



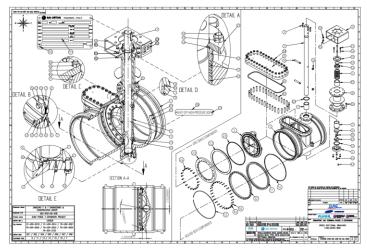

## Journey Towards Zero Reliability of Gas Supply Incident



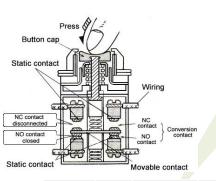
Multiple systems driven by strong ownership, accountability and responsibility of the team

#### 1. SINGLE POINT FAILURE

## Single Point Failure Analysis


- Multi-disciplined team formed comprising of Process, Mechanical, Electrical, Instrumentation and Controls
- All equipment on the gas supply process identified for SPF analysis
- Failure modes and preventive measures identified to prevent equipment tripping




#### Examples of preventive measures

|   | System                                                                                               | SPF Analysis Preventive Measures                         |                     |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------|--|--|--|--|
| 1 | Open Rack<br>Vaporizer/ Seawater                                                                     | mplemented seawater flow, pressure and level 2002 voting |                     |  |  |  |  |
| 2 | Booster Pump Implemented booster pump flow, pressure and level 2002 volume prevent spurious tripping |                                                          |                     |  |  |  |  |
| 3 | Electrical                                                                                           | Implemented redundant power for l                        | JPS control circuit |  |  |  |  |

## Reliability Excellence Component Failure Analysis



Identify components with exploded view drawings



Identify causes of failure modes

Identify possible failure mode of components

Identify components for 130 critical valves & ESD buttons



Identify mitigation measures to reduce risk of failures



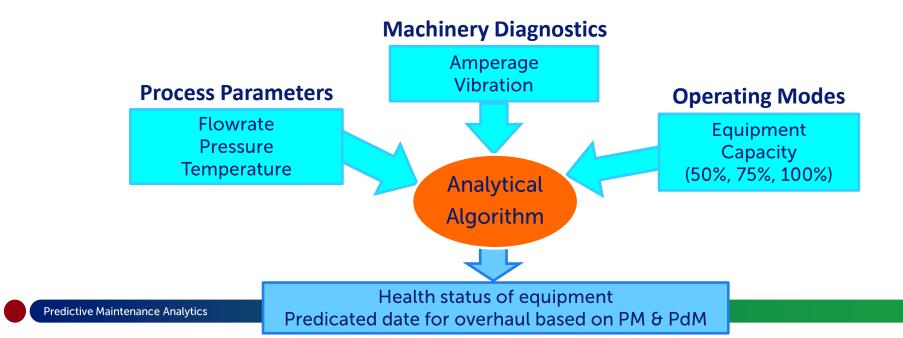
 Actual finding match with analysis – deteriorated diaphragm can lead to Pipeline valve closure if not replaced

| Tag<br>number   | Fail<br>Action | Volume Tank<br>with Pressure<br>Monitoring         | Valve OEM      | Valve body<br>Model<br>Number     | Valve type                    | Valve<br>Size | Actuator<br>Model | Pressure<br>Monitoring Tag           | Air regulator | Quick<br>Exhaust<br>Valve | External<br>Filter | Pneumatic<br>Valve                                                                                          | Flow regulator       | Fail last<br>relay | Flow port regulator | Check<br>Valves |
|-----------------|----------------|----------------------------------------------------|----------------|-----------------------------------|-------------------------------|---------------|-------------------|--------------------------------------|---------------|---------------------------|--------------------|-------------------------------------------------------------------------------------------------------------|----------------------|--------------------|---------------------|-----------------|
| 41-USV-<br>2008 | F.C            | Yes                                                | AMPO/POYA<br>M |                                   | Ball-Top<br>entry<br>trunnion |               | Rotork<br>GP-200S | 41PI2020                             |               | Bifold S06-<br>QEV        | No                 | NA                                                                                                          | Bifold<br>S06-CPV-01 | NA                 | Bifold S06-<br>PFR  | No              |
| Component       |                | Failure Mode                                       |                | Failure Symptoms                  |                               |               |                   | Possible Causes                      |               | Likelihood                |                    | Recommendation                                                                                              |                      |                    |                     |                 |
|                 |                | Diaphragm failure leading to Vexternal air leaking |                | /alve goes to fail close position |                               |               | Rubber            | Rubber material failure, end of life |               |                           | 2.                 | Replacement of diaphragm material every 5 years     Improve material to Viton     Evaluate the need for QEV |                      |                    |                     |                 |

#### 2. CONTROLS FOR RELIABLE OPERATIONS

### **Controls for Reliable Operations**

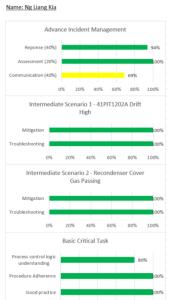
Utilize control logic to aid Panelman and enhance Reliability of Gas Supply

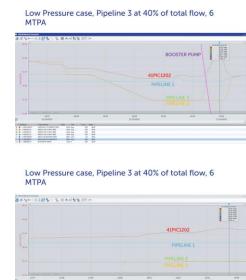

- Flow Nomination Automation for automatic distribution of flow set value to ORV and Metering Skid using Master Controllers in event of equipment trip for quick restoration of gas supply
- Seawater low header pressure logic to enable restoration of seawater flow to ORV and prevent cascading trip in event of seawater pump trip
- Logics and operator guide to prevent accidental selection to calibration or manual mode of critical to gas supply reliability controllers

Controls for Reliable Operations

#### 3. DIGITALIZATION

#### **Predictive Maintenance Analytics - Framework**


- Project is funded by National Research Foundation & managed through EMA
- A Predictive Maintenance framework using big data
- Enhance the reliability of SLNG critical rotating equipment
- Improve standardization, efficiency and accuracy of equipment health assessment and fault identification as the data (i.e Process, Mechanical, electrical) are co-related and integrated for a holistic evaluation
- Provide an insight of the parts required for next overhaul. Hence, parts can be made available in advance to avoid extended downtime.




#### 4. MANPOWER CAPABILITY BUILDING

#### **Operator Training Simulator**

- OTS primarily used for training for Panelman & to perform process simulation for Process Engineers
- Developed structured OTS training and qualification program. OTS scenario training conducted every quarter
- Scenarios developed together with Panelman to recreate high stress environment during incident
- OTS upgraded in FY2022 to mimic actual control room environment





#### **OTS Before Upgrade**



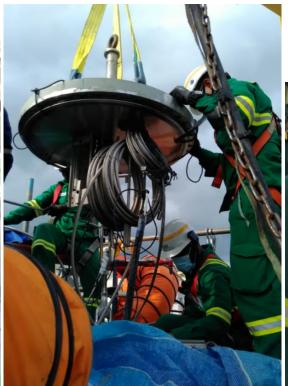


#### **OTS After Upgrade**



#### **Actual Control Room**




# SLNG Operations Team acquired skills & experiences to perform critical equipment maintenance > Self Reliance & reduce dependence of OEM

Replacement of cryogenic seal for Marine Loading Arms

Removal, service and installation of In-Tank pump into tank

Removal, service and installation of Booster pump into well





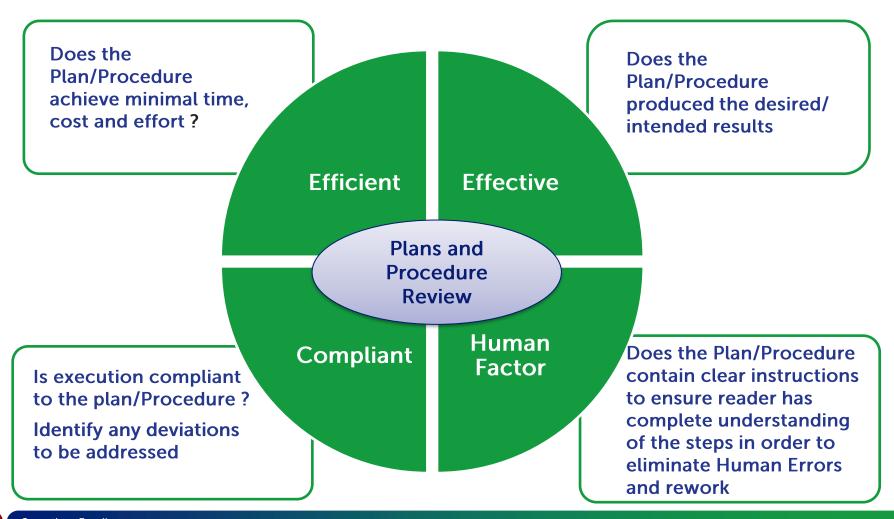


Reduce Dependence on OEM

#### 5. OPERATIONS ABNORMALITY REPORT

#### **Operations Abnormality Report**

- For early identification and prevention of potential gas supply incident
- OAR raised for abnormal operations that has the potential to affect gas supply and customer
- OAR cultivates ownership by all stakeholders


Shift Team raise Provide preliminary details to facilitate investigation SME lead the Investigation Identify root cause & preventive actions

Management review and approve

#### 6. OPERATION EXCELLENCE

### **Operations Excellence**

Operations Excellence achieved through Operational Discipline - driven by Plan and Procedure Review (PPR) Program



## Thank You