs have rapidly dropped,
more recently this decrease has stagnated®, rendering sequencing
cost a substantial barrier for implementing high-depth WGS for
liquid biopsies, where shallow WGS is insufficient for ctDNA detection
when tumor fractions are low (for example, ~107).

Recently, low-cost mostly natural sequencing by synthesis
has been developed by Ultima Genomics, where the flow-based plat-
form produces single-end reads at ~10 billion reads per run for $1 per
gigabase, lowering costs compared to current platforms. To date,
mostly natural sequencing by synthesis/Ultima sequencing has not
been harnessed for clinical ctDNA sequencing in ccfDNA samples,
and error rate profiles have not been fully characterized or rigorously
compared to competing technologies. For potential application to
clinical ctDNA monitoring, accurate error rate estimates are critical
dueto the required high sensitivity of ctDNA detection®,

Toinvestigate deep WGS for ctDNA detection, we used the Ultima
platform to sequence ccfDNA from plasma samples from healthy
individuals, individuals with cancer and patient-derived xenograft
(PDX) mouse models. We show that deep plasma WGS (-120x) allows
tumor-informed ctDNA detection within the part-per-million range.
We further leveraged the cost-effective and high-throughput nature
of mostly natural sequencing by synthesis to develop high-coverage
WGS duplex error-corrected libraries of ccfDNA, achieving error
ratesaslow as 7.7 x 1078, This allowed us to combine the advantages of
genome-wide mutational integration on the one hand and molecular
error correction on the other to assess disease burden in individuals
with melanoma and urothelial cancer without relying on matched
tumor sequencing. Together, our results demonstrate the feasibility
and utility of deep WGS for ctDNA detection and duplex sequencing
atthe whole-genome sscale.

26,27

Results

Flow-based sequencing enables highly accurate SNV discovery
Different sequencing methods have advantages and drawbacks.
Inflow-based Ultima sequencing, sequencing signal intensity translates
to the number of consecutive bases of a given nucleotide, increasing
susceptibility to homopolymer size estimation errors. However, as
eachsequencing cycle encompasses asingle base, flow-based sequen-
cing systems could be particularly robust to SNV errors.

To investigate error rates of the flow-based Ultima Genomics
platform, we ligated molecular barcodes to the plasma of mouse
PDX samples (n=4; n=1lung cancer; n =3 diffuse large B cell lym-
phoma human-mapped fractions of 0.4, 40, 73 and 96%). We compu-
tationally tracked PCR duplicates in the three PDX samples with high
human-mapped read fractions to identify sequencing artifacts and
compare error profiles in matched Ultima-Illumina datasets. First,
we analyzed homopolymer length discordance rate between PCR
duplicates and between a read and the reference genome. We ran-
domly sampled up to 33 million unique ccfDNA molecules (1.5 million
molecules for each autosome) containing at least two PCR duplicates
from the n =3 PDX datasets (human-mapped reads only). Each read
was aligned to its duplicate and to the reference genome, and match-
inghomopolymers were compared by their sequenced size.In Ultima
datasets, we observed a strong concordance between PCR duplicates
(99.34%; Q score = 21.8) and between reads to the reference genome
(99.58%; Q score = 23.8) for homopolymers of size 1to 12 (Extended
Data Fig. 1a,b). We also observed artifactual homopolymer sizes near
lengths of 12, as Ultima sequencing reports amaximum homopolymer
size of 12 bases (ref. 26). However, homopolymer size estimations
were more accurate in Illumina datasets (99.99% and Q score =39.9
between PCR duplicates; 99.98% and Q score =36.3 between a read
and the reference genome; Extended Data Fig. 1c,d). We also found
thataccuracy decreased as afunction of homopolymerlengthinboth

technologies (Spearman’s p =—0.925, P= 6.5 x 10 (Ultima) and Spear-
man’sp =-0.996, P <2.2 x10'* (Illumina); Extended Data Fig. 1¢,f). For
example, the homopolymer size estimation error rate was 1.57 x 1073,
4.46 x10and 8.51 x 107> for homopolymers of sizes1,2and 3, respec-
tively, in Ultima datasets and 1.02 x10™,1.66 x 10™* and 2.63 x 10 *in
Illuminadatasets. As expected, concordance improved in Ultima data-
sets after PCR duplicate consensus calling (error rates of 4.08 x107™*,
5.24 x10™*and 8.06 x 10™*for homopolymers of sizes 1,2 and 3, respec-
tively; family size = 2; Extended DataFig. 1e). For single-read accuracy,
we observed that Ultima homopolymer accuracy falls below 99% at
homopolymer lengths of 4 and greater (3.17% of the human genome;
Extended Data Fig. 1e,g), whereas matched Illumina datasets fall
below 99% at homopolymer lengths of 8 and greater (0.09% of the
genome; Extended DataFig. 1f,g).

To further compare performance in terms of SNV errors, we first
identified putative sequencing errors, defined as mismatched PCR
duplicates, where only one of the reads contains a mismatch with the
reference genome. Overall, single-nucleotide differences between
PCR duplicates occurred at a rate of 1.58 x 10 £ 2.65 x 10~* in Ultima
datasets and 9.85 x10™* +10.80 x 10~* in lllumina datasets (Extended
Data Fig. 2a). Interestingly, we found wide variation in sequencing
error rates that depended on the trinucleotide context of the variant.
In Ultima datasets, errors were most likely to occur in specific motif's:
trinucleotides containing a 2-mer (for example, C[C>A]T) or where a
2-mer would form following mutation (for example, G[A>G]T), likely
reflecting homopolymer size estimation errors that manifest as SNV
errors. Conversely, we found that certain trinucleotide contexts were
robust to sequencing error, namely when a reported trinucleotide
mutation would cause a shift in the number of sequencing cycles
compared to the reference (termed cycle shift motifs; Extended Data
Fig.2b).For example, assuming a sequencing cycle of T>G>C>A, T[G>A]
C would be considered a cycle shift, whereas T[G>C]C would not. In
Ultima datasets, cycle shift motifs had significantly lower error rates
than noncycle shift motifs (mean of 5.23 x 10 versus 2.32 x 10™*incycle
shifts and noncycle shifts, respectively; P<2.2 x10™; Extended Data
Fig.2c). Cycle shift motifs with the highest error rates were exclusively
in C>T mutations, the most common somatic mutation. These may
present rare cases where the PCR duplicate containing the mismatch
is correct and the PCR duplicate that matches the reference contains
the error. As expected, there were no significant differences in error
rates between cycle shift and noncycle shift motifs in lllumina datasets
(mean error rate of 9.3 x 10 versus 1.0 x 107 in cycle shifts and non-
cycle shifts, respectively, P= 0.16; Extended Data Fig. 2c).

Plasma WGS can detect low tumor burden
Having benchmarked Ultima versus Illuminaerror rates, we sought to
test Ultima sequencing for ctDNA detectionin clinical samples. Lower
limits of ctDNA mutation detection by plasma WGS are dictated by
tumor mutational burden, depth of sequencing and error rates from
library preparation and sequencing. To explore these dependencies,
we modeled variable tumor fractions, depths of coverage and error
rates for a cancer with 10,000 SNVs (-3.7 mutations per megabase;
Methods). Tumors with>10,000 SNVs are seen across ~30% of cancers
in the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium
dataset”” and are enriched inlung (85%), skin (79%), bladder (83%) and
other cancers. This analysis suggests that detection of tumor fractions
below 10~ requires asequencing depth of ~100x with error rates below
107*(Fig.1a).In these high-mutational-burden cancers, WGS can provide
more opportunities for ctDNA detection than targeted approaches by
sequencingagreater number of unique ccfDNA molecules. However,
detecting low-mutational-burdentumors or specific driver variantsis
better served with targeted approaches (Extended Data Fig. 3).
Giventheneed for deeper plasma WGS, sequencing costsimpede
broad application. We therefore hypothesized that lower-cost Ultima
sequencing can help overcomethisbarrier, provided that sequencing
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Fig.1|Ultralow ctDNA detection requires deep sequencing coverage and

low error rates. a, Simulation of ctDNA detection given different error rates
(columns), whole-genome coverages (rows) and tumor fractions (x axis);
n=1,000replicates per set of conditions. b, Cell-free DNA library preparation
preanalytical workflow. ¢, Sequencing depth of matched Illumina and Ultima
datasets. d, Normalized read coverage for lllumina- (top) and Ultima-sequenced
(bottom) matched cell-free DNA samples. e, Left, copy-number-based tumor
fraction estimation measured with Illumina or Ultima sequencing in matched
samples using ichorCNA. Matched cancer-free samples were used to create a
panel of normal samples before tumor fraction estimation. Right, SNV-based
tumor fraction estimation measured with Illumina or Ultima sequencing.
Somatic SNVs were identified through matched tumor-normal sequencing. Two
samples without tumor sequencing and with low ctDNA fraction (<5% measured
through CNV analysis) were omitted from this analysis. Spearman’s p coefficient

and corresponding two-sided P values were calculated using the stats package
(v.3.6) functioninR (v.3.6); LUAD, lung adenocarcinoma. f, ctDNA cost and
coverage analysis between Illumina and Ultima sequencing in amatched sample.
Areaunder the curve (AUC) values are measured by calculating the area under a
receiver operating characteristic curve comparing a given group (for example,
Illumina 20x at 10~ expected tumor fraction) to its platform and coverage-
matched healthy control (for example, Illumina 20x, expected tumor fraction
of 0); n=20replicates per set of conditions. All AUC values at expected tumor
fractions of 10* and greater were 1.00. Zscores of a given sample are calculated
against their coverage and platform-matched healthy control (expected tumor
fraction of 0). For allbox plots, the bottom and top ends of the boxes represent
the 25th and 75th percentiles of the data, respectively, and the horizontal lines
represent the median. The whiskers represent at most 1.5 times the interquartile
range (IQR).

error profiles are sufficiently low. As such, we performed Ultima WGS
on 15 ccfDNA libraries (n =10 samples from individuals with cancer
(n=7stage IV melanoma; n =3 llI-1V lung adenocarcinoma); n=5
control samples; sequencing depth 115x + 34x (including duplicates;
mean *s.d.)) with matching Illumina sequencing of the same librar-
ies (including duplicates; 33x +10x; Fig. 1b,c and Supplementary
Tables 1-3). We first measured ctDNA burden by estimating the rela-
tive abundance of large-copy-number alterations using ichorCNA*°
(Methods). Tumor fractions varied (<3%,n=3;3-10%,n=5;>10%,n=2),
and measurements were strongly correlated between matched Illumina
and Ultima datasets (Spearman’s p = 0.998, P=7.6 x 10™"; Fig. 1d,e).
Next, we examined estimated ctDNA burden using a tumor-informed
SNV approach. We performed WGS of tumor-derived DNA (using
standard mutation calling on plasma DNA if tumor DNA was unavail-
able and ctDNA burden was >5% by ichorCNA*°; Methods and Sup-
plementary Table 4) and matched normal DNA from peripheral blood
mononuclear cells to identify tumor-specific mutations. To remove
sequencingerrors, we developed a quality-filtering pipeline informed
by Ultima-specific feature cutoffs and blacklisted regions (Supple-
mentary Fig. 1, Methods and Supplementary Note). We mined the
denoised cell-free DNA reads for somatic variants to estimate ctDNA
fractions (Methods), finding strong agreement between Illumina and
Ultima sequencing sets (Spearman’s p = 0.998, P=2.6 x107; Fig. 1e),

with comparable tumor-specific error rates (Supplementary Fig.2 and
Supplementary Note) and fragmentlengths (Supplementary Fig. 3 and
Supplementary Note). Together, these results support the utility of
Ultima sequencing for detection of low-burden ctDNA.

To further benchmark the two sequencing technologies, we per-
formed insilico mixing studies™ by computationally mixing sequenc-
ing reads from asample with detectable tumor burden withsequencing
reads from a healthy control sample at known ratios. This method is
comparable to molecular mixing studies** where a known amount of
ccfDNA from a sample with detectable tumor burden is spiked into
healthy ccfDNA at known concentrations. We generated admixtures
from sample MEL-05 (stage IV melanoma, tumor fraction = 7.3%)
and CTRL-05 (no known cancer) at different ratios to create admix-
tures of tumor fractions ranging from 107 to 107 (n = 50 technical
replicates per admixture) at 70%, 40x and 20x sequencing depth for
Ultima-sequenced datasets and 20x for lllumina. Performance was
evaluated at different simulated tumor fractions using areceiver oper-
ating curve analysis.

We determined analytical limits of detection of a plasma sam-
ple with matched Illumina and Ultima sequencing in two different
contexts: (1) at matched coverage (20x each), which shows compa-
rable performance between the two methods (Fig. 1f and Extended
DataFig. 4), and (2) at matched cost (20x lllumina versus 40x Ultima,
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assuming $1 per gigabase (Ultima) and $2 per gigabase (Illumina)). As
expected, given the similar error rates of the two sequencers without
denoising, and slight improvements in Ultima datasets after denois-
ing (Supplementary Fig. 2), the deeper Ultima datasets (40x) dem-
onstrate better limits of detection (AUC = 0.98 at tumor fractions
of 5x107%) than price-matched lllumina datasets (20x; AUC = 0.77
at tumor fractions of 5x107). Finally, we were able to robustly
detect ctDNA in the parts-per-million range in deeply sequenced
Ultima datasets (AUC = 0.79; 70x coverage), indicating that our
deep-sequencing framework for ctDNA detection is sensitive enough
atlow tumor fractions for use in challenging clinical applications such
as MRD monitoring.

Ultralow error duplex WGS of ccfDNA

Advancesinmolecular error correction have radically enhanced deep
targeted sequencingapproaches, forexample using UMIs that areincor-
porated during library preparation for sequencing error correction'*’',
Although strand-agnostic UMIs can correct sequencing and PCR errors,
UMIs that link forward and reverse DNA strands (duplex sequencing)
cancorrecterrors thatarise on only one strand (such as G>T transver-
sions from oxidative DNA damage®’) during library preparation®. At
the whole-genome scale, duplex sequencing has been cost prohibitive
duetotheneedforahighrate of duplicate reads. Nonetheless, studies
applying duplex sequencing at the genome scale have shown promise
for genome-wide rare variant identification®**.

We reasoned that the lower sequencing cost afforded by mostly
natural sequencing by synthesis could open the way for affordable
genome-scale duplex sequencing in clinical settings, and decreasing
sequencingand library preparation errors could enable tumor-agnostic
(de novo) ctDNA detection, where matched tumor tissue, often una-
vailable for patients®*, cannot be used to reduce background noise.
For this important clinical context, we developed duplex WGS for
single-end Ultimareads. Here, we created duplex libraries by replacing
standard sequencing adapters with adapters containing three random
nucleotides, thus creating a 6-bp duplex UMI (using the random nucleo-
tidesfromboth ends of the DNA). Libraries were then sequenced using
the Ultima sequencer. Although duplex sequencing was developed for
paired-end sequencing technologies, we recovered the ends of most
ccfDNA molecules (80% of all sequenced molecules) due to their modal
length of ~170 bp (Supplementary Fig. 3) to create 6-bp UMIs. Next,
we developed a decision tree classifier that determines the duplex
variant based on the variant pileups of individual sequencing reads
contributing to the duplex. This allowed us to use sequencing reads of
the same duplex family that might differ in size due to homopolymer
size estimation differences, which would be discarded by current
duplex collapsing tools and maximize duplex yields (Methods, Sup-
plementary Note and Supplementary Fig. 4), additionally lowering
errorrates throughread end trimming (Methods, Supplementary Note
and Supplementary Fig.5).

To test the accuracy of duplex error correction, we used the
ccfDNA duplex libraries from PDX plasma. Tumor fractions (the frac-
tion of reads uniquely mapping to the human genome) were 0.4, 40,
73 and 96% (Supplementary Table 2). For each sample, we denoised
sequencing reads in three different ways: (1) UMI agnostic, where
PCR duplicates (identified by their mapping positions) are removed
from analysis and reads are denoised based on their sequencing and
mapping qualities (Methods), (2) using UMIs to identify PCR duplicates
for single-strand error correction (reads used to create a consensus
are profiled base by base and a consensus base pair is determined by
computing the likelihood of that base being an A, T, C or G, using the
sequenced nucleotides and their qualities as priors) and (3) using PCR
duplicates and forward and reverse strands of a same double-stranded
DNA template for error correction (duplex error correction). Similar
to recent studies describing novel error correction methods*?*°, we
defined a residual SNV rate as the number of base pairs in denoised

reads that were discordant with the reference genome and occurred
once divided by the total number of interrogated (that is, denoised)
bases in a sample (Methods). Here, we limited our analysis to normal
ccfDNA (reads mapping to the mouse genome) in the three PDX sam-
ples with appreciable mouse-derived cfDNA. Overall, we obtained
residual SNV rates 0of 3.8 x10™*+3.2x107,5.8 x10° +2.5x10° and
7.7 x107 + 5.8 x 10~ for UMI-agnostic, single-strand-corrected and
duplex-corrected reads, respectively (Fig. 2a and Supplementary
Table 5), achieving a three-orders-of-magnitude reduction in error
rate with duplex sequencing. When compared to uncorrected reads
(without any quality filtering), we observed a~3,300x improvement in
errorrates using duplex WGS (2.5 x 102 + 1.6 x 10 error rates in uncor-
rected reads without any denoising), consistent with previous reports
using whole-genome duplex sequencing (2 x 107 in Abascal et al.?;
4.5x107inBaeetal.*), suggesting that ccfDNA errors are driven more
by library preparation and DNA degradation than by sequencingerrors.

To further analyze duplex error correction for variant calling in
ccfDNA, we assessed the variant allele frequency (VAF) distribution
in noncancer control ccfDNA (in humans). Although UMI-agnostic
WGS showed only 78.8% + 2.0% of base substitutions identified at the
expected VAF range for germline events (Methods and Extended Data
Fig.5), thisincreased to 97.6% + 0.5% after duplex error correction. In
high-burden metastatic melanoma ccfDNA samples, duplex error cor-
rection and removal of germline mutations allowed for the detection
of somatic mutation VAF modes (Supplementary Table 6), consistent
with tumor fraction estimates using ichorCNA (Fig. 2b,c), rendering
this approachfeasible for ctDNA mutation detectioninclinical samples
without a matched tumor (nontumor-informed).

Nontumor-informed monitoring of low-burden melanoma
Current methods for targeted detection of ctDNA include de novo
detection of somatic mutations (nontumor-informed) from ‘off-the-
shelf” sequencing panels that target recurrent mutations of a given
cancer type or tumor-informed deep targeted sequencing, where
atumor is sequenced a priori, and a personalized panel is designed
to target cancer-derived mutations. However, these methods have
inherent limitations. For example, panel sensitivity is limited by the
scarcity of ccfDNA in plasma (only up to 1,000-10,000 GEs per ml of
plasma®),incomplete driver detection (-49% driver mutation detected
inindividuals with stage IV non-small cell lung cancer”) and the inabil-
ity to distinguish cancer-derived mutations from those arising from
alternative biological processes, such as clonal hematopoiesis®*.
Likewise, tumor-informed targeted approaches are limited by ccfDNA
scarcity, withintratumoral heterogeneity and primary tumor sequenc-
ingfailure further restricting the targeted approach by impacting the
accuracy of the mutation landscape used to build the panels®>*4°,
Furthermore, the reliance of tumor-informed methods on only muta-
tions from primary tumors results in a lack of sensitivity for detect-
ing phylogenetically distant metastasis. For phylogenetically distant
metastasis, tumor-informed approaches will offer reduced benefit,
whereas a tumor-free approach considers any cancer mutation and
thus may overcome this challenge.

WGS-based nontumor-informed mutation detection does not
sensitively detect cancer hotspot mutations due to relatively lower
coverage per genomic position. Thus, SNV-based WGS methods of
ctDNA detection must rely on genome-wide mutational integration,
where identifying multiple mutations improves detection power'**.
We hypothesized that signatures of somatic mutationaccumulation
could provide a framework for genome-wide mutational integration
for nontumor-informed WGS ctDNA detection.

Specifically, we reasoned that genome-wide mutations could
beintegrated and summarized as a weighted sum of single-base sub-
stitution (SBS) reference mutational signatures originating from (i)
the tumor in individuals with cancer or (ii) clonal hematopoiesis*.
We explored the trinucleotide contexts of ccfDNA variants through
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Fig. 2| Duplex correction allows ctDNA identification without tumor
sequencing. a, Error rates in WGS on mouse PDX samples (n = 3).b, VAF,
calculated using unfiltered sequencing reads, in positions where a variant was
found using uncorrected reads (left; inset highlights higher allele frequencies
by enforcing ay axis cutoff of 0.002) and in duplex-corrected reads (middle).
Removing germline reads reveals somatic mutations with amodal allele
frequency of 0.21 (right); TF, tumor fraction. ¢, Comparison between the modal
allele frequency of anindividual with progressive disease (samples MEL-12.A-
MEL-12.E) in duplex-corrected positions (allele frequencies between 5% and
30% only) and copy-number-based tumor fraction estimations. UG, Ultima
Genomics. d,e, Trinucleotide frequencies of a healthy plasma sample (CTRL-07;
d) and a stage IVB cancer plasma sample (MEL-12.D; tumor fraction of 23%; e)

in UMI-agnostic corrected WGS (top row), single-stranded correction (middle
row) and duplex correction (bottom row). Cosine similarity with SBS7a/SBS7b
(UV damage; Cosmic v3.3) and clonal hematopoiesis** (CH) is compared across

Melanoma stage
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conditions. f, Plasma mutational scores due to UV damage in individuals with
melanoma (stage IV (n = 4) and stage lll (n = 8)) and healthy individuals (n =10)
atbaseline (before treatment or surgery). Plasma signatures were fit to a custom
reference of signatures comprising SBS7a, SBS7a (Cosmic v3.3) and clonal
hematopoiesis*. g, Insilico mixing study of metastatic melanomasample
MEL-12.B with control sample CTRL-06 (40 replicates per tumor fraction, 6.5x
coverage per replicate). Tumor scores were estimated by fitting the sample’s
trinucleotide frequencies to those of signatures SBS7a, SBS7b (Cosmic v3.3) and
clonal hematopoiesis*’. AUC values were measured by comparing replicates of a
given tumor fraction to tumor fraction = O replicates. For box plotsina andf, the
bottom and top ends of the boxes represent the 25th and 75th percentiles of the
data, respectively, and the horizontal lines represent the median. The whiskers
represent at most 1.5 times the IQR. P values were calculated using a two-sided
Wilcoxon test. Scans from ¢ are adapted from Widman et al.*.

mutation signature analysis at denoising levels (UMI agnostic, UMI
single stranded and duplex) to investigate the potential mutation
etiologies. Cosine similarities (measures similarities between two
mutational signatures®-*’) between the UV-associated SBS7a and
SBS7bsignature (COSMIC**v3.3) and high-burden samples (MEL-12A-E,
stage IVB melanoma) were highest after duplex correction (across
samples mean cosine similarities to SBS7a of 0.21+ 0.011 (range
0.19-0.22), 0.35 £ 0.051 (range 0.29-0.43) and 0.94 + 0.023 (range
0.89-0.96) between UMI-agnostic denoising and single-strand- and
duplex-corrected datasets, respectively; Fig. 2d,e and Supplemen-
tary Fig. 6). We found similar improvements when measuring cosine

similarities between the clonal hematopoiesis signature and healthy
controls, highlighting theimportance of duplex correctionfor accurate
signature analysis and demonstrating that clonal hematopoiesisis an
abundant source of mutations in ccfDNA WGS (Fig. 2d,e, Supplemen-
tary Fig. 7 and Extended Data Fig. 6a).

Asdenovo mutationidentificationinerror-corrected ccfDNAWGS
delivers profiles matching SBS7a, SBS7b and clonal hematopoiesis
signatures for identifying melanoma and age-associated circulat-
ing DNA fragments, respectively, we developed a tumor-agnostic
approach for ctDNA detection based on mutational patterns. First, we
tabulated the trinucleotide frequencies of plasma ccfDNA mutations,
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fitted to reference mutational signatures (SBS7a, SBS7b and clonal
hematopoiesis) using anon-negative likelihood model*. We obtained
relative contributions of the reference mutational signatures and
estimated atumor score by taking the weight of the tumor-associated
SBS7aand SBS7b signatures and multiplying by the number of variants
per duplex GEs sequenced (Supplementary Table 6).

We applied our signature-based ctDNA detection platform for
preoperative ctDNA detection (tumor-agnostic ctDNA detection),
sequencing plasma samples from eight individuals with resectable
locoregional stage Ill melanoma (without tumor or normal DNA) and
ten healthy individuals. In our cohort, tumor fractions measured by
ichorCNA were undetectable in samples from individuals with stage
Il disease, suggesting tumor fractions below 3% (ichorCNA* limit
of detection; Extended Data Fig. 7). Tumor scores were separable
between control, stage Il preoperative melanoma and pretreatment
stage IV melanoma samples (2.4 + 7.6, 69.9 + 65.72 and 340.7 + 238.6,
respectively; Fig. 2f; trinucleotide frequencies are shown in Supple-
mentary Fig. 8). When applying the same signature-based method-
ology for single-read variant calling in single-strand correction and
UMI-agnostic correction, we obtained O detections in our melanoma
cohort (Extended Data Fig. 6b), owing to the high number of preana-
lytical errors in single-strand-corrected and UMI-agnostic datasets.
Previous studies showed that undetectable ctDNA using targeted
panelsis associated with favorable prognosisin stage lll melanomas*®*’.
However, individuals with undetectable ctDNA often still experience
disease recurrence, highlighting the need for more sensitive tools
for improved stratification. Here, tumor scores for ctDNA detection
showed strong separation between healthy individuals and individuals
withmelanoma (Fig. 2f), suggesting that deep error-corrected sequenc-
ing canidentify ctDNA in anontumor-informed approach using muta-
tional signatures, even when ctDNA burden in the plasma is low, such
asinresectable melanoma.

Toanalytically validate our approach, we performed aninsilico mix-
ing study combining duplex-denoised reads from a high-burden ctDNA
sample (MEL-12.B,11% ichorCNA tumor fraction estimate) and a healthy
controlsample (CTRL-06) at 6.5x duplex sequencing depth at expected
tumor fractions of 0 and 5 x107* to 107 (Fig. 2g). Tumor scores were
detectable (AUC of 0.89) at tumor fractions greater than orequal to 107,
Signature scores dropped at tumor fractions at or below 5x10™* (AUC
of 0.63), given that the number of mutations originating from ctDNA
was significantly below the number of mutations arising from healthy
ccfDNA (mean of 42 and 1,930 variants at 5 x 10~* from MEL-12.B versus
fromhealthyindividuals, respectively). Tumor scores correlated strongly
with expected tumor fractions (Spearman’s p=0.97, P< 2.2 x107%).
Importantly, these results highlight that we can identify ctDNA
contributions when the number of tumor-derived variants is below
the number of variants originating from background biological
processes, such as clonal hematopoiesis (-85 cancer-derived muta-
tions in ~1,920 background mutations at a tumor fraction of 107%),
which are expected to dominate rare variant signal in early-stage
and MRD contexts.

We further tested the ability of duplex WGS to track therapeu-
tic response longitudinally. Here, we performed duplex WGS on the
plasma of individuals with melanoma (stage Il and stage IV) before
and after treatment (Extended Data Fig. 8), including individuals
receiving immunotherapy treatment with plasma collected serially
(n=>5individuals, three to five samples per individual collected at a
pretreatment time point and up to 6 months after treatment), and
individuals receiving surgery, with plasma collected before and after
surgery (four individuals, two to three samples per individual, post-
operative collection up to 6 months). ctDNA levels in individuals who
had a partial response or who were recurrence free decreased after
treatment decreased, whereas the ctDNA in individuals who showed
arecurrence or who had progressive disease increased from their
baseline time point (Extended Data Fig. 8a). Specifically, individuals

with progressive disease or recurrence saw a mean increase of 500
melanoma variants per GE after treatment, whereas individuals with a
partial response or who were recurrence free from disease exhibited an
overall decrease in ctDNA of 196 melanoma variants per GE (P= 0.0005
between groups; Extended Data Fig. 8b). Although clinical studies are
necessary to validate these findings, our results suggest a potential for
duplex-corrected WGS in tumor-agnostic, plasma-only serial profiling
of individuals with melanomato assess therapeutic response.

Duplex WGS resolves complex mutational signatures
inccfDNA

Next, we sought to determine whether duplex WGS could deconvolute
complex signatures arising from multiple biological processes, such
as APOBEC3-derived processes in urothelial cancer. Many urothe-
lial cancers carry mutations indicating APOBEC cytidine deaminase
activity, where C>T transitions can occur as a function of uracil
generation by cytidine deaminase activity (SBS2), as well as C>G and
C>Amutations that arise from polymerase errors following uracil exci-
sion (SBS13)*%. Thus, measuring the contributions of SBS2 and SBS13
asan APOBEC score could be potentially used to detect ctDNA inindi-
viduals with urothelial cancer. Moreover, in neoadjuvant-treated and
unresectable or metastatic urothelial carcinomas, platinum-based
chemotherapies are often used as first-line treatment, and their use
caninduce mutagenesisin tumor tissue, which canresultin subclonal
mutation propagation*’~', Platinum-based chemotherapies mainly
affect C[C>T]C and C[C>T]T trinucleotides (SBS31 and SBS35)**,
thereby adding an additional layer of complexity to an individual’s
cancer mutational compendium. To extend our mutation signature
analysis to urothelial cancer, we sequenced n = 20 plasma samples
fromn =20 individuals with urothelial cancer (stage II-1V). Of these 20
individuals, 11 had previously received neoadjuvant platinum chemo-
therapy. We hypothesized that this complex mutational compendium,
with mutations from platinum chemotherapy and varying APOBEC
mutagenesis, would benefit froma ccfDNA whole-genome approach,
where distinct mutational signatures can be detected. We measured
and summed the contributions of SBS2 and SBS13 asan APOBEC score
for individuals with urothelial cancer, finding that urothelial cancer
ccfDNA s enriched for mutations containing APOBEC signal compared
to ccfDNA from healthy individuals (P = 0.0031; Fig. 3a), and the number
of SBS2-derived mutations correlated positively with the detection of
SBS13-derived mutations (Pearson’sR=0.94, P=3.2x10™%).

In a subset of individuals with urothelial cancer (n=13), tumor
tissue was available for sequencing (n =29 multiregion samples across
13 individuals), where we could compare the mutational profiles of
plasma to the individual-matched tumors. First, all tumors showed
evidence of APOBEC mutagenesis (8-86%; Extended Data Fig. 9 and
Supplementary Table 7). Second, mutational profiles obtained through
denovo (without using amatched tumor; Supplementary Fig. 9) detec-
tion of ctDNA strongly resembled those of the matching tumor (cosine
similarity of >0.83 at plasma tumor fractions of >0.005), and de novo
identification of APOBEC mutations was possible in plasmasamples with
tumor fractionsaslowas1.1 x 10™* (Fig. 3a,b and Supplementary Fig. 10).
We measured tumor-informed tumor fractions (Methods and Supple-
mentary Table 8) and calculated the expected contribution of APOBEC-
derived mutations in the plasma by multiplying the tumor-informed
tumor fraction by the fraction of tumor variants attributable to APOBEC
mutational signatures. We found a strong correlation between the
expected, tumor-informed APOBEC contributions in the plasma and
our de novo APOBEC score (Pearson’s R = 0.95, P=1.13 x 1075 Fig. 3¢).

Interms of driver detection, as expected fromthe lower sequenc-
ing depth, duplex WGS detected only 6 of 59 putative driver mutations
(Supplementary Table 9) across the cohort of individuals withmatched
plasmaand tumor sequencing (n =29 multiregion samples across the
13individuals), preferentially in ccfDNA samples with high tumor bur-
den (Supplementary Tables 8 and 9; Pearson’s R=0.57 and P=0.04).
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Fig. 3| Mutational signature analysis of cell-free DNA from individuals with
urothelial cancer. a, Plasma mutational scores from APOBEC mutagenesis
(SBS2 and SBS13) in individuals with urothelial cancer (stage [I-1V; n = 20) and
healthy individuals (n =10). Plasma signatures were fit to a custom reference

of signatures comprising SBS2, SBS13, SBS31 and SBS35 (Cosmic v3.3) and
clonal hematopoiesis*. Tumor fractions were measured in a tumor-informed
manner (see Methods). b, Trinucleotide frequency of ccfDNA (‘plasma’; left) and
tumor (right) for BLA-12. For the tumor, the three highest SBS contributions are
highlighted (SBS31, SBS13 and SBS2). Contributions were fit to the entire Cosmic
v3.3 catalog. ¢, Tumor-informed measurement of APOBEC-derived mutations
(SBS2 and SBS13, x axis) versus tumor-agnostic APOBEC-derived mutations
(yaxis) in N=13 samples for which tumor tissue sequencing was available. The
tumor-agnostic APOBEC mutations were measured as in a. Plasma signatures
were fit to a custom reference of signatures comprising SBS2, SBS13, SBS31 and

Chemotherapy status

Participant ID

SBS35 (Cosmic v3.3) and clonal hematopoiesis*. Tumor signatures were fit to
the entire Cosmic v3.3 catalog. The shaded area represents the 95% confidence
interval of the data distribution. d, Plasma mutational scores from platinum
therapy mutagenesis (SBS31 + SBS35) in individuals with urothelial cancer (stage
[I-1V; n =11 after, n = 9 before) and healthy individuals (n = 10). Plasma signatures
were fit to a custom reference of signatures comprising SBS2, SBS13, SBS31and
SBS35 (Cosmic v3.3) and clonal hematopoiesis*’. e, Bar plot of tumor-informed
tumor fractions (black dots) and platinum scores (purple; as calculated in d)

for samples with available tumors for sequencing. For box plotsinaandd, the
bottom and top ends of the boxes represent the 25th and 75th percentiles of the
data, respectively, and the horizontal lines represent the median. The whiskers
represent at most 1.5 times the IQR. P values were calculated using a two-sided
Wilcoxon test.

Although these results demonstrate that our duplex WGS approach
canresolve putative driver mutations, deep targeted sequencing could
offer more benefit for driver mutation detection.

Interestingly, we noted instances of high cosine similarities
between plasma and matched tumors despite low-burden disease (at
or below 10™; Supplementary Fig. 10b; for example, BLA-18 (cosine
0.92)). Although stereotypical APOBEC-derived peaks (namely T[C>T]
A and T[C>T]T for SBS2 and T[C>G]A and T[C>G]T for SBS13) were
notvisually obviousinthe plasmaand were undetectableinn=8indi-
viduals (Fig. 3a), we noted strong contributions of platinum-derived
chemotherapy mutations (for example, C[C>T]C and C[C>T]T for
SBS31) inindividuals who were treated with platinum chemotherapy.
By fitting the plasma mutational signatures to a custom catalog of
APOBEC- and platinum chemotherapy-derived mutational signatures
(SBS2/SBS13 and SBS31/SBS35, respectively), we found enrichment of
platinum chemotherapy mutations only in the plasma of individuals
who hadreceived treatment (Fig. 3d). Interestingly, platinum mutation
signatures were detected in the ccfDNA through de novo analysis in
someindividuals where no ctDNA was detected usingatumor-informed
approach (Fig. 3e and Supplementary Fig. 10), potentially reflect-
ing signal originating from platinum mutagenesis in nonmalignant
cells. These results suggest that tumor-agnostic de novo profiling of
plasma may offer a more comprehensive overview of plasma from
individuals with cancer than tumor-informed approaches that solely
focus on the detection of a limited number of clonal mutations.

Discussion

Radical decreases in sequencing costs open new opportunities
in both clinical genomics and basic biology research. Here, we har-
nessed low-cost Ultima sequencing to demonstrate the impact of
deeper WGS (-100x) on tumor-informed ctDNA monitoring. Moreo-
ver, we also developed methodology to integrate duplex sequenc-
ing with single-end Ultima sequencing, showcasing the feasibility of
cost-efficient, highly accurate WGS that canbe broadly applied across
genomics research. Thisadvance allowed us to apply duplex error cor-
rectionto clinical plasmasamples at the level of the entire genome. We
leveraged these highly error-corrected data for nontumor-informed
ctDNA detection based on the similarity of mutational profiles to known
cancer mutational signatures. These findings have important clinical
implications, as uncoupling ctDNA detection from atumor-informed
mutation profile radically increases the potential use of ctDNA moni-
toring in common clinical scenarios where tumor samples cannot be
obtained (Supplementary Note). Excitingly, this demonstration opens
up the possibility for the use of WGS in ctDNA cancer screening. In par-
ticular, such an approach might be beneficial for specific settings where
there is high genetic (for example, BRCA mutation carriers and Lynch
syndrome) or environmental (for example, tobacco smoke exposure)
cancer risk together with distinct mutational signatures. A limitation
of whole-genome duplex sequencing is the fact that only a fraction of
reads resultinaduplex fragment, resulting in one-order-of-magnitude
fewer unique molecules captured than standard WGS. However, the
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~500-fold decrease in error rates in duplex sequencing compared to
bioinformatically denoised standard WGS may offset this decrease
in coverage, depending on the specific application or context. In
the tumor-informed setting, where prior knowledge of the somatic
mutations can lower the effective error rate of standard WGS, higher
inputs are expected to afford lower limits of detection than duplex
WGS. In the tumor-agnostic setting, a markedly reduced error rate
allows for detection of genome-wide signatures and plasma-only
MRD eveninlower-burden disease compared to standard WGS, which
only allowed detection in high-burden metastatic disease. Finally,
we envisage that methods developed herein can provide a general
cost-efficient approach for duplex WGS that can be leveraged across
genomics research thatrequires highly accurate detection of rare vari-
ants in somatic tissues.
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Methods

Simulation analysis

Simulations for ctDNA detection scores (Fig. 1a) were performed
assumingatumor mutational compendium of 10,000 SNVs with differ-
enterrorrates (103,10 and 107), coverages (1,10 and 100) and tumor
fractions (0,107°1075). For each of the 10,000 SNV mutations, coverage
was simulated using a Poisson distribution. Each simulated sequenced
base pair was classified as either ctDNA or ccfDNA according to the
tumor fraction, and errors misclassified as ctDNA were determined
accordingtotheerror rate. Estimated tumor fractions were calculated
by summing the ctDNA molecules and the errors and dividing by the
total base pairs simulated. Zscores were calculated using the follow-
ing equation, where TF indicates tumor fraction, and s.d. indicates
standard deviation:

TF — mean(TFr—g)

Z score =
s.d.zr=0

PCAWG datasets

We obtained somatic trinucleotide counts of n=2,780 tumors from the
PCAWG database*®. Total somatic mutation counts were used to gener-
ate Extended DataFig. 3. To simulate and compare the performance of
targeted panels and WGS to detect different cancer types, we defined
ctDNA detection opportunities to be afunction of panel size, GEs avail-
abletobesequencedinasample and sequencing coverage. Specifically,

ctDNA detection opportunities

= (targeted SNVs x GEs | targeted SNVs x coverage)

For WGS simulations, the ‘panel size’ was set to the median
number of somatic mutations of a given cancer type. We assumed a
20-ng cell-free DNA input (corresponding to~6,700 GEs, assuming the
mass of agenome to be 3 pg).

Human sample processing

Blood and tissue samples were obtained fromindividuals after obtain-
ing informed consent and following protocols approved by institu-
tional review boards (IRBs) and in accordance with the Declaration of
Helsinki protocol. Samples were obtained from New York Presbyte-
rian/Weill Cornell Medical Center (IRB numbers 0201005295 (Tumor
Biobanking), 1008011210 (GU Tumor Biobanking), 1011011386 (Urothe-
lial Cancer Sequencing), 100701157 (Genomic and Transcriptomic Pro-
filing), 1305013903 (Precision Medicine), 1708018519 (Cardiac Surgery
Biobank), 2014-0024 (approved by the Institutional Animal Care and
Use Committee at Weill Cornell Medicine) and 1610017682 (ctDNA for
Early Detection and Management of Non-Small Cell Lung Cancer)),
Memorial Sloan Kettering Cancer Center (IRB number 12-245 (Genomic
Profiling in Cancer Patients)), Massachusetts General Hospital
(IRB number 11-181 (Collection of Tissue and Blood Specimens and
Clinical Datafrom Patients with Melanoma and Other Cutaneous Malig-
nancies)) or the Royal Marsden NHS Foundation Trust in the United
Kingdom (Supplementary Table1). Tumor, normal and plasmasamples
from the Royal Marsden NHS Foundation Trust were obtained under
an approved ethical protocol (Melanoma TRACERX, Research Ethics
Committee Reference 11/LO/0003). Cancer diagnosis was established
according to World Health Organization criteria and confirmed in all
casesby anindependent pathology review. Participants did not receive
any compensation.

Tumor and germline DNA extraction, library preparation and
sequencing

For melanoma and lung cancer samples, genomic DNA was extracted
using a QiAamp DNA Mini kit (Qiagen, 56304) and QIAamp DNA Blood
kit (Qiagen, 51104) for tissue and blood samples, respectively, and

sheared to 450 bp (Covaris, 500569). Sequencing libraries were pre-
pared from 1 ug of DNA using a TruSeq DNA PCR-Free Library Prepa-
ration kit (Illumina, 20015963), with one additional bead cleanup
performed after end repair and after adapter ligation. DNA was quanti-
fied using a Qubit 3.0 fluorometer, and length analysis was performed
using an Agilent Bioanalyzer or High Sensitivity Fragment Analyzer.
Paired-end sequencing (2 x 150 bp) was performed on either aHiSeq X
or NovaSeq v1.0 llluminamachine. Urothelial tumor/normal sequenc-
ing data were obtained from Nguyen et al.”’.

Cell-free DNA extraction

Cell-free DNA was extracted from plasma using a Magbind ccfDNA
extraction kit (Omega Biotek, M3298). Manufacturer recommenda-
tions for extraction were followed, but elution volume was increased
to 35 pl, and elution time was increased to 20 min on a thermomixer
at 1,600 rpm (room temperature). Extracted ccfDNA was quantified
using a Qubit 3.0 fluorometer, and length analysis was performed
using an Agilent Bioanalyzer or High Sensitivity Fragment Analyzer.

Cell-free DNA library preparation

Whole-genome library preparation (without duplex). Next-
generation sequencing libraries were generated using a double-
stranded preparation kit (Kapa Hyper Prep kit, Roche, KK8502). Full-
length adapters (IDT TruSeQ UDI plate, Illumina, 20023784) were used
for adapter ligation. Six PCR cycles were performed when input DNA
was above 5 ng, and eight cycles were performed when the input was
below 5 ng. Libraries were quantified using a Qubit 3.0 fluorometer,
and length analysis was performed using an Agilent Bioanalyzer or
High Sensitivity Fragment Analyzer. llluminasequencing libraries were
sequenced on a HiSeq X or NovaSeq1.0 using 2 x 150 bp paired-end
sequencing. Library input amounts can be found in Supplementary
Table 3.

Whole-genome library preparation (with duplex). Version 1.ccfDNA
libraries were generated in a similar fashion as described above,
although the full-length adapters were replaced with stubby Y adapters
containing three UMI bases (IDT Duplex Seq adapters, 1080799), and
sampleindexing was performed during PCR amplification. To enhance
duplicate recovery in human samples, a maximum of 10 ng was used
asinput, and 4 ng of prepared libraries was subjected to six additional
PCR cycles before Ultima library conversion. Mouse PDX samples did
not undergo additional PCR cycles before Ultimalibrary conversion.

Version2.Version 2 of duplex library preparation differs fromversion1
as follows: (1) 1 ng of ccfDNA was used as input, (2) eight cycles of PCR
were performed, and (3) the step of taking 4 ng of prepared libraries
and performing six additional PCR cycles was omitted. Library input
amounts can be found in Supplementary Table 3.

Ultima sequencing. llluminasequencing libraries underwent Ultima
library conversion. Briefly, [lluminalibraries were converted to Ultima
libraries by PCR using primers matching Illumina read 1 and read 2
sequences and containing Ultima-specific barcodes (R1 conversion
adapter: 5' TCC ATC TCA TCC CTG CGT GTC TCC GAC TGC ACA ATG
TGT GCT AGA TCT ACA CGA CGC TCT TCC GAT CT 3'; R2 conversion
adapter: 5" CTG TGT GCC TTG GCA GTC TCA GCT CAG ACG TGT GCT
CTT CCG ATCT 3'). Samples were then pooled and sequenced on an
Ultima sequencer prototype to a target depth of 120x. One sample
achieved lower effective coverage (MEL-03.A, 36x), likely due to a
sample poolingerror.

WGS (without duplex) adapter trimming and alignment

Illumina fastQ reads were adapter trimmed using skewer® (version
0.2.2). Trimmed reads were then aligned to the human genome (version
hg38) usingbwa mem?®. Duplicate reads were marked in a UMI-unaware
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fashion using novosort**. Depth of coverage was estimated using mos-

depth® (version 0.2.9), and duplicate reads were considered. For Ultima
reads, adapter trimming was performed to remove the lllumina conver-
sionadapters. Cutadapt® (version 2.10; cutadapt-mask-adapter -a CTA-
CACGACGCTCTTCCGATCT; max_error_rate = 0.15; min_overlap = 10;
required...AGATCGGAAGAGCACACGTCTGCTG; max_error_rate =0.2;
min_overlap = 6) was used to mask adapter sequences, and adapter
trimming was then performed using GATK®” (private Ultima fork,
since merged to the latest 4.3.0.0 GATK release; ClipReads function).
Alignment was performed using bwa mem?* (version 0.7.15-r1140),
and coverage was estimated using mosdepth counting duplicate
reads. Alignment statistics can be found in Supplementary Table 3.
We note that coverage was calculated as the total number of bases
mapping to the human genome divided by the size of the genome.
In cell-free DNA, coverage has been shown to be inversely corre-
lated with DNA accessibility, as the open regions of the genome are
more susceptible to degradation in the blood. For example, highly
expressed genes cansee aloss of coverage of nearly 50%. Thus, somatic
variants in open chromatin regions may be more difficult to detect
viathe plasma.

Copy-number-based tumor fraction estimation

Genome-wide coverage was calculated over a 1-Mbp window and
normalized for mappability and GC content biases (using hmmcopy*®
version 0.99). Tumor fractions were estimated using ichorCNA*°
(version 0.3.2) after correcting for library and sequencingartifacts viaa
panel of normals from healthy individuals (CTRL-01to CTRL-05). Asep-
arate panel of normals was created for lllumina- and Ultima-sequenced
samples using libraries sequenced on the respective machines. For
plotting purposes (Fig. 1d), corrected log, (read counts) outputted by
ichorCNA were used. Bins marked by ichorCNA as copy gains, ampli-
fications and high-level amplifications were marked and colored as
chromosome gains (pink). Bins marked as homozygous deletion states
and hemizygous deletions were marked and colored as chromosome
losses (blue). Copy neutral regions were marked as neutral (black).
Bins with corrected log, (read counts) between -0.05 and 0.05 were
also marked as neutral (black). Given thatichorCNA provides multiple
solutions ordered by log likelihood, the CNV-based tumor fraction
reported in the manuscript was manually selected among all solutions
according to ichorCNA guidelines®®. Deviation from the most likely
solutionisjustified in Supplementary Table 10.

WGS (without duplex) SNV-based tumor fraction estimation
SNV-based tumor fraction estimation was performed by counting
cell-free DNA reads with matching tumor-specific somatic muta-
tions. To limit the effect of problematic regions of the genome, a
platform-specific blacklist was built. For lllumina sequencing, regions
identified in the ENCODE blacklist*’, centromeres®®, simple repeat
regions® and positions with high mutation rates (GNOMAD?, allele
frequency > 0.001) were not considered. For Ultima sequencing,
Ultima-specific low-confidence regions composed of homopolymers,
AT-richregions, tandemrepeats and regions with poor mappability and
high coverage variability were additionally excluded (Extended Data
Fig. 3). To limit the effect of sequencing errors, custom scripts were
used for platform-specific denoising (Supplementary Note).

WGS (without duplex) tumor-informed error rate estimation
Tumor-informed error rates were computed by intersecting a given
healthy individual’s cell-free DNA sequencing reads with the somatic
mutations from an individual with cancer. Reads were then denoised
in a platform-specific manner as described above (except for datain
Supplementary Fig. 2, which compares denoised data to nondenoised
data). Anerror rate was defined as the total number of single-occurring
variants divided by the total number of denoised bases overlapping
the somatic mutations.

PCR duplicates analysis forindel and SNV error rates

To measure indel and SNV error rates, alignment files were split by
chromosome. For each autosomal chromosome, up to 1,500,000
unique DNA molecules were collected and scanned for PCR duplicates
(here defined as two sequencing reads mapping to the same strand of
the reference genome, each having a mapping quality of 60 and both
containing the same UMI). For each unique molecule, two PCR dupli-
cates were randomly selected. The PCR duplicates were then aligned
to each other and the reference genome (obtained via the alignment
file) using global pairwise sequencing alignment (using the pairwise2
module from biopython version1.79 in Python version 3.6). Alignment
points and penalties were set to 1, -1.5, -1 and -1 for identical bases,
nonidentical bases, opening gaps and extending gaps, respectively.
Gaps in the alignment were considered to be indels, and differing
bases were considered to be SNV errors. For gaps, the size differences
between homopolymers of the PCR duplicates were tabulated to create
Extended Data Fig. 1. For differing bases, the reference trinucleotide,
reference base and the PCR duplicate read bases were collected for
Extended Data Fig. 2. For the SNV analysis, the reference base was
assumed to be correct when PCR duplicates differed.

In silico mixing study for analytical lower limit of detection
estimation (standard WGS)

We created in silico mixes at various tumor fractions by computa-
tionally combining aligned reads from a high-tumor-burden plasma
sample (MEL-07, estimated tumor fraction of 7%) with aligned reads
from a healthy individual (CTRL-05). Reads were mixed to create
20x (Illumina and Ultima), 40x (Ultima) and 70x (Ultima) bam files
harboring 107¢, 5x1075,1075,10™, 107 or 1072 tumor fractions. The
coverage of the high-burden sample necessary to obtain a given
expected tumor fraction at an expected coverage was defined as

Coverage neededhigh—burden sample

Expected tumor fraction
= — — x expected coverage
high — burden tumor fraction

Coverage of the healthy individual was subsequently defined as

Coverage neededhea,thy control

= expected coverage — coverage neededy ., _pyrgen sample

Aninsilicomixed replicate was then obtained by randomly down-
sampling MEL-07 and CTRL-0S5 to obtain the respective coverages
(using samtools view -s). Downsampled files were merged and denoised
as described above (WGS (without duplex) SNV-based tumor fraction
estimation). Tumor fractions were estimated with platform-specific
denoising. Zscores were calculated as

TF — mean(TFr—g)

Z score =
s.d.zr=0

Specifically, the Zscore of agivenreplicate was calculated against
the mean and standard deviation of coverage and platform-matched
healthy control replicates.

UMI WGS data processing

FastQ reads were adapter and UMI trimmed using cutadapt67
(version 2.10). Trimmed reads were then aligned to the human genome
(version hg38) using bwa memé64 (with parameters -K 100000000
-p -v3-t16 -Y). Trimmed UMIs were added to the alignment files as
an additional RX tag. Unique molecules were identified by in either
single-stranded mode (that is, collecting PCR duplicates as unique
molecules) or in duplex mode (that is, collecting PCR duplicates and
UMI-concordant Watson and Crick strands as unique molecules) using
the fgbio suite of tools (version 2.0). Because duplex correction via
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fgbiorequires paired-end reads, we created a syntheticR2 read directly
from single-end bam alignment files. R2 reads were built using the same
mapping information (such as CIGAR string and mapping quality)
and read information (such as sequence and qualities) as the R1read.
The subsequent paired-end alignment file was grouped by UMI (fgbio
GroupReadsByUMI with parameters -mO -s paired -e 1).

Single-stranded and duplex consensus reads and UMI-agnostic
denoising. Single-stranded consensus reads were created by follow-
ing the fgbio workflow. Molecular consensuses were generated using
the CallMolecularConsensusReads command (with options -M1;
-consensus-call-overlapping-bases false). Duplex analysis included the
paired option. Next, FilterConsensusReads was applied (with options
-M2;-NO;-E1;-e1;-n1). Reads passing the filter were remapped to the
human genome (version hg38) for analysis (or aconcatenated human
and mouse genome for mouse PDX samples; hg38 and mm39, respec-
tively). Single-strand and/or duplex metrics (such as consensus read
depth, consensus error rate, number of Ns on the consensus molecule
and number of reads with matching UMIs) and mapping information
wereintegrated asadditional read tags to the original single-end align-
ment file. Variant frequencies in the original alignment files (without
denoising) were calculated using lofreq (version 2.1.3a, with all filter-
ing modes disabled). The original single-end bam, with the additional
single-strand or duplex tags, was processed through the FlowFea-
tureMapper tool (described above), which allows for processing of the
additional UMI tags, to obtain putative variants. For single-stranded
consensus reads, only consensus variants obtained by the fgbio pipe-
line were considered. For duplex variants, a decision-tree-based clas-
sifier was used to create duplex consensus variants (Supplementary
Note). For mouse PDX samples, the following filters were then applied:
(1) all reads contributing to a consensus read must have a mapping
quality of 60, (2) all reads contributing to a consensus must have the
five flanking bases of a variant match the reference genome, and (3) the
variant must not be within 25 bases of either end of the cell-free DNA
molecule. Finally, UMI-agnostic denoising was performed by filtering
by (1) variant positioninread (the variant cannot be within 25 bp of an
end of the read), (2) template length (must be lower than 200 bp), (3)
mapping quality (cannot be below 60), (4) edit distance (must be below
4)and (5) total variants on the read (must be below 11). Duplicate reads
were not considered. The same filters were applied for human samples,
with the addition of an edit distance filter to further decrease errors
(at least one duplex strand (or read for single-strand consensuses)
must have an edit distance below 2).

Residual SNV rate estimation
The residual SNV rate was defined as

Number of single — occuring mutations

Residual SNV rate =
Interrogated bases

Here, the number of single-occurring mutations refers to the
number of variants that only occur in a single denoised duplex, single
strand or read (depending on the analysis performed), and the num-
ber of interrogated bases refers to the total number of bases that pass
denoisingfilters. Given that the tools we developed in this manuscript
aredesigned to detect variants and do notreport reference bases, the
number of interrogated bases was estimated according to

Interrogated bases = total observed molecules x molecule length

x homozygous variant filtering ratio

Here, total observed molecules refers to the total number of
duplexes sequenced in a given region of the genome, and the mole-
cule length was set to 170 bp. The product of these two variables
estimates the total number of duplex (or single-strand) bases

sequenced. Toaccount for the effect of filtering, we multiply the total
number of bases by the fraction of homozygous variants that pass all
filtering criteria.

Duplex depth estimation

The duplex coverage for each sample was estimated by multiplying
the number of double-stranded DNA molecules recovered (that is,
the number of unique molecules with at least one top and one bottom
strand) by 170 (roughly the size of a cell-free DNA molecule) and
dividing by the size of the genome (2,875,001,522).

Trinucleotide frequency tabulation and signature
contribution estimation

After denoising, the trinucleotide frequencies of duplex-corrected
SNVs (or single-stranded or UMI-agnostic-corrected SNVs) were tabu-
lated using deconstructSigs®. Next, signature contributions were
estimated using MuSiCal*. Here, the previously tabulated trinucleotide
frequencies and cancer-specific reference catalogs and specificity
thresholds were used. In melanoma studies, MuSiCal was used to refit
the sample trinucleotide frequencies to a catalog containing SBS7a,
SBS7b (from Cosmic v3.3) and clonal hematopoiesis*>. MuSiCal was
run in likelihood-bidirectional mode using an empirically defined
threshold of 0.007. This mode performs signature refitting using a
likelihood-based sparse non-negative least squares algorithm. Urothe-
lial cancer samples were run similarly, although the catalog was pre-
defined to contain signatures from APOBEC mutagenesis (SBS2 and
SBS13, Cosmicv3.3), platinum chemotherapy (SBS31and SBS35, Cosmic
v3.3) and clonal hematopoiesis*’ (with aMuSiCal threshold of 0.025).

In silico mixing (duplex WGS)

Theinsilico mixing study was performed by computationally mixing
variants from high-burden (HB) sample MEL-12.B (tumor fraction of
11.59%) with variants from cancer-free control (CFC) CTRL-06. First,
the duplex coverage for each sample was estimated by multiplying
the number of double-stranded DNA molecules recovered (that is,
the number of unique molecules with at least one top and one bot-
tom strand) by 170 (roughly the size of a cell-free DNA molecule) and
dividing by the size ofthe genome (2,875,001,522). Here, MEL-12.B and
CTRL-06 had coverages of 16x and 8.8%, respectively. A file containing
all sequencing reads contributing to an SNV-containing duplex
molecule was generated for the HB and CFC sample.

Next, expected tumor fractions and coverages were set for the in
silico mixes. Here, expected tumor fractions ranged from 0.1tox, and
the expected coverage was set to 6.5%. Adownsampling ratio of reads
from the original HB sample was set as

final coverage
HB coverage

expected tumor fraction

HB downsampling ratio = -
HB tumor fraction

The CFC downsampling ratio was set as

CFC downsampling ratio

1— expected tumor fraction
HB tumor fraction

_ final coverage
" CFC coverage

Therefore, the total number of duplexes to sample froman HB or
CFCfilewasequivalent to

Reads to sample = downsampling ratio = number of SNV

—containing duplexes

The exact number of reads per seed was sampled from a normal
distribution with a standard deviation of 2.5and amean equivalent to
‘reads tosample’. Next, therandomly sampled SNV-containing duplexes
(and the sequencing reads that contribute to this duplex) of the HB
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and CFC sample were merged and denoised as described above (UMI
WGS data processing). Trinucleotide frequencies were tabulated,
and melanoma signature scores were measured as described above
(Trinucleotide frequency tabulation and signature contribution esti-
mation). Germline variants were removed after in silico mixing using
allele frequencies of the original samples.

Duplex, single-strand and UMI-agnostic error rates in mouse
PDX plasmasamples

Denoising was performed as described above. Variants at a given
genomic position, for each correction method, were compared to
the frequency of that variant in uncorrected datasets. If the variant
occurred two or fewer timesin an uncorrected dataset, the variant was
consideredanerror. The error rate was defined as the sum of the errors
divided by the total number of base pairs for that correction method.
For example, the error rate for duplex datasets corresponded to the
number of errors divided by the total number of mapped base pairs
from consensus duplex reads.

Statistical analysis

Statistical analysis was performed in R (version 3.6). Box plots were
generated using the ggplot2 (version 3.3.5) R package. The bottom
and top ends of the boxes represent the 25th and 75th percentiles of
the data, respectively, and the horizontal line represents the median.
The whiskers represent at most 1.5 times the IQR.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw genomic sequencing data generated are available from the
European Genome-Phenome Archive under dataset accession code
EGAD50000001234. Datasets obtained from the PCAWGC (Sup-
plementary Table 11) are available at https://www.icgc-argo.org/.
Urothelial cancer tumor/normal alignment files were obtained from
Nguyen et al.”* and were deposited to dbGap under accession number
phs001087.v4.p1.

Code availability
Code and custom scripts are available at https://github.com/
alexpcheng/WGSDuplex.
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Trinucleotide frequencies were fit to the entire COSMIC database (version v.3.3).
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as covariates and this study was not designed to capture- sex or gender-based effects. Sex of participants was determined by
self-report.

Population characteristics WGS without duplex and WGS with duplex control cohorts (n =5 and n = 3, respectively) had median ages of 74 and 75, and
were 40% and 33% female, respectively. LUAD cohort (n = 3) had a median age of 79 and were 100% female. Melanoma
cohorts (WGS without duplex and WGS with duplex) had median ages of 64.5 and 56 and were 25% and 20% female,
respectively).

Recruitment This manuscript is a methods-focused study and samples were selected retrospectively to test the detection power of the
technology (example, cancer-free controls, stage IV disease, stage Ill disease, melanoma, lung cancer)

Ethics oversight Blood and tissue samples were obtained from patients after obtaining informed consent and following protocols approved by
institutional review boards and in accordance with the Declaration of Helsinki protocol. Samples were obtained from either
NewYork-Presbyterian/Weill Cornell Medical Center (Institutional Review Board (IRB) numbers 0201005295 (Tumor
Biobanking), 1008011210 (GU Tumor Biobanking), 1011011386 (Urothelial Cancer Sequencing), 100701157 (Genomic and
Transcriptomic Profiling), 1305013903 (Precision Medicine), 1708018519 (Cardiac Surgery Biobank), 2014-0024 (approved by
the Institutional Animal Care and Use Committee at Weill Cornell Medicine), 1610017682 (Circulating tumor DNA for early
detection and management of Non Small Cell Lung Cancer), Memorial Sloan Kettering Cancer Center (IRB number 12-245
(Genomic Profiling in Cancer Patients), Massachusetts General Hospital (IRB number 11-181 (Collection of Tissue and Blood
Specimens and Clinical Data from Patients with Melanoma and Other Cutaneous Malignancies)), or the Royal Marsden NHS
Foundation Trust in the United Kingdom (Supplementary Table 1). Tumor, normal and plasma samples from the Royal
Marsden NHS Foundation Trust were obtained under an ethically approved protocol (Melanoma TRACERX, Research Ethics
Committee Reference 11/L0/0003). Cancer diagnosis was established according to World Health Organization criteria and
confirmed in all cases by an independent pathology review. Patients did not receive any compensation.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
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Sample size Statistical methods were not used to determine sample size. For error-rate analysis, we obtained billions of sequenced bases per sample,
which allowed us to robustly quantify error rates between correction methods (UMI-agnostic, single-stranded UMI correction, duplex
correction). For cancer detection, the number of samples was chosen based on the availability of datasets.

Data exclusions  Variants were filtered based on quality control metrics according to sample type (UMI-agnostic denoising, single-stranded UMI-based
denoising and duplex denoising). These quality control metrics are described in the Methods section.

Replication In silico admixtures with 10-50 replicates were analyzed to estimate the error rates and the reproducibility of whole genome sequencing's
accuracy of tumor fraction estimate in a tumor-informed model, and whole genome duplex sequencing's accuracy of tumor fraction detection
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in a tumor-agnostic model. For whole genome duplex sequencing, tumor-specific signatures present in circulating DNA were assessed against
10 control samples. Attempts at replicating whole genome duplex sequencing experiments were successful.

Randomization  Randomization was not included in this retrospective, non-intervention study

Blinding No blinding was performed in this non-intervention study

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

|:| Antibodies |:| ChiIP-seq

g |:| Eukaryotic cell lines g |:| Flow cytometry

|Z |:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging
|:| Animals and other organisms

|:| Clinical data

|Z |:| Dual use research of concern

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Patient-derived xenografts (PDX) were established using fresh pathological tissue fragments from patients with lung cancer of diffuse
B cell ymphoma, implanted subcutaneously into six- to eight-week-old anesthetized NGS female mice.

Wild animals No wild animals were used in the study.
Reporting on sex N/A
Field-collected samples  No field collected samples were used in the study.

Ethics oversight Mouse PDX studies were reviewed and approved by Institutional Animal Care and Use Committee (IACUC, institutional review board
number 2014-0024) at Weill Cornell Medicine.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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