T (Dvecton

%M@/mwm%myf@/mmmmuw

meﬁmJM/&/WWﬁW.

T P S Unird St

grants to the person(s) having title to this patent the right to exclude others from making,
using, offering for sale, or selling the invention throughout the United States of America or
importing the invention into the United States of America, and if the invention is a process,
of the right to exclude others from using, offering for sale or selling throughout the United
States of America, products made by that process, for the term set forth in 35 U.s.c. 154(a)(2)
or (¢)(1), subject to the payment of maintenance fees as provided by 35 u.s.c. 41(b). See the

Maintenance Fee Notice on the inside of the cover.

Acting DirecToR OF THE UNITED STATES PATENT AND TRADEMARK OFFICE

Maintenance Fee Notice

If the application for this patent was filed on or after December 12, 1980, maintenance fees
are due three years and six months, seven years and six months, and eleven years and six
months after the date of this grant, or within a grace period of six months thereafter upon
payment of a surcharge as provided by law. The amount, number and timing of the mainte-
nance fees required may be changed by law or regulation. Unless payment of the applicable
maintenance fee is received in the United States Patent and Trademark Office on or before
the date the fee is due or within a grace period of six months thereafter, the patent will expire
as of the end of such grace period.

Patent Term Notice

If the application for this patent was filed on or after June 8, 1995, the term of this patent
begins on the date on which this patent issues and ends twenty years from the filing date of
the application or, if the application contains a specific reference to an earlier filed applica-
tion or applications under 35 U.s.C. 120, 121, 365(c), or 386(c), twenty years from the filing date
of the earliest such application (“the twenty-year term”), subject to the payment of mainte-
nance fees as provided by 35 u.s.c. 41(b), and any extension as provided by 35 u.s.c. 154(b) or
156 or any disclaimer under 35 U.s.c. 253.

If this application was filed prior to June 8, 1995, the term of this patent begins on the date
on which this patent issues and ends on the later of seventeen years from the date of the
grant of this patent or the twenty-year term set forth above for patents resulting from appli-
cations filed on or after June 8, 1995, subject to the payment of maintenance fees as provided
by 35 u.s.c. 41(b) and any extension as provided by 35 u.s.c. 156 or any disclaimer under
35 U.S.C. 253.

Form PTO-377C (Rev 09/17)

12

US012321724B2

United States Patent
McDonald

US 12,321,724 B2
*Jun. 3, 2025

(10) Patent No.:
45) Date of Patent:

(54) INTEROPERABLE COMPOSITE DATA (56) References Cited
UNITS FOR USE IN DISTRIBUTED
COMPUTING EXECUTION ENVIRONMENTS U.S. PATENT DOCUMENTS
. . s s 5,402,526 A 3/1995 Baumz al.
(71) Applicant: Futureverse Corporation Limited, 7912560 B2 3 /20?1 Hf;gél‘:: :lt“l
Auckland (NZ) .
(Continued)
(72) Inventor: David McDonald, Auckland (NZ) FOREIGN PATENT DOCUMENTS
(73) ASSignee: Futureverse Corporation Limited, CA 3150262 Al 3/2021
Auckland (NZ) CN 107169573 A 9/2017
. . o . (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
This patent is subject to a terminal dis- Ngu, Anne HH, et al. “Semantic-based mashup of composite
claimer. applications.” IEEE Transactions on Services Computing 3.1 (2010):
pp. 2-15. (Year: 2010).*
(21) Appl. No.: 18/369,728 (Continued)
(22) Filed: Sep. 18, 2023 Primary Examiner — Satish Rampuria
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Potomac Law Group,
PLLC; Marc S. Kaufman
US 2024/0004621 Al Jan. 4, 2024
Related U.S. Application Data 57 ABSTRACT
(63) Continuation of application No. 17/353.898, filed on Disclosed implementations provide executable models, such
PP ’ A as artificial intelligence models that can be owned, traded,
Jun. 22, 2021, now Pat. No. 11,797,274.
and used in various execution environments. By coupling a
(51) Int. Cl model with a strictly defined interface definition, the model
G0;5F é/35 (2018.01) can be executed in various execution environments that
AG3F 13/77 (201 4'01) support the interface. Coupling the model with a non-
Conti d. fungible cryptographic token allows the model and other
(Continued) components to be owned and traded as a unit. The tradeable
(52) US. QL composite units have utility across multiple supported
CPC GOl.SF 8/35 (2013.01); A63I.7 13/77 execution environments, such as video game environments,
(2014.09); GOGF 8/441 (2013.01); GO6N chat bot environments and financial trading environments.
20/00 (2019.01); HO4L 9/3213 (2013.01); Additionally, the interface allows for the creation of pipe-
HO4L 9750 (2022.05) lines and systems from multiple complementary composite
(58) Field of Classification Search units.
CPC GOG6F 8/35; A63F 13/77; GO6N 20/00
(Continued) 17 Claims, 8 Drawing Sheets
110\
2
% 2
106
[Y iZ i
: Interlface \ ASIM Unit ASM Unit NFT| |
t i
| <>y +Model= N * !
, 04| ¢ N B 9 =))| e
; Inputs |L_ !_J|Outputs Inputs Outputs & : 100
| |
i — T — i
) S - - e e e e e e ————— e —— 4
Storage Medium(IPFS)

| htips:/igds.is/gfwOmerss |

| https://gds.is/gfwOme/ss |

Content addressed
Interface definition

Content addressed model

US 12,321,724 B2

Page 2
(51) Inmt. CL FOREIGN PATENT DOCUMENTS
GOGF 8741 (2018.01) KR 20200103275 A 9/2020
GOG6N 20/00 (2019.01) WO 2021046541 Al 3/2021
HO4L 9/00 (2022.01) WO 2021097259 Al 5/2021
HO4L 9/32 (2006.01)
(58) Field of Classification Search OTHER PUBLICATIONS
USPC i, 717/100-124 Lédeczi, Akos, et al. “Composing domain-specific design environ-

See application file for complete search history.

(56)

9,364,759
10,621,013
10,748,072
10,776,686
10,902,320
10,946,283
11,052,316
11,164,109
11,244,313
11,276,014
11,288,280
11,374,755
11,429,762
11,431,486
11,431,693
11,496,308
11,679,330
11,710,027
11,836,640
11,853,724
11,868,896
11,876,910
11,880,349
11,991,299
12,008,472
12,165,118

2013/0081005
2016/0188622
2017/0147742
2018/0293838
2018/0314942
2018/0357047
2019/0197402
2019/0232172
2019/0236562
2019/0299105
2019/0354759
2019/0385136
2020/0169546
2020/0184041
2020/0219093
2020/0250174
2020/0252404
2020/0349142
2020/0380303
2020/0384362
2021/0067339
2021/0143987
2021/0149958
2021/0182423
2021/0248653
2021/0357780
2021/0365840
2022/0076164
2022/0188810
2022/0358450
2022/0405066
2022/0407702
2023/0267128
2023/0281601
2023/0308276
2023/0385085

U.S. PATENT DOCUMENTS

B2
B2
Bl
Bl
B2
Bl
B2
B2
B2
B2
B2
B1
B2
B2
B2 *
Bl
B2
B2
B2
B2
B2
B2 *
B2
Bl
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al*
Al
Al
Al
Al*
Al
Al
Al
Al
Al*
Al
Al
Al
Al*
Al
Al
Al*
Al
Al
Al
Al
Al
Al
Al
Al
A9
Al*
Al

References Cited

6/2016
4/2020
8/2020
9/2020
1/2021
3/2021
7/2021
11/2021
2/2022
3/2022
3/2022
6/2022
8/2022
8/2022
8/2022
11/2022
6/2023
7/2023
12/2023
12/2023
1/2024
1/2024
1/2024
52024
6/2024
12/2024
3/2013
6/2016
5/2017
10/2018
11/2018
12/2018
6/2019
8/2019
8/2019
10/2019
11/2019
12/2019
5/2020
6/2020
7/2020
8/2020
8/2020
11/2020
12/2020
12/2020
3/2021
5/2021
5/2021
6/2021
8/2021
11/2021
1172021
3/2022
6/2022
11/2022
12/2022
12/2022
8/2023
9/2023
9/2023
11/2023

Kim

Lavoie et al.
Seeger et al.
Jacob et al.
Katz et al.
Meilich et al.
Wang et al.
Browne et al.

Padmanabhan et al.

Augustine et al.

Padmanabhan et al.

Gaur et al.

Mallya Kasaragod et al.

Padmanabhan

Padmanabhan

Khan
Eatedali et al.
Zhu et al.

Ji et al.
Hunter
Brown et al.

..... HO4L 63/08

Padmanabhan ... GO6F 16/24573

Padmanabhan
Rosenoer
Cook

Yantis et al.
Gounares et al.
Sharangpani

Jayaraman et al.

Arnone et al.
Shinn et al.
Brown et al.
Kovics et al.
Malan

Padmanabhan

Knight et al.
Somers et al.
Blagov et al.

Padmanabhan

Andon et al.
Malhotra et al.

..... HO4L 63/00

... HO4L 9/3236

Padmanabhan et al.

Padmanabhan

Padmanabhan

Briancon et al.
Shah et al.
Schiatti et al.
Xu
Hunter
Padmanabhan
McKenzie
Ji et al.
Park et al.
Conort et al.
Doney
Stephens et al.
McDonald
Jakobsson et al.
Fourrier et al.
Doney
Bathen
Singh

... HO4L 9/0637

... HO4L 9/0819

... HO4L 9/3247

... HO4L 9/3236

ments.” Computer 34.11 (2001): pp. 44-51. (Year: 2001).*

Stripf, Timo, et al. “A compilation- and simulation-oriented archi-
tecture description language for multicore systems.” 2012 IEEE
15th International Conference on Computational Science and Engi-
neering. IEEE, 2012.pp. 383-390 (Year: 2012).*

Alverson, Gail A., and David Notkin. “Program structuring for
effective parallel portability.” IEEE Transactions on Parallel and
Distributed Systems 4.9 (1993): pp. 1041-1059. (Year: 1993).*
Hubbold, Roger, et al. “GNU/MAVERIK: A micro-kernel for large-
scale virtual environments.” Proceedings of the ACM symposium
on Virtual reality software and technology. 1999.pp. 66-73 (Year:
1999).*

Buyya, Rajkumar, et al., “Modeling and simulation of scalable
Cloud computing environments and the CloudSim toolkit: Chal-
lenges and opportunities.” 2009 international conference on high
performance computing & simulation. IEEE, 2009. pp. 1-11.
Chard, Ryan, et al. “DLHub: Model and data serving for science.”
2019 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). IEEE, 2019. pp. 283-292. (Year: 2019).

Fisher, Michael, and Michael Wooldridge. “Executable temporal
logic for distributed AI In.” Proceedings of the Twelfth International
‘Workshop on Distributed Artificial Intelligence IWDAI-93). 1993.
pp. 131-142. (Year: 1993).

Flynn, Michael J., “Very high-speed computing systems.” Proceed-
ings of the IEEE 54.12 (2005): pp. 1901-1909.

McKeen, Frank, et al. “Innovative instructions and software model
for isolated execution.” Hasp@ isca 10.1 (2013). pp. 1-8.
Nilsson, Nils J. “A mobius automaton: An application of artificial
intelligence techniques.” Proceedings of the Ist international joint
conference on Artificial intelligence, IJCAIL vol. 69. 1969. pp.
509-520. (Year: 1969).

“Al Protocol History. Evolution of the Al Protocol”; Al Protocol
Whitepaper; downloaded from https://docs.aiprotocol.info/ai-protocol-
history, pp. 1-2.

Andersson, Per et al.: “Movie-an interactive environment for silicon
compilation tools”, IEEE transactions on computer-aided design of
integrated circuits and systems 8.6 (1989): pp. 693-701. (Year:
1989).

Andrade, Henrique, et al.: “Optimizing the execution of multiple
data analysis queries on parallel and distributed environments”,
IEEE transactions on parallel and distributed systems 15.6 (2004):
pp. 520-532. (Year: 2004).

Babichenko, Dmitriy et al.: “The Use of Agent-Based Models As
Non-Player Characters in Serious Games”, 2020 IEEE 8th Interna-
tional Conference on Serious Games and Applications for Health
(SeGAH). IEEE, 2020.pp. 1-8 (Year: 2020).

Balint, J. Timothy et al.: “Understanding everything NPCs can do:
metrics for action similarity in non-player characters”, Proceedings
of the 13th international conference on the foundations of digital
games. 2018.pp. 1-10. (Year: 2018).

Carey, Michael J., et al.: “Shoring up persistent applications”,
Proceedings of the 1994 ACM SIGMOD international conference
on Management of data. 1994.pp. 383-394 (Year: 1994).

Chiang, Mung et al.: “Fog and IoT: An overview of research
opportunities”, IEEE Internet of things journal 3.6 (2016): pp.
854-864. (Year: 2016).

Diaz, Guillermo et al.: “Evolutionary behavioral design of non-
player characters in a FPS video game through particle swarm
optimization”, 2019 13th International Conference on Software,
Knowledge, Information Management and Applications (SKIMA).
IEEE, 2019. pp. 1-8 (Year: 2019).

US 12,321,724 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Dwyer, Matthew B. et al.: “Model checking graphical user inter-
faces using abstractions”, ACM SIGSOFT Software Engineering
Notes 22.6 (1997): pp. 244-261. (Year: 1997).

Epperly, Thomas, et al.: “Composite parallelism: Creating interop-
erability between PGAS languages, HPCS languages and message
passing libraries”, Technical report LLNL-AR-499171, 2011.pp.
1-31 (Year: 2011).

Etherscan.io; downloaded from https://etherscan.io/address/
0xal89121eE045SAEAA8DA80b72F7al132e3B216237#code, pp. 1-6.
Foerster, Jakob N., et al.: “Learning to Communicate with Deep
Multi-Agent Reinforcement Learning”, arXiv:1605.06676v2 [cs.
Al], May 24, 2016.

GitHub—Universe: a software platform for measuring and training
an AI's general intelligence across the world’s supply of games,
websites and other applications, pp. 1-7.

GitHub-openai/gym: A toolkit for developing and comparing rein-
forcement learning algorithms, accessed on Jan. 24, 2025, pp. 1-5.
Gym Documentation; 7 pages.

Gymnasium: An API standard for reinforcement learning with a
diverse collection of reference environments, pp. 1-1.

INFT // To the Young Artists of Cyberspace—Natively Digital—A
Curated NFT Sale—2021—Sotheby’s, pp. 1-8.

International Preliminary Report on Patentability issued in PCT
Patent Application No. PCT/IB2022/055797, dated Sep. 29, 2022.
International Search Report and Written Opinion issued in PCT
Patent Application No. PCT/IB2022/055797, dated Sep. 29, 2022.
International Search Report and Written Opinion issued in PCT
Patent Application No. PCT/IB2024/050941, dated Apr. 24, 2024.
International Search Report and Written Opinion issued in PCT
Patent Application No. PCT/IB2024/050944, dated Apr. 17, 2024.
International Search Report and Written Opinion issued in PCT
Patent Application No. PCT/US24/43724, dated Nov. 5, 2024.
Kundu, Sajib, et al.: “Modeling virtualized applications using
machine learning techniques”, Proceedings of the 8th ACM SIGPLAN/
SIGOPS conference on Virtual Execution Environments. 2012. pp.
3-14 (Year: 2012).

McConaghy, Trent, et al.: “Towards An Ownership Layer for the
Internet”, Ascribe GMBH, Version 1.03, Jun. 24, 2015.

Mnih, V., et al.: “Human-level control through deep reinforcement
learning”, Nature, vol. 518, Feb. 26, 2015.
Multi-Agent_AI_DAO, “General-Purpose Decentralized Autono-
mous Organisation”, www.montreal.ai; 20 pages.

Natella, Roberto, et al.: “Analyzing the effects of bugs on software
interfaces”, IEEE Transactions on Software Engineering 46.3 (2018):
pp- 280-301. (Year 2018).

Panagou, Eleni et al.: “Towards an open and decentralized case law
curation ecosystem”, Plos one 15.10 (2020): pp. 1-30. (Year: 2020).
Sekar, Ramachandran, et al.: “Model-carrying code: a practical
approach for safe execution of untrusted applications”, ACM SIGOPS
Operating Systems Review 37.5 (2003): pp. 15-28. (Year: 2003).
Szekely, Pedro, et al.: “Declarative interface models for user inter-
face construction tools: The Mastermind approach”, Engineering
for Human-Computer Interaction: Proceedings of the IFIP TC2/
WG2., Yellowstone Park, USA, Aug. 6, 1995. Springer US, 1996.
pp. 120-150 (Year: 1995).

Tenorth, Moritz, et al.: “Understanding and executing instructions
for everyday manipulation tasks from the world wide web”, 2010
IEEE international conference on robotics and automation. IEEE,
2010.pp. 186-1491 (Year: 2010).

Vaswani, A., et al.: “Attention is all you need”, 31st Conference on
Neural Information Processing Systems (NIPS 2017), arXiv:1706.
03762v7 [cs.CL], Aug. 2, 2023.

Yan, Ying, et al.: “Confidentiality support over financial grade
consortium blockchain”, Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 2020. pp. 2227-
2240 (Year: 2020).

Zyskind, Guy: “Efficient secure computation enabled by blockchain
technology”, Diss. Massachusetts Institute on Technology, 2016. pp.
1-128 (Year: 2016).

Steinwold, “Al + NFTs: What is an iNFT?”, Apr. 6, 2021, Available
at: https://andrewsteinwold.substack.com/p/ai-nfts-what-is-an-inft-
10 Pages.

Anonymous: The Sandbox Whitepaper, The Sandbox, Oct. 29,
2020, Retrieved from the Internet: URL https://web.archiveorg/web/
20201029122558if_/https://installers.sandbox.game/The_Sandbox_
‘Whitepaper_2020.pdf. retrieved on Sep. 28, 2022.

Extended European Search Report at the European Patent Office
issued in European Patent Application No. 22827810.7 / 4359988,
dated Apr. 1, 2025.

* cited by examiner

US 12,321,724 B2

Sheet 1 of 8

Jun. 3, 2025

U.S. Patent

L Old

[opow passalppe Juajuo)
|_ss/ewomybysi spby/:sdny |

uoniusp soBHAU|
passaippe Jusjuo)

|_ss/pwomybysi spby/:sdny |

(s4dlwnipsy ebeiolg

sindino _\74_ sindu
Sepons| B i & | vou
]
aoBL9U|

US 12,321,724 B2

Sheet 2 of 8

Jun. 3, 2025

U.S. Patent

¢ Old

o0z

{-e9 - A, -2 :.X,}:uonisodisiuspe|ppediedeld,. .. .
{-09 -:.A, -2LS -1 . X, -} -1 uonisodisiuade|ppeduonisoddo,, - - - -
“{-vL-: A 021 - - X, -} - uomisodleius)leq,, - |- -

3 A .
{-99-:.A -"0-:.X, -} uonisodleluens|ppedsefeld, . .. -
‘{49 -:.A -CLG -1 X, -} -1 uonisodusiua)s|ppeduonisoddo,, - - - -
{-8L A€l -1 X, -} -1 uomsogiele)leq, - -l -

4/¢0N

/NON

US 12,321,724 B2

Sheet 3 of 8

Jun. 3, 2025

U.S. Patent

Jeby eualy

L-€ Old

°

T4V}

eualy

[opow ssalppe Jusjiuo)

uohluyap adeusju|
passaippe Jusjuo)

14N N ASY

(Sadi)wnipspy ebrio)g

sindinQ

1| sindu

B L e

Hun NSY

=|9PON+

(e H H{ H{)»#

aoeUa|

S1d4N Hun Sulyden sjes palsiy

*

B00E

US 12,321,724 B2

Sheet 4 of 8

Jun. 3, 2025

U.S. Patent

¢-€ Ol

Jusby eualy

°
qco¢e

eualy

[opow ssalppe Jusjuo)

uonIuyep aoeualu|
passalppe Jusjuo)

(Sddi)wnipspy sbrio)g

sindinQo

1| sindu
B I

r%A

=|9PON+

Hun NSV

B,0,0,0,0,0;

soepaly|

S14N Hun SulydseN sjels pals)ly

Xuie|\ enjeA induyj

]

(.
O

O]

o0

®
“— aoo€
N —poe

US 12,321,724 B2

Sheet 5 of 8

Jun. 3, 2025

U.S. Patent

Jusby eualy

€€

Ol

©
o20¢

eualy

[opow ssalppe jusjuo)

uopiuyep soeua|
passaippe Jusjuo)

14N HuN NSV

sindu
&

(Sddnwnipsy ebeiois

nun NSY

=|opPON+

LA

B { { H)~#

sindinQ| r
[

3| sindu

;,_ &

o0elBlu|

S1dN Hun sulydseN sjels pals)y

4/88

U.S. Patent Jun. 3, 2025 Sheet 6 of 8

US 12,321,724 B2

= =2 O 0N O~ LWON-
- O

N O O W G G Y
LEBVBNIZERBYBNBRNBoxsIsarom

w
N

public Keycode moveUp = KeyCode. W;
public Keycode movedown = KeyCode. S;

public float speed = 10.0f ;
public float boundy = 2.25f ;

private Rigidbody2D rb2d ;

void Start () {
rb2d = GetComponent<Rigidboby2D>();

void Update () {

var vel = rb2d . velocity;
if (Input.GetKey (moveUp)) {
vel.y = speed ;

}

elese if (Input.GetKey(moveDown|)) {

vel.y = - speed ;
}
else {
vely=0;
}

rb2d.velocity = vel ;

var pos = transform.position ;
if (pos.y > boundy) {
| pos.y = boundy ;

}

else if (pos.y < -boundy) {
| pos.y = -boundy ;

}

transform.position = pos ;

/402

|

FIG. 4

U.S. Patent

Jun. 3, 2025 Sheet 7 of 8

US 12,321,724 B2

= =2 O O N O~ LWON -
- O

W W W NDNDNDNDNDNDDNMNDNDNNMNDD2A 2 =2 22 A a2 aa
N - O ©W oo ~NO” O A WDN-O ©O~NOGOOLP~ONDN

public Keycode moveleft = KeyCode. A;
public Keycode moveRight = KeyCode. D;

public float speed = 10 . of ;
public float boundX = 2.25f ;

private Rigidbody2D rb2d ;

void Start () {

rb2d = GetComponent <Rigidboby2D>() ;

void Update () {

var vel = rb2d.velocity;
if (Input.GetKey (movelLeft)) {
vel.x = speed ;

}
elese if (Input.GetKey(moveRight)) {

vel.x = - speed ;
}
else {
velx=0;
}

rb2d.velocity = vel ;

var pos = transform.position ;
if (pos.x > boundX) {
| pos.x = boundX ;

}

else if (pos.x < -boundX) {
| pos.x = -boundX ;

}

transform.position = pos ;

/502

|

FIG. 5

US 12,321,724 B2

Sheet 8 of 8

Jun. 3, 2025

U.S. Patent

600\

4

o

©
ololo]o|w|o|o|o]o|o]o|c|otSoooielo|nlo|o|o|o|o]w|o]m|c|o]o|of~|o|o|o|c|c|o|d)
olol—|m|o|o]o|o]ololo|Ao|ololo]oloplolo]olo|ololo|om|a|olololo|o|o|ola|o|a|d
afololo]o]ololo|o|olofolo|n]ololo|o|d—|o|olo|o]o|olo|n]a|olo|o]ololmm|ololo|d]
olo|—[o|o|o|o|w|o|old|c|ololololololofplo|o|m|o|o|ol~|c|e|c]o|o|o|o|o|o|o|o|o|o
E N AR E R NENE IR EEE AR EERN AR R EEENEEE B R R R R EERERE
olo|o]oo|o|o|o|am|dlo]|olololo|o|—|oldlo]o|o|—|al—|n|olalo]m|o|xn|olo|ola|ola]a
~[o]o]o]o|m]|o]o|o|oldla|e|m]|ololo|o]olblol—|—|n|w|o|o|o|o|o]o|o]o|v|olo|w o]
olnjaijoo|o]o|o|o|ojohe|m|ololo|o|o|An|olm|o|o|al—|ool~|clo]o|o|o]n]o|o|e|a]+
—[o]om]o]—|o|olo|o|ol—[Ne|o|ololo|gi|olo|olo|o]o|o|olo]|o|o|o|a|—|ol~|~|o|al—|J]
o|w]w]n]o]o]m|o|o|o]o|o|opeialalefo]o|olw|m[o[—[o|o|o|—|oo|o|o|o|o|o[o[c[c|olo
oo~ [o]al~[a[o]o]ojo|o|olololololoalmno]o|m|o]o|o|o|o|clololololoo|oo|ov
o<~ oo~ |olo]o|olo|o|olo|ololo|tlo|w|w|o|o|olo|o[~|clo|o|o|o|o|o|c|c|m|o
FEEEENEEEE EEEE R R RN NE SRR E R R R R R R G EEEEREERERERE
FEEEEREEERE EFRER R R R R RN SEH AN R R R R R R RN E RN ERERRE
o|m|o|m|n]m|o|oloo]lo|olo|o|olo|o|n|ololm|m|wt o~ |olo|o|o|olo|o|o|m|o|o|n]|c|o|m)
FRE R EREREEE FEEREEEE E EE N E E N E NN ERE AN EEENEAEERE
ot~ ololo|o|ojololo|oloooloo|ooolo|o|mwo|olm|oa|o|o|ooo|N|N[c|m oo
FNERRERERERE AR R R R RERRE EFA RN E N ENE R E AR R R RREEEE
FENEEREEENAEARE EAREE RN AR ERRE A E R E R EEEE R REEEEREREERRRNE
olmoloolo|o|ojolole|ololo|~[ow|m|o|Nlo|o|olo~ oo |clc|o|olo~ oo+~ |m[c[o
40000001000000001022._0OnWN. MY EEEEEEEEE SR
EREEEEEEEEEEEEEEENEE SR dNEEERANE EEEEEEEERE
N EEEEEEEE RN EEE Y AuNNNEEREEEEEEEEENE
FNEEEEEEER NE R R R N AN AR NS E R ERERE RN S EEEEREREEEE
ololololo|o|ololololm|ololololololo~oldooooo~|clc|PdloooNo|o[o/No|o
FEERERNEEEEE EFAFEEEEREEEEE CIE N EEREEREEE NN EREREEEE
FEEEREREEEEE EF R R R R R R EERE A NN E R R REE & R N EEEESEEREE
N[o[m[=[ooNoloclooloooo[oo[olol- o[oo[oo[o[N[AN|o[—[o[oo[o[o[~ o[
SN EEEEEEEEEEEEEEEEER RS EEEEREEEEEENEERERE
2300200200000000000100£0 < SIE FE R R ENERE R
EEP amer EEEEEEEEENENE R EE R EEEEENEEEE
1&30200/00000000020010000112002000000100
of—|o|x[o|x|o|o|]|o]o|o]|o]o]o]o]ojo|n|n|o]o]o]o]o]o]o|glo|o]o|~|olo]o]m|m|a]a]o
olo|«|o|o|m|olok|olo|o|o|o]o]o]oo]o]o]o]~|n|m|olwn]dlol~|o|o|olo~|oloo]o]o
nfolojam|o|m]olblololololo|olol—|o|—jo|o|olm|olo|m|g|ololo]o|o|o|ol~|o|o|o|m)
olm|o]o|o|o|o|m|plolo]ololololo|o]olojena]a|m|o|nblalal—|olo|ol~|olalo|m|a
ololo|o|o|n]o|oN~|olo|o|o|ol~[o|—|—I—|o|o|o]n|v|o—|c|o]o|o|o]o|o|o|m|w |+~
SN E R EEEE A E R R R R R R EEE E R RN E N EE R RN EEEECER
o~ 00000%03201000210000003.*0330000000500
olo ololott|m|o]o]o|n[m[o]o[m|o|o]of—|o|—|o]ololblo]o|—|ololo[o|o]oolololo

S S
© ©

FIG. 6

US 12,321,724 B2

1

INTEROPERABLE COMPOSITE DATA
UNITS FOR USE IN DISTRIBUTED
COMPUTING EXECUTION ENVIRONMENTS

BACKGROUND

Computing execution environments, such as distributed
video game environments, bot networks, and complex finan-
cial transaction environments have become ubiquitous. In
many such environments, participants can be represented as
an object with privileges and characteristics. For example, in
a video game environment, a player avatar may have specific
capabilities, such as speed, agility, and strength. The capa-
bilities associated with the player avatar can be stored within
the execution environment. However, each environment has
its own formats and protocols. Further, these environments
must have a centralized trusted authority that is the keeper
of the data. Accordingly, use of the objects must remain in
the creating execution environment and activity in other
environments does not, and cannot, affect the object. Fur-
ther, the need for a trusted party prevents implementation of
such objects on decentralized computing execution environ-
ments, such as blockchain networks and other distributed
ledger technology (DLT).

BRIEF SUMMARY

Disclosed implementations provide executable models,
such as artificial intelligence models that can be owned,
traded, and used in various execution environments. By
coupling a model with a strictly defined interface definition,
the model can be executed in various execution environ-
ments that support the interface. Coupling the model with a
non-fungible cryptographic token allows the model and
other components to be owned and traded as a unit. The
composite data structure representing the model is referred
to as a “composite unit” herein. The tradeable composite
units have utility across multiple supported execution envi-
ronments, such as video game environments, chat bot envi-
ronments and financial trading environments. Additionally,
the interface allows for the creation of pipelines and systems
from multiple complementary composite units.

An aspect of the invention is a method for creating a
composite data structure recorded on non-transitory com-
puter readable media for providing a computation model that
can be implemented in multiple execution environments, the
data structure comprising: a model module specifying model
code that, when executed by a computer processor, causes
computation on data in accordance with the computation
model; an interface definition module including a pointer to
an interface definition associated with the computation
model; and a non-fungible token module including a pointer
to a non-fungible token associated with the computation
module, where the non-fungible token is stored on a decen-
tralized ledger.

Another aspect of the invention is the use of the composite
data structure within and execution environment.

Another aspect of the invention is a system including an
execution environment for using the data structure.

BRIEF DESCRIPTION OF THE DRAWING

The foregoing summary, as well as the following detailed
description of the invention, will be better understood when
read in conjunction with the appended drawings. For the
purpose of illustrating the invention, there are shown in the
drawings various illustrative embodiments. It should be

20

25

30

35

40

45

50

55

60

65

2

understood, however, that the invention is not limited to the
precise arrangements and instrumentalities shown. In the
drawings:

FIG. 1 is a schematic representation of the structure of a
composite unit in accordance with disclosed implementa-
tions.

FIG. 2 is an example of code for an interface definition in
accordance with disclosed implementations.

FIG. 3-1 is a schematic illustration of linking between
composite units and an input value matrix in accordance
with disclosed implementations.

FIG. 3-2 is a continuation of FIG. 3-1 and is a schematic
illustration of linking between composite units and an input
value matrix in accordance with disclosed implementations.

FIG. 3-3 is a continuation of FIG. 3-1 and FIG. 3-2 and
is a schematic illustration of linking between composite
units and an input value matrix in accordance with disclosed
implementations.

FIG. 4 is an example of a code snippet of the model code
in accordance with disclosed implementations.

FIG. 5 is another example of a code snippet of the model
code in accordance with disclosed implementations.

FIG. 6 is a table illustrating an input value matrix accor-
dance with disclosed implementations.

DETAILED DESCRIPTION

Certain terminology is used in the following description
for convenience only and is not limiting. Unless specifically
set forth herein, the terms “a,” “an” and “the” are not limited
to one element but instead should be read as meaning “at
least one.” The terminology includes the words noted above,
derivatives thereof and words of similar import.

The composite units in accordance with disclosed imple-
mentations provide trade-ability, interoperability and com-
posability of models, such as artificial intelligence that can
be implemented in various execution environments and
moved from one execution environment to another. By
coupling an execution model with a strictly defined interface
definition, the composite unit allows multiple execution
environments to implement support for the interface and for
other models to fit into that interface. The result is the ability
to own and trade composite units that have utility across
multiple supported execution environments. Additionally,
the interface allows for the creation of pipelines and systems
from multiple complementary composite units.

A composite unit in accordance with disclosed implemen-
tations includes 3 components:

Execution Model: a specification of executable code
implementing the model (e.g., a content addressed
URL where an executable code Al model is stored and
accessible);

Interface Definition: a specification of inputs accepted by
the model and outputs of the model (e.g., a content
addressed URL where an interface definition for the
relative model is stored and accessible).

Blockchain Reference: A pointer to a Non-Fungible
Token (NFT) corresponding to the model and stored on
a decentralized computing network, such as a block-
chain or other distributed ledger technology.

FIG. 1 illustrates the architecture of a composite unit in
accordance with disclosed implementations. Composite unit
100 includes content addressed model 102, interface speci-
fication 104, and token pointer 106 (which associates the
composite unit 100 with an NFT stored on decentralized
ledger 110. Note that elements 102, 104, and 106 are data
elements stored on non transient computer-readable media

US 12,321,724 B2

3

as a data structure. The elements can be linked in various
manners, such as with pointers, by being stored in a single
data structure, through relational tables, or the like. Also, the
elements can store the corresponding data or code, or can
otherwise specify the data or code through a URL or other
address, a link, or the like. For example, content addressed
model 102 can include the model code for executing the
model or, as illustrated in FIG. 1, include an address to the
storage location of the model code. Decentralized ledger 110
can be part of a decentralized environment such as a
blockchain network. The NFT is a unique token that can be
used to identify and represent ownership of composite unit
100, regardless of the executing environment in which
composite unit 100 is being used at the time.

As a simple example of composite unit 100, consider the
classic computer game PONG™. An example interface
definition for a composite unit for the computer game
PONG™ is shown in FIG. 2. As illustrated in FIG. 2, the
input, from the most recent N (N=2 in this example) frames
of game play are shown at 202 and 204. The inputs include
x and y positions of the ball, and each player’s paddle, from
which the following can be deduced:

Ball position, speed, and trajectory;

Opponents paddle position, speed, and trajectory; and

Player’s own paddle position, speed, and trajectory.

The output of the interface in this example is the player’s
paddle movement instructions for the next frame, as shown
at 206. The x and y values will be added to the current
player’s paddle position.

By defining a strict interface for model inputs and outputs
the models can be deployed across multiple environments
that provide support for that interface. The constraints of
standard PONG™ are very simple and the physics are linear,
but this interface could be applied to multiple variants with
different constraints and physics. By tweaking the number
frames taken as input, models could be trained for a game
variant with more complex constraints and non-linear phys-
ics. The disclosed implementations can be used to create a
diverse ecosystem of competitive PONG™ tournaments
where Al models are trained to compete across the field in
different variants of the game. Disclosed implementations
can be applied to more complex environments in gaming
and beyond as described in examples below.

Composite units can be linked across execution environ-
ments (referred to as “arena’s” herein) via an input value
matrix which is a data structure containing a set of values
that can be mapped to input variables within the arena and
composite unit. This allows both consistency and flexibility
in how the composite units are deployed by providing a
single input reference but giving the arena developers the
choice on how they are mapped. Arenas can refer to any
environment the composite unit might interact with,
examples include a level within a video game, an entire
game, a trading bot, and/or a single interaction. “arena
agents” are the code that executes the outputs of the com-
posite unit.

FIG. 3-1, FIG. 3-2, and FIG. 3-3 illustrate multiple
composite units, one for each arena, coupled to an input
value matrix. Each composite unit, 300a, 3005, and 300c in
this example, has a corresponding arena agent 302a, 302b,
and 302c. Input value matrix 304 is coupled to each com-
posite unit through the corresponding arena agent.

A very simple example input value matrix, in table form,
is set forth below.

20

25

30

35

40

45

50

55

60

65

Value 1
Value 2
Value 3

AN W

With respect to the video games PONG™ and SPACE
INVADERS™, application of the input value matrix might
be as follows. In PONG™, an arena developer might want
to add a constraint to the agent for maximum paddle speed,
this can be achieved by mapping Value 3 in the input value
matrix to the speed variable within the controller script,
which can be part of model of the corresponding composite
unit 100 (see FIG. 1). A snippet of an example of model code
which controls movement of the paddle is illustrated in FIG.
4. The speed variable is indicated at 402. In an example
relating to SPACE INVADERS™, an arena developer might
want to add a constraint to the agent for maximum speed of
the space craft by mapping Value 3 to the input value for the
variable speed, indicated at 502, within the controller script
shown in FIG. 5 (which is an example of a snippet for
controlling space craft movement in the game).

The input value matrix described with respect to FIG. 3-1,
FIG. 3-2, FIG. 3-3, FIG. 4 and FIG. 5 is a very simple
example for illustrative purposes. FIG. 6 illustrates a more
complex input value matrix 600 in accordance with dis-
closed embodiments. At least some of the variables in the
input value matrix 600 represent attributes of a player entity
in a video game. In the example of FIG. 6, a set of variables
can be related to a category of attributes. For example,
attributes 602 represent strength of the player entity with
respect to the relevant arena, attributes 604 represent intel-
ligence of the player entity with respect to the relevant arena,
and attributes 606 represent agility of the player entity with
respect to the relevant arena. Each set of values in input
value matrix can be mapped to an array of variables in model
code or each variable can be mapped to an individual
variable in the model code. The input value matrix can be
randomly generated and each game developer can designate/
tag areas of the matrix as corresponding to specific skills.
Tags can be associated with each area and game developers
can leverage the tags created by previous developers to
create a similar skill set for a similar game. Developers of
different types of games may choose to create and or use a
set of tags that is very different from a set of tags for a
different game. Therefore, the input value matrix can be a set
of values and associated TAG cloud(s) that can be used/
grouped/tagged as desired. The game developer can decide
which tags to use based on the type of game and desired play
characteristics, but likely would want to be consistent with
other similar games.

As noted above, the composite unit in accordance with
disclosed implementations can be applied to video games.
Disclosed implementations of a gaming platform and pro-
tocol example are described in greater detail below. The
platform allows users to mint game player entities (referred
to simply as “players” below) and upgrade their statistics,
earn, buy, and sell them as NFTs within the ecosystem. The
model code incorporates machine learning to create a
“brain” that can change and adapt within, and as a result of,
gameplay.

The protocol and platform allow multiple games to be
created by developers to interact with players. Different
players can have different levels of various relevant skills
(such as strength, speed, intelligence, . . .). A player may be
an interactive intelligent non-player character (NPC) in a
game with human backed players. An NPC is character or
other entity in a game that is not controlled by the person(s)

US 12,321,724 B2

5

playing the game. A player can be defined by 3 parts, the
base “frame”, a “form” defining the player’s aesthetic and
attributes (for example, the frame and form can be in the
form of the input value matrix defined above), and a
trainable “brain” (for example in the form of the executable
model described above. A user can create new players by
minting a new NFT Pack including these components with
default attributes. Some frames, forms and/or brains will
contain rare attributes or may start from a higher level in
their potential meaning, for example, that the corresponding
player is a faster learner who take less time to reach the
pinnacle of certain skills.

To play a game, a frame, form, and brain are selected and
linked to one another. With gameplay each component will
be modified in unique ways. The combination of frame, form
and brain impact the learning model and can produce an
extremely large set of decision making processes and com-
binations in the specific machine learning model storage for
the player (i.e., the brain). Simply attaching a “more
advanced” brain or “more capable” form to a frame might
not immediately result in a superior player because a brain
that has been trained to use a form with certain attributes will
need to relearn when combined with a form with different
attributes or with different values for those attributes. Even
two frames with forms and brains with identical attributes
might also develop totally different training in the brain
model based on game play. This allows for an enormous
universe of unique “personalities” to develop.

This model of separating attributes and attribute values,
which can be attached and detached from a frame, allows
users to design the ultimate strategy by combining unique
parts of the player from different frames, forms and brains.
Significantly, this structure allows a user to choose a form
for a specific arena or a brain for a specific task or strategy
or when facing a specific opponent. Each form or brain can
be categorized, for example, as 1 of 5 types; Defective,
Common, Rare, Epic, and Legendary. The Players can be
defined using a .yaml file that holds the attributes and is
stored using IPFS. YAML is a serialization language that is
often used as a format for configuration files as a replace-
ment for languages like JSON. IPFS is a well-known peer-
to-peer hypermedia protocol. YAML is only one example of
a file structure/format that could be used to store data
defining a player and attributes. As a result of this configu-
ration, “memories” are immutable, decentralized, and can be
linked specifically to an NFT.

A frame includes a set of universal attribute values
assigned at minting. The values can start low but could be
upgraded by completing tasks in the platform and/or pur-
chasing boosts with the platform currency. For example, the
frame attribute values can correspond to:

Strength;

Fitness;

Speed;

Dexterity;

Intelligence;

Charisma;

Perception;

Luck; and/or

Size

Forms can be game-specific and can have attribute values
providing additional skills or attributes, to modify skills and
attributes, for a specific task, such as a game against a
specific opponent. In order to enter an arena, an arena
specific form can be required to be attached to the frame.
This allows a frame to participate in multiple arenas if it has
multiple forms.

20

25

30

35

40

45

50

55

60

65

6

Forms can also contain multipliers of frame stats that might
be useful for a specific arena. These can be randomly
assigned and can include rare attributes. Once a form is
minted, games can upgrade skill levels internally through
mapping multipliers or the like.

Brains can be defined as frames, i.e. a memory address
associated with an NFT and storing the code for executing
a learning model. Brains can be used with various forms.
However, a new form may require the brain to learn how to
use the modified attributes and attribute values specified
therein. Brains also have attributes which can boost the
attached frame and might be more useful to a specific
arena(s). Frames can contain multiple memories which store
the training for a specific learning model and form combi-
nation to thereby allow training for several combinations for
a specific arena.

In order for a brain to learn, it needs to be trained through
activity, e.g., game play. Training can be accomplished in a
“gym” platform. A “gym”, as used herein, can be a GPU-
powered machine learning model trainer. The model is
influenced by the attributes associated with the player NFT.
As the learning model of the brain uses a neural network, the
specific outcomes of training a specific player are unique.
Players are able to model their attributes by training at a
gym, which in turn makes their Al better at playing the
game. Each player can have an .onnx file that is updated
each time they train at the gym. ONNX is an open format
built to represent machine learning models. Training at the
gym can be a process similar to mining cryptocurrency,
where GPUs are used to train the unique brain of your NFT.
The protocol can provide an incentive to those who host the
gym as the users of the gym can be required to pay for gym
usage. During a gym session a user will be able to see their
player improve, by monitoring the attributed through a file
viewer for example, and be able to end the session once their
decided outcome is achieved.

Users can connect to a game using their web3 wallet. The
user then selects a player which is a combination of frame,
form, brain and memory. Multiple players can be selected to
create a team in the case of team play such as football. Two
teams are required for a match/game. The game starts and
the players are loaded, the game checks to ensure that NFT
associated with the combination of frame, form, brain and
memory is owned by the user when they enter the arena. The
two sides compete to score enough winning points/goals in
a specific time period.

The output of this result can be stored on a distributed
ledger, such as a blockchain network against the record of
the relevant NFTs. This enables an ecosystem of economic
incentives and activities to develop around the players and
the outcomes of Games. Game, player, and team stats can be
displayed in various manners. Users can view an inventory
of their frames, forms and brains as well as the makeup of
their players and how the stats impact the players. A user
interface can be provided to allow players to be modified by
attaching a combinations of frames/forms/brains. Users
could wager on the outcome of games or rent a team to play
a match or borrow a player to upgrade their team.

The platform includes a distributed ledger having a native
token to be used for the payments noted herein. The token
can be mined using a liquidity mining event. Once a user
holds a native token, the user can use the native token to
mine (or buy) a pack of a frame/form/brain combination.
Packs will have a random chance of spawning a rare
component of each. Mining can be based on a fair distribu-
tion curve, and a minimum stake can be required to mine a
pack. The time it takes to mine can be reduced based on a

US 12,321,724 B2

7

user’s staked amount. This allows early or strong supporters
to benefit as well as later or smaller supporters to participate.

To make the game fair even for smaller participants, an
increase in stake need not necessarily increase your indi-
vidual chance of getting a rare attribute upon minting of an
NFT. However, larger stakeholders could be able to mine
more packs in the same amount of time with respect to
smaller stakeholders. Packs can be released in editions and,
over time, editions can contain new attributes as the models
evolve or some editions may contain limited runs. However,
because the performance of a player is determined by its
training and experience even a “low” spec character has a
chance of developing a winning capability/strategy. The
native token can also be used for the payments between
providers of GPUs to gyms and users of those gyms. Native
tokens can also be used to purchase players from other users,
to buy access to an arena, or to purchase cosmetic items or
loot boxes for players.

Various known technology platforms and protocols can be
used in connection with the disclosed implementations. The
NFTs can be minted using the ERC-1155 token standard.
Such NFTs are specifically for gaming and enable more
efficient trade and transfer on the Ethereum network than is
possible through ERC-721 alternatives.

CHAINLINK™ RNG (Random Number Generator) and
VRF (Verified Randomness Function) can be used to pro-
vide randomness both in game mechanics (such as a coin
toss for where the ball starts) and in minting mechanics for
rare attributes associated with the NFTs. The Chainlink
oracle network can also be used to enable the NFTs to have
dynamic attributes which build up during game play. SYLO
protocol, an ecosystem made up of digital consumer wallet
software, applications, infrastructure & developer tools, can
be used for in game chat and marketplace chat as well as for
NFT wallets. IPFS can be used for storing the memories
associated with an NFT and ensuring the brain in a game is
using the correct NFT. UNITY can be used for the game
engine.

The specific examples described above relate primarily to
video games. However, the disclosed implementations can
be applied to various applications and the “player” entity
could be, for example, a chat bot (to give an individual
personality to an online friend), a personal assistant that is
truly personal, and/or a trading bot which acts on behalf of
its owner or its community to accomplish transactions in
accordance with a dynamic trading strategy. Any task that
could be completed by an intelligent automated agent could
be accomplished using the disclosed implementations.

It will be appreciated by those skilled in the art that
changes could be made to the disclosed implementations
without departing from the broad inventive concept thereof.
It is understood, therefore, that this invention is not limited
to the disclosed implementations, but it is intended to cover
modifications within the spirit and scope of the present
invention as defined by the appended claims.

What is claimed:

1. A non-transitory computer readable media for provid-
ing a plurality of computation models that are each imple-
mented in a respective arena environment, the data structure
including software modules recorded thereon and, for each
computation model, the modules comprising:

a model module specifying an Al model that, when
executed by a computer processor, causes computation
on data to accomplish a corresponding task;

an interface definition module including a pointer to an
interface definition associated with the computation

20

25

30

35

40

45

50

55

60

65

8

model that is used by a corresponding one of the
respective arenas to communicate with the model code;
and

an arena agent coupling each model module to a data

structure containing a set of values that are mapped to
input variables within each of the respective arena
environments, whereby the data structure links the
agent with other agents across the arena environments;

a token module including a pointer to a unique token

associated with the computation module.

2. The non-transitory computer readable media of claim 1,
wherein the interface definition specifies a finite set of inputs
and outputs for the computation model.

3. The non-transitory computer readable media of claim 2,
wherein the task is at least one of a chat bot task, a personal
assistant task, a financial transaction task and/or a task
related to activity of an entity in a video game.

4. The non-transitory computer readable media of claim 1,
wherein the token is a non-fungible token stored on a
decentralized ledger.

5. The data structure of claim 4, further comprising an
input value matrix which holds multiple values that are
mapped to input variables within the model code and
wherein the multiple values of the input value matrix are
used to train the learning module.

6. The non-transitory computer readable media of claim 1,
wherein the values are changed as a result of activity of the
AI model.

7. A method for creating a composite data structure
recorded on non-transitory computer readable media for
providing a plurality of computation models that are each
implemented in a respective arena environment, the method
comprising:

providing a model module specifying model code that,

when executed by a computer processor, causes com-
putation on data in accordance with the computation
model;
providing an interface definition module including a
pointer to an interface definition associated with the
computation model that is used by a corresponding one
of the respective arenas to communicate with the model
code; and
an arena agent coupling each model module to a data
structure containing a set of values that are mapped to
input variables within each of the respective arena
environments, whereby the data structure links the
agent with other agents across the arena environments;

linking the computation model with a non-fungible token
stored on a decentralized ledger.

8. The method of claim 7, wherein the interface definition
specifies a finite set of inputs and outputs for the computa-
tion model.

9. The method of claim 8, wherein the computation model
represents activity of an entity in a video game.

10. The method of claim 7, wherein the model module
includes the model code.

11. The method of claim 7, wherein the model code
includes a learning module.

12. The method of claim 11, wherein the learning module
is an artificial intelligence model.

13. The method of claim 11, further comprising providing
an input value matrix which holds multiple values that are
mapped to input variables within the model code and
training the learning module with the multiple values of the
input value matrix.

US 12,321,724 B2

9

14. The method of claim 7, further comprising providing
an input value matrix which holds multiple values that are
mapped to input variables within the model code.

15. The method of claim 7, wherein the interface defini-
tion specifies actions that can be taken by the entity.

16. The method of claim 15, wherein the values represent
attributes of the entity.

17. The method of claim 16, wherein the values are
changed as a result of entity activity.

goooao

10

		USPTO Director
	2025-06-02T10:31:56-0400
	United States Patent and Trademark Office
	United States Patent and Trademark Office
	Digitally Sealed

