

Advances in Automation for the Manufacturing Lateral Flow Devices

Presented by:
Rob Rich
Director of Sales, America

August 11, 2025

Equipment and Solutions Provider for

Lateral Flow Devices

BIODOT

BioDot Global Locations

BIODOT US

- 70 employees 22,000 sq ft floor space
- · Demo and feasibility facilities
- Innovation core focused on dispensing fluidics and miniaturization of science

USD\$30M Bookings (1)

3 Business Units	~ 25k Sq.Ft. Facility
1	84
Manu. Locations	Employees
3	30+
Countries	Engineering Staff

BIODOT UK, EMEA

- 10 employees 5,000 sq ft floor space
- Demo and feasibility facilities
- Premium sales and support of scientists and manufacturers throughout EMEA

BIODOT CHINA

- 4 employees -2,000 sq ft floor space
- Demo and feasibility facilities
- Premium sales and support of scientists and manufacturers throughout China

© 2024 ATS Corporation. All Rights Reserved - Confidential & Proprietary

Celebrating 30 Years of Innovation and Success.

- Lifetime Achievement Award.
 DCN Dx is honored to present this award to Thomas Tisone, founder of BioDot, Inc. whose enduring contributions have left an indelible mark on our industry.
- Thomas Tisone's vision and leadership continue to inspire us as we strive to make a positive difference in the world.

Manufacturing of Lateral Flow Devices

- Dispensing Technologies
 - Membrane Test and Control
 - Lines & Dots
 - Sample Pad
 - Conjugate Pad
- Batch Vs. In-line (Reel-to-Reel)
 - Why & When
- Other Manufacturing Strategies to Consider
 - Tech Transfer
 - CDMO's?
 - Looking to the Future
 - Modularity
- Are you doing something that is Non-Standard?

Lateral Flow

Summary of Processes

1. Application of reagents

Dispense: Test, control, conjugate

Coat: Conjugates, blocking, other pad treatments

2. Dry

Objective is to reduce water content to less than 4 % level.

Used after reagent application processes.

3. Lamination

Individual layers are attached, using thin layers of adhesive.

Adhesive layers are prelaminated to plastic backing and cover layers.

4. Inspection / Marking

Dispensing defects

Material defects

Lamination alignment defects

5. Cutting

Separate into individual test strips: 3-10 mm

Remove bad parts marked in inspection process

6. Quality Control

Sample testing of manufacturing lot for functionality

7. Packaging

Seal test strip in foil pouch with desiccant, pipette, etc

Dispensing Technologies for Lateral Flow

Membrane Test and Control

BIOJET

Solenoid valve synchronized with a syringe pump and motion platform.

Drops in the nL to uL.

Lines are created by overlapping drops.

RAINMAKER

Piezoelectric dispensing synchronized with a motion platform.

Prints drop in the pL to nL.

Typically used in multiplexed arrays.

FRONTLINE

Needle tip contacting membrane surface.

Dispensing Technologies for Lateral Flow

Spray and Dip Coating

AIRJET

Aerosol spray typically used for conjugate deposition or reagents with larger particles.(line volume= 0.1-24 µl/cm)

Manual Tray

Immersion track for soaking conjugate pad for batch processing

DIPTANK

Immersion tank for in-line processing.

Technology Type Considerations

Non-contact vs. Contact

- Comparing non-contact and contact printing
- Non-contact has shown
 - Higher signal in quantitative tests
 - Higher sensitivity

Spray vs. Dip Coating

Comparing Non-Contact Vs. Contact Dispensing

Pro's & Con's

- Typically delivers higher sensitivity than contact dispensing
- Requires an ILD (more reagent)
- More complex set-up and cleaning

- Easier to use for R&D
 - Allows for use of less reagent for half card or single card runs
- Easier set-up and operation and cleaning
- Can score the surface of the membrane and deliver less consistent line widths

11

Non-Contact has Shown

Study conducted by DCN Dx

Dispense Method: Effect on Line Width

	Non- Contact	Contact
Mean	0.74 mm	1.13 mm
St. Deviation	0.07	0.15
% C.V.	9.5	13.6
Minimum	0.61 mm	0.83 mm
Maximum	0.83 mm	1.35 mm

Comparing Spray Vs. Dip

Pro's & Con's

- Quantitative
- Reduced waste
- Controlled delivery

- Dwell time based
- Uneven distribution
- Qualitative
- Can be good for blocking

Technology Type Considerations

Example

Spray vs. Dip Coating

Materials:

7 mm fiberglass conjugate pad 10 mm blocking paper Conjugates A and B Blocking buffer

Methods:

Currently dipping -move to spraying

- (2) AirJet 3000s
- (2) Dry towers

Ultra-Low tension configuration

Blocking Paper

Pad	Region 1	Region 2	Region 3	Region 4	Region 5	Avg.	STDEV	% CV
1	0.2841	0.2985	0.2913	0.3184	0.3005	0.2986	0.0128	4.30
2	0.3118	0.2932	0.3191	0.3012	0.2871	0.3025	0.0131	4.33
3	0.2896	0.2955	0.3115	0.3095	0.2966	0.3005	0.0095	3.16
4	0.2975	0.2810	0.3024	0.2885	0.3070	0.2953	0.0105	3.56
5	0.2896	0.3091	0.3101	0.3265	0.3175	0.3106	0.0136	4.39
6	0.3055	0.3154	0.3132	0.3124	0.3128	0.3119	0.0037	1.20
7	0.2987	0.2876	0.2947	0.3141	0.3174	0.3025	0.0128	4.23

Technology Type Considerations

Example

Spray vs. Dip Coating

Results:

- Elution values comparable Conjugate A Conjugate B Blocking buffer
- Sufficient drying High throughput
- Material handling sufficient Successful tracking No breaking No tearing
- 4. Reduced reagent consumption
- 5. Controlled delivery

Conjugate Pad

Pad	Region 1	Region 2	Region 3	Avg.	STDEV	% CV
1	0.1100	0.1148	0.1099	0.1116	0.0028	2.51
2	0.1085	0.1093	0.1070	0.1083	0.0012	1.08
3	0.0942	0.0889	0.0942	0.0924	0.0031	3.31
4	0.1026	0.0945	0.0926	0.0966	0.0053	5.50
1	0.2821	0.2880	0.2886	0.2862	0.0036	1.25
2	0.3169	0.3024	0.3234	0.3142	0.0108	3.42
3	0.2925	0.2889	0.2821	0.2878	0.0053	1.83
4	0.2485	0.2523	0.2448	0.2485	0.0038	1.51

Lateral Flow Manufacturing Equipment

BATCH

Pre-cut materials

Batch Process Line Layout

17 Final QC

Batch Manufacturing

- Lower Capital Equipment Cost
- Flexibility for Research & Development
- Scales Easily via Duplication
- Manual Quality Control (usually)

LM5000

Lateral Flow Device Manufacturing

Batch Scenario

- Materials in pre-cut lengths
 - 30cm typical
- Laminated or unlaminated to backing card
- R&D to low volume production (500K-1MM/yr typical)
- Process strips in groups
- Process time is noncritical
- Poor process symmetry
- High labor content

Lateral Flow Reel to Reel Process

Cut /Assemble

Package

RR120

Reel-to-Reel Dispense with Coat/Dry

T/C & Conjugate, Dry, Inspect/Mark

In-Line Manufacturing

- Increase in Quality / Decrease in Human Error
- Cost Reduction from Correction of Inefficiencies
- Cost Reduction from Less Waste
- Reduction in overall Production Time

In-Line Manufacturing

- Materials feed continuously through the process
- Provides greater process controls
 - Continuous drying via forced air dry towers
 - In line QC with vision and bad part marking
 - Precision alignment
- Higher volume production capabilities
 - >10 MM/yr
- Built in environmental controls
 - Humidity control (high) in dispense area
 - Humidity control (low) after drying

RR120 - Modular Web Handling Platform

23

LM9000 AutoLamination System

BIODOT

Advanced Vision Inspection (dispensing and lamination)

Vision system software (RR and LM)

Advanced Vision Inspection (dispensing and lamination)

Vision system software (RR and LM)

- High Precision
- Error Detection
- Quality Control
- Increased Throughput
- Reduced Waste
- Flexibility (Programmable and adaptable)
- Data Logging and Traceability
- Process Optimization
- Compliance and Documentation

Image of strip passing underneath the camera.

26

Lateral Flow Device Manufacturing

27

Equipment Calculation

One (3) RR120 and one (2) LM9000 will conservatively yield you 75M tests annually on a single shift

RR120

	Process Used in Calculation?	Roll Length (m)	Scrap Per Roll (m)	Web Speed (mm/s)	Seconds/Rol	Total Time per Roll (seconds)	Lunch/Break (minutes)	Hours per Day	Number of Rolls/Day	Good Material/Day (mm)	Test Width (mm)	Tests/Day	Days/Year	Tests/Year
T/C	Yes	100	5	60	1,667	1,667	60	7.5	14	1,333,800	4	333,450	220	73,359,000
Block	No	100	5	25	4,000	0	60	7.5	0	0	4	0	220	0
Conjugate	Yes	100	5	30	3,333	3,333	60	7.5	7	666,900	4	166,725	220	36,679,500
Block	No	100	5	25	4,000	0	60	7.5	0	0	4	0	220	0
Total						5,000	60	7.5	5	444,600	4	111,150	220	24,453,000

LM9000

Process	Ro	oll Length (m)	Scrap Per Roll (m)	Web Speed (mm/s)	Seconds/Rol	Setup Time (minutes)	Clean/Wash (minutes)	Total Time per Roll (seconds)	Lunch/Break (minutes)	Hours per Day	Number of Rolls/Day	Good Material/Day (mm)	Test Width (mm)	Tests/Day	Days/Year	Tests/Year
Lamination		100	5	60	1667	10	10	2867	60	7.5	8	775465	4	193,866	220	42,650,581.40

Batch vs. Continuous

Recap

Batch

- Card format for material and lamination: 30cm card length typ.
- Process strips in groups
- Process time is noncritical
- Poor process symmetry
- Low to medium production R&D
 - 1,000's to 1 million tests per year
- High labor content

Continuous

- Roll format for material and laminate: 100 meter roll length
- Process rolls in continuous process
- Process time is critical and limited by web speed and equipment size
- Excellent process symmetry
- Medium to high volume
 - 1 million to + 1 billion tests per year
- Low labor content

Manufacturing Strategy Considerations

Examples

Do Your Material Choices Transfer Well in Manufacturing?

Unbacked 10 mm nitrocellulose on Payout Module, Ultra-Low Tension configuration

Do Your Processes Transfer Well to Manufacturing?

Forced Air Drying In-Line

Do Your Technologies Transfer Well to Manufacturing?

High Speed Array Printing

Manufacturing Strategies

It is helpful to include manufacturing considerations in the product design phase

- Select Materials with properties that allow for machine handling
 - ex: tensile strength for web handling
 - ex: plastic housing shaped to facilitate automation
- Design Processes that transfer easily to manufacturing
 - ex: drying by forced air vs. lyophilization
- Use equipment in development that can transfer to manufacturing
 - ex: use the same dispensing systems in R&D as in manufacturing
- Will you be scaling up production in-house or will you subcontract this out to a CMO?
 - ex: Does the CMO have the same equipment you developed on?

Ex: low tension web system is needed for low tensile strength materials

31

Lateral Flow Multiplex Array Device Manufacturing

Batch Scenario

32

Lateral Flow Multiplex Array Device Manufacturing

In-Line Scenario

Array printing

Picoliter to Nanoliter

Indexing

Drying

Environmental control

Vision

Cutting

Thank you!

- BioDot Inc. 2852 Alton Pkwy, Irvine,CA, 92606
- +1 (949) 440-3685
- Rob.Rich@biodot.com

