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Error-corrected flow-based sequencing at 
whole-genome scale and its application to 
circulating cell-free DNA profiling
 

Differentiating sequencing errors from true variants is a central genomics 
challenge, calling for error suppression strategies that balance costs and 
sensitivity. For example, circulating cell-free DNA (ccfDNA) sequencing 
for cancer monitoring is limited by sparsity of circulating tumor DNA, 
abundance of genomic material in samples and preanalytical error rates. 
Whole-genome sequencing (WGS) can overcome the low abundance of 
ccfDNA by integrating signals across the mutation landscape, but higher 
costs limit its wide adoption. Here, we applied deep (~120×) lower-cost 
WGS (Ultima Genomics) for tumor-informed circulating tumor DNA 
detection within the part-per-million range. We further leveraged lower-cost 
sequencing by developing duplex error-corrected WGS of ccfDNA, achieving 
7.7 × 10−7 error rates, allowing us to assess disease burden in individuals 
with melanoma and urothelial cancer without matched tumor sequencing. 
This error-corrected WGS approach will have broad applicability across 
genomics, allowing for accurate calling of low-abundance variants at 
efficient cost and enabling deeper mapping of somatic mosaicism as an 
emerging central aspect of aging and disease.

Distinguishing sequencing errors from true variants continues to 
challenge the genomics field, with tradeoffs between cost and error 
suppression strategies. These challenges are magnified when iden-
tifying ultrarare variants. For example, profiling circulating cell-free 
DNA (ccfDNA) is a promising clinical tool for noninvasive cancer 
detection1–8. Sequencing of somatic variants in circulating tumor 
DNA (ctDNA)9–12 can aid in detection of low-burden disease, such as 
cancer screening, minimal residual disease (MRD)11,13–16 and relapse 
monitoring17,18. However, when disease burden is low, robust detection 
requires methods with exquisite sensitivity to detect ctDNA signal over 
the background rate of sequencing or library preparation errors. This 
technical challenge is typically overcome by increasing sequencing 
depth at select genomic locations, accompanied by approaches that 
decrease sequencing error rate, including unique molecular identifier 
(UMI) error suppression techniques10,19 or duplex sequencing12,20–22, 
which enable increased accuracy in differentiating true somatic variants 
from sequencing artifacts to optimize detection of low-burden disease.

Prevailing methods of ctDNA detection use targeted sequencing, 
which increases the number of genomes sequenced at a targeted loca-
tion. However, high-throughput targeted sequencing rapidly exhausts 
available genomes (1,000–10,000 genome equivalents (GEs) per ml of 
plasma23), setting a ceiling on ctDNA detection, where further increases 
in sequencing depth at targeted sites afford no advantage after the 
limited number of GEs has already been sequenced. Alternatively, 
whole-genome sequencing (WGS) approaches exploit breadth of cover-
age to supplant depth, eliminating the reliance on detecting few sites 
to increase ctDNA characterization in low tumor fraction settings. 
For example, our recent methods MRDetect14 and MRD-EDGE24 use 
matched primary tumor mutational profiles to inform genome-wide 
tumor single-nucleotide variant (SNV) detection in ccfDNA, such  
that the available number of GEs is no longer the limiting factor for 
ctDNA detection.

The detection challenges presented by sparsity call for broad, 
accurate and deep ccfDNA sequencing. Thus, whole-genome, low-error, 
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technologies (Spearman’s ρ = −0.925, P = 6.5 × 10−16 (Ultima) and Spear-
man’s ρ = –0.996, P < 2.2 × 10−16 (Illumina); Extended Data Fig. 1e,f). For 
example, the homopolymer size estimation error rate was 1.57 × 10−3, 
4.46 × 10−3 and 8.51 × 10−3 for homopolymers of sizes 1, 2 and 3, respec-
tively, in Ultima datasets and 1.02 × 10−4, 1.66 × 10−4 and 2.63 × 10−4 in 
Illumina datasets. As expected, concordance improved in Ultima data-
sets after PCR duplicate consensus calling (error rates of 4.08 × 10−4, 
5.24 × 10−4 and 8.06 × 10−4 for homopolymers of sizes 1, 2 and 3, respec-
tively; family size = 2; Extended Data Fig. 1e). For single-read accuracy, 
we observed that Ultima homopolymer accuracy falls below 99% at 
homopolymer lengths of 4 and greater (3.17% of the human genome; 
Extended Data Fig. 1e,g), whereas matched Illumina datasets fall  
below 99% at homopolymer lengths of 8 and greater (0.09% of the 
genome; Extended Data Fig. 1f,g).

To further compare performance in terms of SNV errors, we first 
identified putative sequencing errors, defined as mismatched PCR 
duplicates, where only one of the reads contains a mismatch with the 
reference genome. Overall, single-nucleotide differences between 
PCR duplicates occurred at a rate of 1.58 × 10−4 ± 2.65 × 10−4 in Ultima 
datasets and 9.85 × 10−4 ± 10.80 × 10−4 in Illumina datasets (Extended 
Data Fig. 2a). Interestingly, we found wide variation in sequencing 
error rates that depended on the trinucleotide context of the variant. 
In Ultima datasets, errors were most likely to occur in specific motifs: 
trinucleotides containing a 2-mer (for example, C[C>A]T) or where a 
2-mer would form following mutation (for example, G[A>G]T), likely 
reflecting homopolymer size estimation errors that manifest as SNV 
errors. Conversely, we found that certain trinucleotide contexts were 
robust to sequencing error, namely when a reported trinucleotide 
mutation would cause a shift in the number of sequencing cycles 
compared to the reference (termed cycle shift motifs; Extended Data 
Fig. 2b). For example, assuming a sequencing cycle of T>G>C>A, T[G>A]
C would be considered a cycle shift, whereas T[G>C]C would not. In 
Ultima datasets, cycle shift motifs had significantly lower error rates 
than noncycle shift motifs (mean of 5.23 × 10−5 versus 2.32 × 10−4 in cycle 
shifts and noncycle shifts, respectively; P < 2.2 × 10−16; Extended Data 
Fig. 2c). Cycle shift motifs with the highest error rates were exclusively 
in C>T mutations, the most common somatic mutation. These may 
present rare cases where the PCR duplicate containing the mismatch 
is correct and the PCR duplicate that matches the reference contains 
the error. As expected, there were no significant differences in error 
rates between cycle shift and noncycle shift motifs in Illumina datasets 
(mean error rate of 9.3 × 10−4 versus 1.0 × 10−3 in cycle shifts and non
cycle shifts, respectively, P = 0.16; Extended Data Fig. 2c).

Plasma WGS can detect low tumor burden
Having benchmarked Ultima versus Illumina error rates, we sought to 
test Ultima sequencing for ctDNA detection in clinical samples. Lower 
limits of ctDNA mutation detection by plasma WGS are dictated by 
tumor mutational burden, depth of sequencing and error rates from 
library preparation and sequencing. To explore these dependencies, 
we modeled variable tumor fractions, depths of coverage and error 
rates for a cancer with 10,000 SNVs (~3.7 mutations per megabase; 
Methods). Tumors with >10,000 SNVs are seen across ~30% of cancers 
in the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium 
dataset29 and are enriched in lung (85%), skin (79%), bladder (83%) and 
other cancers. This analysis suggests that detection of tumor fractions 
below 10−5 requires a sequencing depth of ~100× with error rates below 
10−4 (Fig. 1a). In these high-mutational-burden cancers, WGS can provide 
more opportunities for ctDNA detection than targeted approaches by 
sequencing a greater number of unique ccfDNA molecules. However, 
detecting low-mutational-burden tumors or specific driver variants is 
better served with targeted approaches (Extended Data Fig. 3).

Given the need for deeper plasma WGS, sequencing costs impede 
broad application. We therefore hypothesized that lower-cost Ultima 
sequencing can help overcome this barrier, provided that sequencing 

high-coverage methods are necessary for robust ctDNA analysis.  
However, the costs associated with these approaches are often pro-
hibitive. Although genome sequencing costs have rapidly dropped, 
more recently this decrease has stagnated25, rendering sequencing  
cost a substantial barrier for implementing high-depth WGS for  
liquid biopsies, where shallow WGS is insufficient for ctDNA detection 
when tumor fractions are low (for example, ~10−5).

Recently, low-cost mostly natural sequencing by synthesis26,27 
has been developed by Ultima Genomics, where the flow-based plat-
form produces single-end reads at ~10 billion reads per run for $1 per 
gigabase, lowering costs compared to current platforms. To date, 
mostly natural sequencing by synthesis/Ultima sequencing has not 
been harnessed for clinical ctDNA sequencing in ccfDNA samples, 
and error rate profiles have not been fully characterized or rigorously 
compared to competing technologies. For potential application to 
clinical ctDNA monitoring, accurate error rate estimates are critical 
due to the required high sensitivity of ctDNA detection28.

To investigate deep WGS for ctDNA detection, we used the Ultima 
platform to sequence ccfDNA from plasma samples from healthy 
individuals, individuals with cancer and patient-derived xenograft 
(PDX) mouse models. We show that deep plasma WGS (~120×) allows 
tumor-informed ctDNA detection within the part-per-million range. 
We further leveraged the cost-effective and high-throughput nature 
of mostly natural sequencing by synthesis to develop high-coverage 
WGS duplex error-corrected libraries of ccfDNA, achieving error 
rates as low as 7.7 × 10–8. This allowed us to combine the advantages of 
genome-wide mutational integration on the one hand and molecular 
error correction on the other to assess disease burden in individuals 
with melanoma and urothelial cancer without relying on matched 
tumor sequencing. Together, our results demonstrate the feasibility 
and utility of deep WGS for ctDNA detection and duplex sequencing 
at the whole-genome scale.

Results
Flow-based sequencing enables highly accurate SNV discovery
Different sequencing methods have advantages and drawbacks.  
In flow-based Ultima sequencing, sequencing signal intensity translates 
to the number of consecutive bases of a given nucleotide, increasing 
susceptibility to homopolymer size estimation errors. However, as  
each sequencing cycle encompasses a single base, flow-based sequen
cing systems could be particularly robust to SNV errors.

To investigate error rates of the flow-based Ultima Genomics 
platform, we ligated molecular barcodes to the plasma of mouse 
PDX samples (n = 4; n = 1 lung cancer; n = 3 diffuse large B cell lym-
phoma human-mapped fractions of 0.4, 40, 73 and 96%). We compu-
tationally tracked PCR duplicates in the three PDX samples with high 
human-mapped read fractions to identify sequencing artifacts and 
compare error profiles in matched Ultima–Illumina datasets. First, 
we analyzed homopolymer length discordance rate between PCR 
duplicates and between a read and the reference genome. We ran-
domly sampled up to 33 million unique ccfDNA molecules (1.5 million 
molecules for each autosome) containing at least two PCR duplicates 
from the n = 3 PDX datasets (human-mapped reads only). Each read 
was aligned to its duplicate and to the reference genome, and match-
ing homopolymers were compared by their sequenced size. In Ultima 
datasets, we observed a strong concordance between PCR duplicates 
(99.34%; Q score = 21.8) and between reads to the reference genome 
(99.58%; Q score = 23.8) for homopolymers of size 1 to 12 (Extended 
Data Fig. 1a,b). We also observed artifactual homopolymer sizes near 
lengths of 12, as Ultima sequencing reports a maximum homopolymer 
size of 12 bases (ref. 26). However, homopolymer size estimations 
were more accurate in Illumina datasets (99.99% and Q score = 39.9 
between PCR duplicates; 99.98% and Q score = 36.3 between a read 
and the reference genome; Extended Data Fig. 1c,d). We also found 
that accuracy decreased as a function of homopolymer length in both 
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error profiles are sufficiently low. As such, we performed Ultima WGS 
on 15 ccfDNA libraries (n = 10 samples from individuals with cancer 
(n = 7 stage IV melanoma; n = 3 III–IV lung adenocarcinoma); n = 5 
control samples; sequencing depth 115× ± 34× (including duplicates; 
mean ± s.d.)) with matching Illumina sequencing of the same librar-
ies (including duplicates; 33× ± 10×; Fig. 1b,c and Supplementary 
Tables 1–3). We first measured ctDNA burden by estimating the rela-
tive abundance of large-copy-number alterations using ichorCNA30 
(Methods). Tumor fractions varied (<3%, n = 3; 3–10%, n = 5; >10%, n = 2), 
and measurements were strongly correlated between matched Illumina 
and Ultima datasets (Spearman’s ρ = 0.998, P = 7.6 × 10−11; Fig. 1d,e). 
Next, we examined estimated ctDNA burden using a tumor-informed 
SNV approach. We performed WGS of tumor-derived DNA (using 
standard mutation calling on plasma DNA if tumor DNA was unavail-
able and ctDNA burden was >5% by ichorCNA30; Methods and Sup-
plementary Table 4) and matched normal DNA from peripheral blood 
mononuclear cells to identify tumor-specific mutations. To remove 
sequencing errors, we developed a quality-filtering pipeline informed 
by Ultima-specific feature cutoffs and blacklisted regions (Supple-
mentary Fig. 1, Methods and Supplementary Note). We mined the 
denoised cell-free DNA reads for somatic variants to estimate ctDNA 
fractions (Methods), finding strong agreement between Illumina and 
Ultima sequencing sets (Spearman’s ρ = 0.998, P = 2.6 × 10–7; Fig. 1e), 

with comparable tumor-specific error rates (Supplementary Fig. 2 and 
Supplementary Note) and fragment lengths (Supplementary Fig. 3 and 
Supplementary Note). Together, these results support the utility of 
Ultima sequencing for detection of low-burden ctDNA.

To further benchmark the two sequencing technologies, we per-
formed in silico mixing studies14 by computationally mixing sequenc-
ing reads from a sample with detectable tumor burden with sequencing 
reads from a healthy control sample at known ratios. This method is 
comparable to molecular mixing studies24 where a known amount of 
ccfDNA from a sample with detectable tumor burden is spiked into 
healthy ccfDNA at known concentrations. We generated admixtures 
from sample MEL-05 (stage IV melanoma, tumor fraction = 7.3%) 
and CTRL-05 (no known cancer) at different ratios to create admix-
tures of tumor fractions ranging from 10−6 to 10−2 (n = 50 technical 
replicates per admixture) at 70×, 40× and 20× sequencing depth for 
Ultima-sequenced datasets and 20× for Illumina. Performance was 
evaluated at different simulated tumor fractions using a receiver oper-
ating curve analysis.

We determined analytical limits of detection of a plasma sam-
ple with matched Illumina and Ultima sequencing in two different 
contexts: (1) at matched coverage (20× each), which shows compa-
rable performance between the two methods (Fig. 1f and Extended 
Data Fig. 4), and (2) at matched cost (20× Illumina versus 40× Ultima, 
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Fig. 1 | Ultralow ctDNA detection requires deep sequencing coverage and 
low error rates. a, Simulation of ctDNA detection given different error rates 
(columns), whole-genome coverages (rows) and tumor fractions (x axis); 
n = 1,000 replicates per set of conditions. b, Cell-free DNA library preparation 
preanalytical workflow. c, Sequencing depth of matched Illumina and Ultima 
datasets. d, Normalized read coverage for Illumina- (top) and Ultima-sequenced 
(bottom) matched cell-free DNA samples. e, Left, copy-number-based tumor 
fraction estimation measured with Illumina or Ultima sequencing in matched 
samples using ichorCNA. Matched cancer-free samples were used to create a 
panel of normal samples before tumor fraction estimation. Right, SNV-based 
tumor fraction estimation measured with Illumina or Ultima sequencing. 
Somatic SNVs were identified through matched tumor–normal sequencing. Two 
samples without tumor sequencing and with low ctDNA fraction (<5% measured 
through CNV analysis) were omitted from this analysis. Spearman’s ρ coefficient 

and corresponding two-sided P values were calculated using the stats package 
(v.3.6) function in R (v.3.6); LUAD, lung adenocarcinoma. f, ctDNA cost and 
coverage analysis between Illumina and Ultima sequencing in a matched sample. 
Area under the curve (AUC) values are measured by calculating the area under a 
receiver operating characteristic curve comparing a given group (for example, 
Illumina 20× at 10−6 expected tumor fraction) to its platform and coverage-
matched healthy control (for example, Illumina 20×, expected tumor fraction 
of 0); n = 20 replicates per set of conditions. All AUC values at expected tumor 
fractions of 10−4 and greater were 1.00. Z scores of a given sample are calculated 
against their coverage and platform-matched healthy control (expected tumor 
fraction of 0). For all box plots, the bottom and top ends of the boxes represent 
the 25th and 75th percentiles of the data, respectively, and the horizontal lines 
represent the median. The whiskers represent at most 1.5 times the interquartile 
range (IQR).
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assuming $1 per gigabase (Ultima) and $2 per gigabase (Illumina)). As 
expected, given the similar error rates of the two sequencers without 
denoising, and slight improvements in Ultima datasets after denois-
ing (Supplementary Fig. 2), the deeper Ultima datasets (40×) dem-
onstrate better limits of detection (AUC = 0.98 at tumor fractions 
of 5 × 10−5) than price-matched Illumina datasets (20×; AUC = 0.77  
at tumor fractions of 5 × 10−5). Finally, we were able to robustly  
detect ctDNA in the parts-per-million range in deeply sequenced 
Ultima datasets (AUC = 0.79; 70× coverage), indicating that our 
deep-sequencing framework for ctDNA detection is sensitive enough 
at low tumor fractions for use in challenging clinical applications such 
as MRD monitoring.

Ultralow error duplex WGS of ccfDNA
Advances in molecular error correction have radically enhanced deep 
targeted sequencing approaches, for example using UMIs that are incor-
porated during library preparation for sequencing error correction10,31. 
Although strand-agnostic UMIs can correct sequencing and PCR errors, 
UMIs that link forward and reverse DNA strands (duplex sequencing) 
can correct errors that arise on only one strand (such as G>T transver-
sions from oxidative DNA damage32) during library preparation22. At 
the whole-genome scale, duplex sequencing has been cost prohibitive 
due to the need for a high rate of duplicate reads. Nonetheless, studies 
applying duplex sequencing at the genome scale have shown promise 
for genome-wide rare variant identification20,21.

We reasoned that the lower sequencing cost afforded by mostly 
natural sequencing by synthesis could open the way for affordable 
genome-scale duplex sequencing in clinical settings, and decreasing 
sequencing and library preparation errors could enable tumor-agnostic 
(de novo) ctDNA detection, where matched tumor tissue, often una-
vailable for patients33,34, cannot be used to reduce background noise. 
For this important clinical context, we developed duplex WGS for 
single-end Ultima reads. Here, we created duplex libraries by replacing 
standard sequencing adapters with adapters containing three random 
nucleotides, thus creating a 6-bp duplex UMI (using the random nucleo-
tides from both ends of the DNA). Libraries were then sequenced using 
the Ultima sequencer. Although duplex sequencing was developed for 
paired-end sequencing technologies, we recovered the ends of most 
ccfDNA molecules (80% of all sequenced molecules) due to their modal 
length of ~170 bp (Supplementary Fig. 3) to create 6-bp UMIs. Next, 
we developed a decision tree classifier that determines the duplex 
variant based on the variant pileups of individual sequencing reads 
contributing to the duplex. This allowed us to use sequencing reads of 
the same duplex family that might differ in size due to homopolymer 
size estimation differences, which would be discarded by current 
duplex collapsing tools and maximize duplex yields (Methods, Sup-
plementary Note and Supplementary Fig. 4), additionally lowering 
error rates through read end trimming (Methods, Supplementary Note 
and Supplementary Fig. 5).

To test the accuracy of duplex error correction, we used the 
ccfDNA duplex libraries from PDX plasma. Tumor fractions (the frac-
tion of reads uniquely mapping to the human genome) were 0.4, 40, 
73 and 96% (Supplementary Table 2). For each sample, we denoised 
sequencing reads in three different ways: (1) UMI agnostic, where  
PCR duplicates (identified by their mapping positions) are removed 
from analysis and reads are denoised based on their sequencing and 
mapping qualities (Methods), (2) using UMIs to identify PCR duplicates 
for single-strand error correction (reads used to create a consensus 
are profiled base by base and a consensus base pair is determined by 
computing the likelihood of that base being an A, T, C or G, using the 
sequenced nucleotides and their qualities as priors) and (3) using PCR 
duplicates and forward and reverse strands of a same double-stranded 
DNA template for error correction (duplex error correction). Similar 
to recent studies describing novel error correction methods35,36, we 
defined a residual SNV rate as the number of base pairs in denoised 

reads that were discordant with the reference genome and occurred 
once divided by the total number of interrogated (that is, denoised) 
bases in a sample (Methods). Here, we limited our analysis to normal 
ccfDNA (reads mapping to the mouse genome) in the three PDX sam-
ples with appreciable mouse-derived cfDNA. Overall, we obtained 
residual SNV rates of 3.8 × 10−4 ± 3.2 × 10−5, 5.8 × 10−5 ± 2.5 × 10−5 and 
7.7 × 10−7 ± 5.8 × 10−7 for UMI-agnostic, single-strand-corrected and 
duplex-corrected reads, respectively (Fig. 2a and Supplementary 
Table 5), achieving a three-orders-of-magnitude reduction in error 
rate with duplex sequencing. When compared to uncorrected reads 
(without any quality filtering), we observed a ~3,300× improvement in 
error rates using duplex WGS (2.5 × 10−3 ± 1.6 × 10−3 error rates in uncor-
rected reads without any denoising), consistent with previous reports 
using whole-genome duplex sequencing (2 × 10−7 in Abascal et al.21; 
4.5 × 10−7 in Bae et al.36), suggesting that ccfDNA errors are driven more 
by library preparation and DNA degradation than by sequencing errors.

To further analyze duplex error correction for variant calling in 
ccfDNA, we assessed the variant allele frequency (VAF) distribution 
in noncancer control ccfDNA (in humans). Although UMI-agnostic 
WGS showed only 78.8% ± 2.0% of base substitutions identified at the 
expected VAF range for germline events (Methods and Extended Data 
Fig. 5), this increased to 97.6% ± 0.5% after duplex error correction. In 
high-burden metastatic melanoma ccfDNA samples, duplex error cor-
rection and removal of germline mutations allowed for the detection 
of somatic mutation VAF modes (Supplementary Table 6), consistent 
with tumor fraction estimates using ichorCNA (Fig. 2b,c), rendering 
this approach feasible for ctDNA mutation detection in clinical samples 
without a matched tumor (nontumor-informed).

Nontumor-informed monitoring of low-burden melanoma
Current methods for targeted detection of ctDNA include de novo  
detection of somatic mutations (nontumor-informed) from ‘off-the- 
shelf’ sequencing panels that target recurrent mutations of a given 
cancer type or tumor-informed deep targeted sequencing, where 
a tumor is sequenced a priori, and a personalized panel is designed 
to target cancer-derived mutations. However, these methods have 
inherent limitations. For example, panel sensitivity is limited by the 
scarcity of ccfDNA in plasma (only up to 1,000–10,000 GEs per ml of 
plasma23), incomplete driver detection (~49% driver mutation detected 
in individuals with stage IV non-small cell lung cancer37) and the inabil-
ity to distinguish cancer-derived mutations from those arising from 
alternative biological processes, such as clonal hematopoiesis38,39. 
Likewise, tumor-informed targeted approaches are limited by ccfDNA 
scarcity, with intratumoral heterogeneity and primary tumor sequenc-
ing failure further restricting the targeted approach by impacting the 
accuracy of the mutation landscape used to build the panels33,34,40. 
Furthermore, the reliance of tumor-informed methods on only muta-
tions from primary tumors results in a lack of sensitivity for detect-
ing phylogenetically distant metastasis. For phylogenetically distant 
metastasis, tumor-informed approaches will offer reduced benefit, 
whereas a tumor-free approach considers any cancer mutation and 
thus may overcome this challenge.

WGS-based nontumor-informed mutation detection does not 
sensitively detect cancer hotspot mutations due to relatively lower 
coverage per genomic position. Thus, SNV-based WGS methods of 
ctDNA detection must rely on genome-wide mutational integration, 
where identifying multiple mutations improves detection power14,24. 
We hypothesized that signatures of somatic mutation accumulation41–43 
could provide a framework for genome-wide mutational integration 
for nontumor-informed WGS ctDNA detection.

Specifically, we reasoned that genome-wide mutations could 
be integrated and summarized as a weighted sum of single-base sub-
stitution (SBS) reference mutational signatures originating from (i) 
the tumor in individuals with cancer or (ii) clonal hematopoiesis42. 
We explored the trinucleotide contexts of ccfDNA variants through 
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mutation signature analysis at denoising levels (UMI agnostic, UMI 
single stranded and duplex) to investigate the potential mutation 
etiologies. Cosine similarities (measures similarities between two 
mutational signatures21,43) between the UV-associated SBS7a and 
SBS7b signature (COSMIC44 v3.3) and high-burden samples (MEL-12A-E, 
stage IVB melanoma) were highest after duplex correction (across 
samples mean cosine similarities to SBS7a of 0.21 ± 0.011 (range 
0.19–0.22), 0.35 ± 0.051 (range 0.29–0.43) and 0.94 ± 0.023 (range 
0.89–0.96) between UMI-agnostic denoising and single-strand- and 
duplex-corrected datasets, respectively; Fig. 2d,e and Supplemen-
tary Fig. 6). We found similar improvements when measuring cosine 

similarities between the clonal hematopoiesis signature and healthy 
controls, highlighting the importance of duplex correction for accurate 
signature analysis and demonstrating that clonal hematopoiesis is an 
abundant source of mutations in ccfDNA WGS (Fig. 2d,e, Supplemen-
tary Fig. 7 and Extended Data Fig. 6a).

As de novo mutation identification in error-corrected ccfDNA WGS 
delivers profiles matching SBS7a, SBS7b and clonal hematopoiesis 
signatures for identifying melanoma and age-associated circulat-
ing DNA fragments, respectively, we developed a tumor-agnostic 
approach for ctDNA detection based on mutational patterns. First, we 
tabulated the trinucleotide frequencies of plasma ccfDNA mutations, 
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fitted to reference mutational signatures (SBS7a, SBS7b and clonal 
hematopoiesis) using a non-negative likelihood model45. We obtained  
relative contributions of the reference mutational signatures and 
estimated a tumor score by taking the weight of the tumor-associated 
SBS7a and SBS7b signatures and multiplying by the number of variants 
per duplex GEs sequenced (Supplementary Table 6).

We applied our signature-based ctDNA detection platform for 
preoperative ctDNA detection (tumor-agnostic ctDNA detection), 
sequencing plasma samples from eight individuals with resectable 
locoregional stage III melanoma (without tumor or normal DNA) and 
ten healthy individuals. In our cohort, tumor fractions measured by 
ichorCNA were undetectable in samples from individuals with stage 
III disease, suggesting tumor fractions below 3% (ichorCNA30 limit 
of detection; Extended Data Fig. 7). Tumor scores were separable 
between control, stage III preoperative melanoma and pretreatment 
stage IV melanoma samples (2.4 ± 7.6, 69.9 ± 65.72 and 340.7 ± 238.6, 
respectively; Fig. 2f; trinucleotide frequencies are shown in Supple-
mentary Fig. 8). When applying the same signature-based method-
ology for single-read variant calling in single-strand correction and 
UMI-agnostic correction, we obtained 0 detections in our melanoma 
cohort (Extended Data Fig. 6b), owing to the high number of preana-
lytical errors in single-strand-corrected and UMI-agnostic datasets. 
Previous studies showed that undetectable ctDNA using targeted 
panels is associated with favorable prognosis in stage III melanomas46,47. 
However, individuals with undetectable ctDNA often still experience 
disease recurrence, highlighting the need for more sensitive tools 
for improved stratification. Here, tumor scores for ctDNA detection 
showed strong separation between healthy individuals and individuals  
with melanoma (Fig. 2f), suggesting that deep error-corrected sequenc-
ing can identify ctDNA in a nontumor-informed approach using muta-
tional signatures, even when ctDNA burden in the plasma is low, such 
as in resectable melanoma.

To analytically validate our approach, we performed an in silico mix-
ing study combining duplex-denoised reads from a high-burden ctDNA 
sample (MEL-12.B, 11% ichorCNA tumor fraction estimate) and a healthy 
control sample (CTRL-06) at 6.5× duplex sequencing depth at expected 
tumor fractions of 0 and 5 × 10−4 to 10−1 (Fig. 2g). Tumor scores were 
detectable (AUC of 0.89) at tumor fractions greater than or equal to 10−3. 
Signature scores dropped at tumor fractions at or below 5 × 10−4 (AUC 
of 0.63), given that the number of mutations originating from ctDNA 
was significantly below the number of mutations arising from healthy 
ccfDNA (mean of 42 and 1,930 variants at 5 × 10−4 from MEL-12.B versus 
from healthy individuals, respectively). Tumor scores correlated strongly 
with expected tumor fractions (Spearman’s ρ = 0.97, P < 2.2 × 10−16). 
Importantly, these results highlight that we can identify ctDNA  
contributions when the number of tumor-derived variants is below  
the number of variants originating from background biological  
processes, such as clonal hematopoiesis (~85 cancer-derived muta-
tions in ~1,920 background mutations at a tumor fraction of 10−3), 
which are expected to dominate rare variant signal in early-stage  
and MRD contexts.

We further tested the ability of duplex WGS to track therapeu-
tic response longitudinally. Here, we performed duplex WGS on the 
plasma of individuals with melanoma (stage III and stage IV) before 
and after treatment (Extended Data Fig. 8), including individuals 
receiving immunotherapy treatment with plasma collected serially 
(n = 5 individuals, three to five samples per individual collected at a 
pretreatment time point and up to 6 months after treatment), and 
individuals receiving surgery, with plasma collected before and after 
surgery (four individuals, two to three samples per individual, post-
operative collection up to 6 months). ctDNA levels in individuals who 
had a partial response or who were recurrence free decreased after 
treatment decreased, whereas the ctDNA in individuals who showed 
a recurrence or who had progressive disease increased from their 
baseline time point (Extended Data Fig. 8a). Specifically, individuals 

with progressive disease or recurrence saw a mean increase of 500 
melanoma variants per GE after treatment, whereas individuals with a 
partial response or who were recurrence free from disease exhibited an 
overall decrease in ctDNA of 196 melanoma variants per GE (P = 0.0005 
between groups; Extended Data Fig. 8b). Although clinical studies are 
necessary to validate these findings, our results suggest a potential for 
duplex-corrected WGS in tumor-agnostic, plasma-only serial profiling 
of individuals with melanoma to assess therapeutic response.

Duplex WGS resolves complex mutational signatures  
in ccfDNA
Next, we sought to determine whether duplex WGS could deconvolute 
complex signatures arising from multiple biological processes, such 
as APOBEC3-derived processes in urothelial cancer. Many urothe-
lial cancers carry mutations indicating APOBEC cytidine deaminase  
activity, where C>T transitions can occur as a function of uracil  
generation by cytidine deaminase activity (SBS2), as well as C>G and 
C>A mutations that arise from polymerase errors following uracil exci-
sion (SBS13)48. Thus, measuring the contributions of SBS2 and SBS13 
as an APOBEC score could be potentially used to detect ctDNA in indi-
viduals with urothelial cancer. Moreover, in neoadjuvant-treated and 
unresectable or metastatic urothelial carcinomas, platinum-based 
chemotherapies are often used as first-line treatment, and their use 
can induce mutagenesis in tumor tissue, which can result in subclonal 
mutation propagation49–51. Platinum-based chemotherapies mainly 
affect C[C>T]C and C[C>T]T trinucleotides (SBS31 and SBS35)44, 
thereby adding an additional layer of complexity to an individual’s 
cancer mutational compendium. To extend our mutation signature 
analysis to urothelial cancer, we sequenced n = 20 plasma samples 
from n = 20 individuals with urothelial cancer (stage II–IV). Of these 20 
individuals, 11 had previously received neoadjuvant platinum chemo-
therapy. We hypothesized that this complex mutational compendium, 
with mutations from platinum chemotherapy and varying APOBEC 
mutagenesis, would benefit from a ccfDNA whole-genome approach, 
where distinct mutational signatures can be detected. We measured 
and summed the contributions of SBS2 and SBS13 as an APOBEC score 
for individuals with urothelial cancer, finding that urothelial cancer 
ccfDNA is enriched for mutations containing APOBEC signal compared 
to ccfDNA from healthy individuals (P = 0.0031; Fig. 3a), and the number 
of SBS2-derived mutations correlated positively with the detection of 
SBS13-derived mutations (Pearson’s R = 0.94, P = 3.2 × 10−14).

In a subset of individuals with urothelial cancer (n = 13), tumor 
tissue was available for sequencing (n = 29 multiregion samples across  
13 individuals), where we could compare the mutational profiles of 
plasma to the individual-matched tumors. First, all tumors showed 
evidence of APOBEC mutagenesis (8–86%; Extended Data Fig. 9 and 
Supplementary Table 7). Second, mutational profiles obtained through 
de novo (without using a matched tumor; Supplementary Fig. 9) detec-
tion of ctDNA strongly resembled those of the matching tumor (cosine 
similarity of >0.83 at plasma tumor fractions of >0.005), and de novo  
identification of APOBEC mutations was possible in plasma samples with  
tumor fractions as low as 1.1 × 10−4 (Fig. 3a,b and Supplementary Fig. 10). 
We measured tumor-informed tumor fractions (Methods and Supple-
mentary Table 8) and calculated the expected contribution of APOBEC- 
derived mutations in the plasma by multiplying the tumor-informed 
tumor fraction by the fraction of tumor variants attributable to APOBEC 
mutational signatures. We found a strong correlation between the 
expected, tumor-informed APOBEC contributions in the plasma and 
our de novo APOBEC score (Pearson’s R = 0.95, P = 1.13 × 10−6; Fig. 3c).

In terms of driver detection, as expected from the lower sequenc-
ing depth, duplex WGS detected only 6 of 59 putative driver mutations 
(Supplementary Table 9) across the cohort of individuals with matched 
plasma and tumor sequencing (n = 29 multiregion samples across the 
13 individuals), preferentially in ccfDNA samples with high tumor bur-
den (Supplementary Tables 8 and 9; Pearson’s R = 0.57 and P = 0.04). 
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Although these results demonstrate that our duplex WGS approach 
can resolve putative driver mutations, deep targeted sequencing could 
offer more benefit for driver mutation detection.

Interestingly, we noted instances of high cosine similarities 
between plasma and matched tumors despite low-burden disease (at 
or below 10−4; Supplementary Fig. 10b; for example, BLA-18 (cosine 
0.92)). Although stereotypical APOBEC-derived peaks (namely T[C>T]
A and T[C>T]T for SBS2 and T[C>G]A and T[C>G]T for SBS13) were  
not visually obvious in the plasma and were undetectable in n = 8 indi-
viduals (Fig. 3a), we noted strong contributions of platinum-derived 
chemotherapy mutations (for example, C[C>T]C and C[C>T]T for 
SBS31) in individuals who were treated with platinum chemotherapy. 
By fitting the plasma mutational signatures to a custom catalog of 
APOBEC- and platinum chemotherapy-derived mutational signatures 
(SBS2/SBS13 and SBS31/SBS35, respectively), we found enrichment of 
platinum chemotherapy mutations only in the plasma of individuals 
who had received treatment (Fig. 3d). Interestingly, platinum mutation 
signatures were detected in the ccfDNA through de novo analysis in 
some individuals where no ctDNA was detected using a tumor-informed 
approach (Fig. 3e and Supplementary Fig. 10), potentially reflect-
ing signal originating from platinum mutagenesis in nonmalignant 
cells. These results suggest that tumor-agnostic de novo profiling of  
plasma may offer a more comprehensive overview of plasma from 
individuals with cancer than tumor-informed approaches that solely 
focus on the detection of a limited number of clonal mutations.

Discussion
Radical decreases in sequencing costs open new opportunities  
in both clinical genomics and basic biology research. Here, we har-
nessed low-cost Ultima sequencing to demonstrate the impact of 
deeper WGS (~100×) on tumor-informed ctDNA monitoring. Moreo-
ver, we also developed methodology to integrate duplex sequenc-
ing with single-end Ultima sequencing, showcasing the feasibility of 
cost-efficient, highly accurate WGS that can be broadly applied across 
genomics research. This advance allowed us to apply duplex error cor-
rection to clinical plasma samples at the level of the entire genome. We 
leveraged these highly error-corrected data for nontumor-informed 
ctDNA detection based on the similarity of mutational profiles to known 
cancer mutational signatures. These findings have important clinical 
implications, as uncoupling ctDNA detection from a tumor-informed 
mutation profile radically increases the potential use of ctDNA moni-
toring in common clinical scenarios where tumor samples cannot be 
obtained (Supplementary Note). Excitingly, this demonstration opens 
up the possibility for the use of WGS in ctDNA cancer screening. In par-
ticular, such an approach might be beneficial for specific settings where 
there is high genetic (for example, BRCA mutation carriers and Lynch 
syndrome) or environmental (for example, tobacco smoke exposure) 
cancer risk together with distinct mutational signatures. A limitation 
of whole-genome duplex sequencing is the fact that only a fraction of 
reads result in a duplex fragment, resulting in one-order-of-magnitude 
fewer unique molecules captured than standard WGS. However, the 
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manner (see Methods). b, Trinucleotide frequency of ccfDNA (‘plasma’; left) and 
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highlighted (SBS31, SBS13 and SBS2). Contributions were fit to the entire Cosmic 
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interval of the data distribution. d, Plasma mutational scores from platinum 
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were fit to a custom reference of signatures comprising SBS2, SBS13, SBS31 and 
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represent at most 1.5 times the IQR. P values were calculated using a two-sided 
Wilcoxon test.
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~500-fold decrease in error rates in duplex sequencing compared to 
bioinformatically denoised standard WGS may offset this decrease 
in coverage, depending on the specific application or context. In  
the tumor-informed setting, where prior knowledge of the somatic 
mutations can lower the effective error rate of standard WGS, higher 
inputs are expected to afford lower limits of detection than duplex 
WGS. In the tumor-agnostic setting, a markedly reduced error rate 
allows for detection of genome-wide signatures and plasma-only 
MRD even in lower-burden disease compared to standard WGS, which  
only allowed detection in high-burden metastatic disease. Finally, 
we envisage that methods developed herein can provide a general 
cost-efficient approach for duplex WGS that can be leveraged across 
genomics research that requires highly accurate detection of rare vari-
ants in somatic tissues.
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Methods
Simulation analysis
Simulations for ctDNA detection scores (Fig. 1a) were performed 
assuming a tumor mutational compendium of 10,000 SNVs with differ-
ent error rates (10−3, 10−4 and 10−5), coverages (1, 10 and 100) and tumor 
fractions (0, 10−6 10−5). For each of the 10,000 SNV mutations, coverage 
was simulated using a Poisson distribution. Each simulated sequenced 
base pair was classified as either ctDNA or ccfDNA according to the 
tumor fraction, and errors misclassified as ctDNA were determined 
according to the error rate. Estimated tumor fractions were calculated 
by summing the ctDNA molecules and the errors and dividing by the 
total base pairs simulated. Z scores were calculated using the follow-
ing equation, where TF indicates tumor fraction, and s.d. indicates 
standard deviation:

Z score = TF −mean(TFTF=0)
s.d.TF=0

PCAWG datasets
We obtained somatic trinucleotide counts of n = 2,780 tumors from the 
PCAWG database43. Total somatic mutation counts were used to gener-
ate Extended Data Fig. 3. To simulate and compare the performance of 
targeted panels and WGS to detect different cancer types, we defined 
ctDNA detection opportunities to be a function of panel size, GEs avail-
able to be sequenced in a sample and sequencing coverage. Specifically,

ctDNA detection opportunities

= (targeted SNVs × GEs | targeted SNVs × coverage)

For WGS simulations, the ‘panel size’ was set to the median  
number of somatic mutations of a given cancer type. We assumed a 
20-ng cell-free DNA input (corresponding to ~6,700 GEs, assuming the 
mass of a genome to be 3 pg).

Human sample processing
Blood and tissue samples were obtained from individuals after obtain-
ing informed consent and following protocols approved by institu-
tional review boards (IRBs) and in accordance with the Declaration of 
Helsinki protocol. Samples were obtained from New York Presbyte-
rian/Weill Cornell Medical Center (IRB numbers 0201005295 (Tumor 
Biobanking), 1008011210 (GU Tumor Biobanking), 1011011386 (Urothe-
lial Cancer Sequencing), 100701157 (Genomic and Transcriptomic Pro-
filing), 1305013903 (Precision Medicine), 1708018519 (Cardiac Surgery 
Biobank), 2014-0024 (approved by the Institutional Animal Care and 
Use Committee at Weill Cornell Medicine) and 1610017682 (ctDNA for 
Early Detection and Management of Non-Small Cell Lung Cancer)), 
Memorial Sloan Kettering Cancer Center (IRB number 12-245 (Genomic 
Profiling in Cancer Patients)), Massachusetts General Hospital  
(IRB number 11-181 (Collection of Tissue and Blood Specimens and 
Clinical Data from Patients with Melanoma and Other Cutaneous Malig-
nancies)) or the Royal Marsden NHS Foundation Trust in the United 
Kingdom (Supplementary Table 1). Tumor, normal and plasma samples 
from the Royal Marsden NHS Foundation Trust were obtained under 
an approved ethical protocol (Melanoma TRACERx, Research Ethics 
Committee Reference 11/LO/0003). Cancer diagnosis was established 
according to World Health Organization criteria and confirmed in all 
cases by an independent pathology review. Participants did not receive 
any compensation.

Tumor and germline DNA extraction, library preparation and 
sequencing
For melanoma and lung cancer samples, genomic DNA was extracted 
using a QiAamp DNA Mini kit (Qiagen, 56304) and QIAamp DNA Blood 
kit (Qiagen, 51104) for tissue and blood samples, respectively, and 

sheared to 450 bp (Covaris, 500569). Sequencing libraries were pre-
pared from 1 µg of DNA using a TruSeq DNA PCR-Free Library Prepa-
ration kit (Illumina, 20015963), with one additional bead cleanup 
performed after end repair and after adapter ligation. DNA was quanti-
fied using a Qubit 3.0 fluorometer, and length analysis was performed 
using an Agilent Bioanalyzer or High Sensitivity Fragment Analyzer. 
Paired-end sequencing (2 × 150 bp) was performed on either a HiSeq X 
or NovaSeq v1.0 Illumina machine. Urothelial tumor/normal sequenc-
ing data were obtained from Nguyen et al.51.

Cell-free DNA extraction
Cell-free DNA was extracted from plasma using a Magbind ccfDNA 
extraction kit (Omega Biotek, M3298). Manufacturer recommenda-
tions for extraction were followed, but elution volume was increased 
to 35 µl, and elution time was increased to 20 min on a thermomixer  
at 1,600 rpm (room temperature). Extracted ccfDNA was quantified 
using a Qubit 3.0 fluorometer, and length analysis was performed 
using an Agilent Bioanalyzer or High Sensitivity Fragment Analyzer.

Cell-free DNA library preparation
Whole-genome library preparation (without duplex). Next- 
generation sequencing libraries were generated using a double- 
stranded preparation kit (Kapa Hyper Prep kit, Roche, KK8502). Full- 
length adapters (IDT TruSeQ UDI plate, Illumina, 20023784) were used 
for adapter ligation. Six PCR cycles were performed when input DNA 
was above 5 ng, and eight cycles were performed when the input was 
below 5 ng. Libraries were quantified using a Qubit 3.0 fluorometer, 
and length analysis was performed using an Agilent Bioanalyzer or 
High Sensitivity Fragment Analyzer. Illumina sequencing libraries were 
sequenced on a HiSeq X or NovaSeq1.0 using 2 × 150 bp paired-end 
sequencing. Library input amounts can be found in Supplementary 
Table 3.

Whole-genome library preparation (with duplex). Version 1. ccfDNA 
libraries were generated in a similar fashion as described above, 
although the full-length adapters were replaced with stubby Y adapters 
containing three UMI bases (IDT Duplex Seq adapters, 1080799), and 
sample indexing was performed during PCR amplification. To enhance 
duplicate recovery in human samples, a maximum of 10 ng was used 
as input, and 4 ng of prepared libraries was subjected to six additional 
PCR cycles before Ultima library conversion. Mouse PDX samples did 
not undergo additional PCR cycles before Ultima library conversion.

Version 2. Version 2 of duplex library preparation differs from version 1 
as follows: (1) 1 ng of ccfDNA was used as input, (2) eight cycles of PCR 
were performed, and (3) the step of taking 4 ng of prepared libraries 
and performing six additional PCR cycles was omitted. Library input 
amounts can be found in Supplementary Table 3.

Ultima sequencing. Illumina sequencing libraries underwent Ultima 
library conversion. Briefly, Illumina libraries were converted to Ultima 
libraries by PCR using primers matching Illumina read 1 and read 2 
sequences and containing Ultima-specific barcodes (R1 conversion 
adapter: 5' TCC ATC TCA TCC CTG CGT GTC TCC GAC TGC ACA ATG  
TGT GCT AGA TCT ACA CGA CGC TCT TCC GAT CT 3'; R2 conversion 
adapter: 5' CTG TGT GCC TTG GCA GTC TCA GCT CAG ACG TGT GCT  
CTT CCG ATC T 3'). Samples were then pooled and sequenced on an 
Ultima sequencer prototype to a target depth of 120×. One sample 
achieved lower effective coverage (MEL-03.A, 36×), likely due to a 
sample pooling error.

WGS (without duplex) adapter trimming and alignment
Illumina fastQ reads were adapter trimmed using skewer52 (version 
0.2.2). Trimmed reads were then aligned to the human genome (version 
hg38) using bwa mem53. Duplicate reads were marked in a UMI-unaware 
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fashion using novosort54. Depth of coverage was estimated using mos-
depth55 (version 0.2.9), and duplicate reads were considered. For Ultima 
reads, adapter trimming was performed to remove the Illumina conver-
sion adapters. Cutadapt56 (version 2.10; cutadapt–mask-adapter -a CTA-
CACGACGCTCTTCCGATCT; max_error_rate = 0.15; min_overlap = 10; 
required…AGATCGGAAGAGCACACGTCTGCTG; max_error_rate = 0.2; 
min_overlap = 6) was used to mask adapter sequences, and adapter 
trimming was then performed using GATK57 (private Ultima fork, 
since merged to the latest 4.3.0.0 GATK release; ClipReads function). 
Alignment was performed using bwa mem53 (version 0.7.15-r1140), 
and coverage was estimated using mosdepth counting duplicate  
reads. Alignment statistics can be found in Supplementary Table 3.  
We note that coverage was calculated as the total number of bases 
mapping to the human genome divided by the size of the genome. 
In cell-free DNA, coverage has been shown to be inversely corre-
lated with DNA accessibility, as the open regions of the genome are  
more susceptible to degradation in the blood. For example, highly 
expressed genes can see a loss of coverage of nearly 50%. Thus, somatic 
variants in open chromatin regions may be more difficult to detect  
via the plasma.

Copy-number-based tumor fraction estimation
Genome-wide coverage was calculated over a 1-Mbp window and  
normalized for mappability and GC content biases (using hmmcopy58 
version 0.99). Tumor fractions were estimated using ichorCNA30  
(version 0.3.2) after correcting for library and sequencing artifacts via a 
panel of normals from healthy individuals (CTRL-01 to CTRL-05). A sep-
arate panel of normals was created for Illumina- and Ultima-sequenced 
samples using libraries sequenced on the respective machines. For 
plotting purposes (Fig. 1d), corrected log2 (read counts) outputted by 
ichorCNA were used. Bins marked by ichorCNA as copy gains, ampli-
fications and high-level amplifications were marked and colored as 
chromosome gains (pink). Bins marked as homozygous deletion states 
and hemizygous deletions were marked and colored as chromosome 
losses (blue). Copy neutral regions were marked as neutral (black). 
Bins with corrected log2 (read counts) between –0.05 and 0.05 were 
also marked as neutral (black). Given that ichorCNA provides multiple 
solutions ordered by log likelihood, the CNV-based tumor fraction 
reported in the manuscript was manually selected among all solutions 
according to ichorCNA guidelines30. Deviation from the most likely 
solution is justified in Supplementary Table 10.

WGS (without duplex) SNV-based tumor fraction estimation
SNV-based tumor fraction estimation was performed by counting 
cell-free DNA reads with matching tumor-specific somatic muta-
tions. To limit the effect of problematic regions of the genome, a 
platform-specific blacklist was built. For Illumina sequencing, regions 
identified in the ENCODE blacklist59, centromeres60, simple repeat 
regions60 and positions with high mutation rates (GNOMAD61, allele 
frequency > 0.001) were not considered. For Ultima sequencing, 
Ultima-specific low-confidence regions composed of homopolymers, 
AT-rich regions, tandem repeats and regions with poor mappability and 
high coverage variability were additionally excluded (Extended Data 
Fig. 3). To limit the effect of sequencing errors, custom scripts were 
used for platform-specific denoising (Supplementary Note).

WGS (without duplex) tumor-informed error rate estimation
Tumor-informed error rates were computed by intersecting a given 
healthy individual’s cell-free DNA sequencing reads with the somatic 
mutations from an individual with cancer. Reads were then denoised 
in a platform-specific manner as described above (except for data in 
Supplementary Fig. 2, which compares denoised data to nondenoised 
data). An error rate was defined as the total number of single-occurring 
variants divided by the total number of denoised bases overlapping 
the somatic mutations.

PCR duplicates analysis for indel and SNV error rates
To measure indel and SNV error rates, alignment files were split by 
chromosome. For each autosomal chromosome, up to 1,500,000 
unique DNA molecules were collected and scanned for PCR duplicates 
(here defined as two sequencing reads mapping to the same strand of 
the reference genome, each having a mapping quality of 60 and both 
containing the same UMI). For each unique molecule, two PCR dupli-
cates were randomly selected. The PCR duplicates were then aligned 
to each other and the reference genome (obtained via the alignment 
file) using global pairwise sequencing alignment (using the pairwise2 
module from biopython version 1.79 in Python version 3.6). Alignment 
points and penalties were set to 1, −1.5, −1 and −1 for identical bases, 
nonidentical bases, opening gaps and extending gaps, respectively. 
Gaps in the alignment were considered to be indels, and differing 
bases were considered to be SNV errors. For gaps, the size differences 
between homopolymers of the PCR duplicates were tabulated to create 
Extended Data Fig. 1. For differing bases, the reference trinucleotide, 
reference base and the PCR duplicate read bases were collected for 
Extended Data Fig. 2. For the SNV analysis, the reference base was 
assumed to be correct when PCR duplicates differed.

In silico mixing study for analytical lower limit of detection 
estimation (standard WGS)
We created in silico mixes at various tumor fractions by computa-
tionally combining aligned reads from a high-tumor-burden plasma 
sample (MEL-07, estimated tumor fraction of 7%) with aligned reads 
from a healthy individual (CTRL-05). Reads were mixed to create  
20× (Illumina and Ultima), 40× (Ultima) and 70× (Ultima) bam files 
harboring 10−6, 5 × 10−5, 10−5, 10−4, 10−3 or 10−2 tumor fractions. The  
coverage of the high-burden sample necessary to obtain a given 
expected tumor fraction at an expected coverage was defined as

Coverage neededhigh−burden sample

= Expected tumor fraction
high − burden tumor fraction

× expected coverage

Coverage of the healthy individual was subsequently defined as

Coverage neededhealthy control
= expected coverage − coverage neededhigh−burden sample

An in silico mixed replicate was then obtained by randomly down-
sampling MEL-07 and CTRL-05 to obtain the respective coverages 
(using samtools view -s). Downsampled files were merged and denoised 
as described above (WGS (without duplex) SNV-based tumor fraction 
estimation). Tumor fractions were estimated with platform-specific 
denoising. Z scores were calculated as

Z score = TF −mean(TFTF=0)
s.d.TF=0

Specifically, the Z score of a given replicate was calculated against 
the mean and standard deviation of coverage and platform-matched 
healthy control replicates.

UMI WGS data processing
FastQ reads were adapter and UMI trimmed using cutadapt67  
(version 2.10). Trimmed reads were then aligned to the human genome 
(version hg38) using bwa mem64 (with parameters -K 100000000 
-p -v3 -t 16 -Y). Trimmed UMIs were added to the alignment files as 
an additional RX tag. Unique molecules were identified by in either 
single-stranded mode (that is, collecting PCR duplicates as unique 
molecules) or in duplex mode (that is, collecting PCR duplicates and 
UMI-concordant Watson and Crick strands as unique molecules) using 
the fgbio suite of tools (version 2.0). Because duplex correction via 
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fgbio requires paired-end reads, we created a synthetic R2 read directly 
from single-end bam alignment files. R2 reads were built using the same 
mapping information (such as CIGAR string and mapping quality) 
and read information (such as sequence and qualities) as the R1 read. 
The subsequent paired-end alignment file was grouped by UMI (fgbio 
GroupReadsByUMI with parameters -m0 -s paired -e 1).

Single-stranded and duplex consensus reads and UMI-agnostic 
denoising. Single-stranded consensus reads were created by follow-
ing the fgbio workflow. Molecular consensuses were generated using 
the CallMolecularConsensusReads command (with options -M1; 
-consensus-call-overlapping-bases false). Duplex analysis included the 
paired option. Next, FilterConsensusReads was applied (with options 
-M 2; -N0; -E 1; -e 1; -n 1). Reads passing the filter were remapped to the 
human genome (version hg38) for analysis (or a concatenated human 
and mouse genome for mouse PDX samples; hg38 and mm39, respec-
tively). Single-strand and/or duplex metrics (such as consensus read 
depth, consensus error rate, number of Ns on the consensus molecule 
and number of reads with matching UMIs) and mapping information 
were integrated as additional read tags to the original single-end align-
ment file. Variant frequencies in the original alignment files (without 
denoising) were calculated using lofreq (version 2.1.3a, with all filter-
ing modes disabled). The original single-end bam, with the additional 
single-strand or duplex tags, was processed through the FlowFea-
tureMapper tool (described above), which allows for processing of the 
additional UMI tags, to obtain putative variants. For single-stranded 
consensus reads, only consensus variants obtained by the fgbio pipe-
line were considered. For duplex variants, a decision-tree-based clas-
sifier was used to create duplex consensus variants (Supplementary 
Note). For mouse PDX samples, the following filters were then applied: 
(1) all reads contributing to a consensus read must have a mapping 
quality of 60, (2) all reads contributing to a consensus must have the 
five flanking bases of a variant match the reference genome, and (3) the 
variant must not be within 25 bases of either end of the cell-free DNA 
molecule. Finally, UMI-agnostic denoising was performed by filtering 
by (1) variant position in read (the variant cannot be within 25 bp of an 
end of the read), (2) template length (must be lower than 200 bp), (3) 
mapping quality (cannot be below 60), (4) edit distance (must be below 
4) and (5) total variants on the read (must be below 11). Duplicate reads 
were not considered. The same filters were applied for human samples, 
with the addition of an edit distance filter to further decrease errors  
(at least one duplex strand (or read for single-strand consensuses)  
must have an edit distance below 2).

Residual SNV rate estimation
The residual SNV rate was defined as

Residual SNV rate = Number of single − occuring mutations
Interrogated bases

Here, the number of single-occurring mutations refers to the 
number of variants that only occur in a single denoised duplex, single 
strand or read (depending on the analysis performed), and the num-
ber of interrogated bases refers to the total number of bases that pass 
denoising filters. Given that the tools we developed in this manuscript 
are designed to detect variants and do not report reference bases, the 
number of interrogated bases was estimated according to

Interrogated bases = total observed molecules × molecule length

× homozygous variant filtering ratio

Here, total observed molecules refers to the total number of 
duplexes sequenced in a given region of the genome, and the mole
cule length was set to 170 bp. The product of these two variables  
estimates the total number of duplex (or single-strand) bases 

sequenced. To account for the effect of filtering, we multiply the total 
number of bases by the fraction of homozygous variants that pass all 
filtering criteria.

Duplex depth estimation
The duplex coverage for each sample was estimated by multiplying 
the number of double-stranded DNA molecules recovered (that is, 
the number of unique molecules with at least one top and one bottom  
strand) by 170 (roughly the size of a cell-free DNA molecule) and  
dividing by the size of the genome (2,875,001,522).

Trinucleotide frequency tabulation and signature 
contribution estimation
After denoising, the trinucleotide frequencies of duplex-corrected 
SNVs (or single-stranded or UMI-agnostic-corrected SNVs) were tabu-
lated using deconstructSigs62. Next, signature contributions were 
estimated using MuSiCal45. Here, the previously tabulated trinucleotide 
frequencies and cancer-specific reference catalogs and specificity 
thresholds were used. In melanoma studies, MuSiCal was used to refit 
the sample trinucleotide frequencies to a catalog containing SBS7a, 
SBS7b (from Cosmic v3.3) and clonal hematopoiesis42. MuSiCal was 
run in likelihood-bidirectional mode using an empirically defined 
threshold of 0.007. This mode performs signature refitting using a 
likelihood-based sparse non-negative least squares algorithm. Urothe-
lial cancer samples were run similarly, although the catalog was pre-
defined to contain signatures from APOBEC mutagenesis (SBS2 and 
SBS13, Cosmic v3.3), platinum chemotherapy (SBS31 and SBS35, Cosmic 
v3.3) and clonal hematopoiesis42 (with a MuSiCal threshold of 0.025).

In silico mixing (duplex WGS)
The in silico mixing study was performed by computationally mixing 
variants from high-burden (HB) sample MEL-12.B (tumor fraction of 
11.59%) with variants from cancer-free control (CFC) CTRL-06. First, 
the duplex coverage for each sample was estimated by multiplying 
the number of double-stranded DNA molecules recovered (that is, 
the number of unique molecules with at least one top and one bot-
tom strand) by 170 (roughly the size of a cell-free DNA molecule) and 
dividing by the size of the genome (2,875,001,522). Here, MEL-12.B and 
CTRL-06 had coverages of 16× and 8.8×, respectively. A file containing  
all sequencing reads contributing to an SNV-containing duplex  
molecule was generated for the HB and CFC sample.

Next, expected tumor fractions and coverages were set for the in 
silico mixes. Here, expected tumor fractions ranged from 0.1 to x, and 
the expected coverage was set to 6.5×. A downsampling ratio of reads 
from the original HB sample was set as

HB downsampling ratio = final coverage
HB coverage × expected tumor fraction

HB tumor fraction

The CFC downsampling ratio was set as

CFC downsampling ratio

= final coverage
CFC coverage × 1 − expected tumor fraction

HB tumor fraction

Therefore, the total number of duplexes to sample from an HB or 
CFC file was equivalent to

Reads to sample = downsampling ratio ∗ number of SNV

−containing duplexes

The exact number of reads per seed was sampled from a normal 
distribution with a standard deviation of 2.5 and a mean equivalent to 
‘reads to sample’. Next, the randomly sampled SNV-containing duplexes 
(and the sequencing reads that contribute to this duplex) of the HB 
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and CFC sample were merged and denoised as described above (UMI 
WGS data processing). Trinucleotide frequencies were tabulated, 
and melanoma signature scores were measured as described above 
(Trinucleotide frequency tabulation and signature contribution esti-
mation). Germline variants were removed after in silico mixing using 
allele frequencies of the original samples.

Duplex, single-strand and UMI-agnostic error rates in mouse 
PDX plasma samples
Denoising was performed as described above. Variants at a given 
genomic position, for each correction method, were compared to 
the frequency of that variant in uncorrected datasets. If the variant 
occurred two or fewer times in an uncorrected dataset, the variant was 
considered an error. The error rate was defined as the sum of the errors 
divided by the total number of base pairs for that correction method. 
For example, the error rate for duplex datasets corresponded to the 
number of errors divided by the total number of mapped base pairs 
from consensus duplex reads.

Statistical analysis
Statistical analysis was performed in R (version 3.6). Box plots were 
generated using the ggplot2 (version 3.3.5) R package. The bottom 
and top ends of the boxes represent the 25th and 75th percentiles of 
the data, respectively, and the horizontal line represents the median. 
The whiskers represent at most 1.5 times the IQR.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The raw genomic sequencing data generated are available from the 
European Genome–Phenome Archive under dataset accession code 
EGAD50000001234. Datasets obtained from the PCAWGC (Sup-
plementary Table 11) are available at https://www.icgc-argo.org/. 
Urothelial cancer tumor/normal alignment files were obtained from 
Nguyen et al.51 and were deposited to dbGap under accession number 
phs001087.v4.p1.

Code availability
Code and custom scripts are available at https://github.com/
alexpcheng/WGSDuplex.
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Extended Data Fig. 1 | Ultima and Illumina sequencing datasets of human-
mapped reads in mouse PDX datasets (n = 3). A Homopolymer size estimation 
of bases between two PCR duplicates (all samples combined) in Ultima datasets. 
B Homopolymer size estimation of bases between a read and the aligned 
reference (all samples combined) in Ultima datasets. C Homopolymer size 
estimation of bases between two PCR duplicates (all samples combined) in 
Illumina datasets. D Homopolymer size estimation of bases between a read and 
the aligned reference (all samples combined) in Illumina datasets. E Indel calling 
accuracy by PCR duplicate family sizes in Ultima datasets (n = 3 in each boxplot). 

F Indel calling accuracy of Illumina sequencing reads (for single family reads, 
n = 3 in each boxplot). G Frequency of homopolymer sizes across the human 
genome. For boxplots in (E) and (F), the lower and upper ends of boxes represent 
the 25th and 75th percentiles of the data, respectively, and the horizontal lines 
represent the median. The whiskers represent at most 1.5 times the IQR. Accuracy 
in (E) and (F) is defined as the number of correct homopolymer assignments in 
individual sequencing reads divided by the occurrences of that homopolymer 
size in the human genome in all sequenced reads.
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Extended Data Fig. 2 | Flow-based sequencing provides predictable error-
robust motifs. A Single-nucleotide variant analysis of matched Ultima and 
Illumina sequencing datasets across 96 trinucleotide contexts. Cycle shift 
motifs (described in B) are indicated by plus signs. B Left: Example sequencing 
of a TGC trinucleotide in flowspace. Given a flow order of T > G > C > A, one full 
flow cycle of each nucleotide should provide a 1 > 1 > 1 > 0 signal. Top, right: 
Example of how a T[G > A]C alt disrupts the cycles in flow space basecalling. Two 
sequencing cycles are required to fully resolve a TAC sequencing motif. We refer 
to these types of motifs as cycle shift motifs. Bottom, right: Example of how a 
T[G > C]C variant does not affect the cycles of flow space basecalling. C Error 
rates in Ultima and Illumina sequencing datasets for trinucleotide variants that 

alter the flowspace sequencing cycle (n = 120 in the cycle shift motif boxplots 
(blue), corresponding to the 40 trinucleotide variants that are classified as cycle 
shift motifs across 3 mouse PDX plasma samples. n = 168 in the non cycle shift 
motif boxplots (red), corresponding to the 52 trinucleotide variants that are not 
classified as cycle shift motifs across 3 mouse PDX plasma samples). P-values 
were measured using a two-sided Wilcoxon test. Error bars in (A) represent the 
standard error of the mean. For boxplots in (C), the lower and upper ends of 
boxes represent the 25th and 75th percentiles of the data, respectively, and the 
horizontal lines represent the median. The whiskers represent at most 1.5 times 
the IQR.
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Extended Data Fig. 3 | Tradeoffs between deep-targeted sequencing and 
modest whole-genome sequencing for ctDNA detection. A Mutational burden 
(number of SNVs) of 22 cancer types retrieved from the Pan Cancer Analysis 
of Whole Genomes consortium. The numbers along the x-axis represent 
the number of tumors analyzed per cancer type. B Median ctDNA detection 
opportunities using a whole-genome approach with 10x sequencing coverage, 
a 10-target panel at 10,000x coverage and a 1-target panel at 10,000x coverage. 

The pink shaded area represents tumor types for which targeting only a few 
sites may offer benefit over whole-genome sequencing. The blue shaded area 
represents tumor types for which a whole-genome approach will offer more 
opportunities to detect ctDNA over targeted panels. The lower and upper ends of 
the boxplots in (A) represent the 25th and 75th percentiles of the data, respectively, 
and the horizontal lines represent the median. The whiskers represent at most 1.5 
times the IQR.
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Extended Data Fig. 4 | Circulating tumor DNA cost and coverage analysis 
between Illumina and Ultima sequencing in a matched sample. Areas under 
the curve (AUCs) are measured by calculating the area under a receiver operating 
characteristic curve comparing a given group (for example, Illumina 20x at 10−6 
expected tumor fraction) to its platform and coverage-matched cancer-free 

control (for example, Illumina 20x, expected tumor fraction of 0). All AUCs 
at expected tumor fractions of 10−4 and greater were 1.00. Z-scores of a given 
sample are calculated against their coverage and platform matched cancer-free 
control (expected tumor fraction of 0).
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Extended Data Fig. 5 | Variant allele frequencies for variants across denoising approaches. Variant allele frequencies (calculated using unfiltered sequencing reads) 
in positions where a variant was found using UMI-agnostic denoised reads, Single strand corrected reads and in duplex corrected reads. Allele frequencies of 0.2 and 
below are colored in red.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-025-02648-9

Extended Data Fig. 6 | Comparison of detected UV-derived mutations using 
duplex, single-strand and UMI-agnostic denoising methods. A Cosine 
similarities by cancer stage at baseline timepoints (pre-treatment or pre-surgery) 
for UV and CH-associated signatures. B Comparison of duplex, single-strand 
and UMI-agnostic denoising methods to detect melanoma-associated variants 
using a single-read variant calling pipeline for pre-treatment plasma samples 

from melanoma patients (top) and cancer-free controls (bottom). P-values were 
measured using a two-sided Wilcoxon test. For all boxplots, the lower and upper 
ends of boxes represent the 25th and 75th percentiles of the data, respectively, and 
the horizontal lines represent the median. The whiskers represent at most 1.5 
times the IQR.
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Extended Data Fig. 7 | Tumor-agnostic copy-number based tumor fraction 
estimation in stage III and IV melanoma and cancer-free control samples. 
Samples include cancer-free controls (n = 10); stage III melanoma (pre-surgery; 
n = 10) and stage IV melanoma (pre-treatment; n = 4). Dotted line at 0.03 

represents the limit of detection of ichorCNA. For boxplots, the lower and upper 
ends of boxes represent the 25th and 75th percentiles of the data, respectively, and 
the horizontal lines represent the median.
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Extended Data Fig. 8 | ctDNA dynamics throughout treatment in melanoma 
patients. A Changes in circulating tumor DNA (increase or decrease) relative to 
the earliest sampled timepoint. Solid lines represent patients with recurrence 
or progressive disease, and dashed lines represent patients with either partial 
response or who are recurrence-free following treatment. Closed and open 
circles represent samples with and without detected ctDNA, respectively.  
B Difference in ctDNA relative to the pre-treatment timepoint stratified by 

clinical outcome. One sample did not have a pre-treatment timepoint available 
(MEL-15; progressive disease) and so a day 9 post-treatment time point was used 
as baseline. For boxplots in (B), the lower and upper ends of boxes represent 
the 25th and 75th percentiles of the data, respectively, and the horizontal lines 
represent the median. The whiskers represent at most 1.5 times the IQR. P-values 
were calculated using a two-sided Wilcoxon test.
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Extended Data Fig. 9 | Major signature contributions from urothelial cancer 
patients’ tumors measured through whole-genome sequencing. Top: total 
mutation counts per sequenced tumor. Bottom: signature contributions. 
Trinucleotide frequencies were fit to the entire COSMIC database (version v.3.3). 

When a patient had two or more tumors (B01, B04, B15, B16, B17, B18, B19), we 
measured signature contributions of mutations that were present in two or more 
tumors and thereby likely reflect mutations that arise earlier in tumor evolution.
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