Billing as the
Operating System
for Revenue

Introduction

In the Al era, feature velocity has made static pricing
systems obsolete

As outlined in Metronome’s Monetization Operating Model whitepaper, businesses have entered into a new erain
product delivery, where Al and cloud technologies are changing how products are built, deployed, used, and valued

by end-users. This has resulted in continuous delivery of new features, and the impact is more measurable than ever
before. A document summarization tool adds image generation. A coding assistant accelerates integrations with new
dev environments. An analytics platform adds real-time inference. Each of these features delivers unique value to each

user, they each consume different amounts of resources, and each has different costs associated to run.

Yet the infrastructure most companies use to price and bill their customers for these features was built for a past era.
Then, software shipped quarterly, or even annually. At best, a company’s pricing would update annually, and a “seat”

subscription meant the same thing for every customer.

But now, this mismatch is creating operational breakdowns:

e Finance teams manually fix invoices when LLM or compute costs increase mid-cycle and pricing needs

to adjust.

e Sales operations manage 50+ SKU variations to represent core products, with a few Al features or services

spread across different regions and packaged tiers.
e Product teams wait weeks for CPQ updates before they can test pricing or monetize new capabilities.

e Customers wait for usage dashboards that don't reflect real-time consumption, eroding their trust in billing

transparency.

This isn't a process problem, though. It's actually an architectural problem. The system that manages pricing (CPQ)
and records revenue (ERP) was designed when procurement equaled revenue, and when signing a contract meant
delivering consistent, predetermined, and agreed-upon value over a fixed term. Al and usage-based products have

broken that model.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue

Al ecosystems have accelerated the shift to value-based pricing

Value-based pricing isn't new. A core principle of software pricing has been to align prices with value received by
customers. But for years, the underlying technology of pricing tools wasn't sophisticated enough to execute on the

granular details that unlock true value-based pricing.

The constraint was architectural: configure, price, quote (CPQ) store pricing in static SKUs or product catalogs. Once
a deal is booked, the price (and assumed value) is locked. If a customer uses more features, consumes more resources,
or receives better outputs (resulting in more value received), the vendor can't simply adjust the customer’s pricing to

capture the increased value that was delivered. Doing so would require contract amendments or manual intervention.

The Al era has forced a change in how companies monetize by making value both more visible and more variable.

e More visible value: Usage data shows exactly how (and how much) customers consume. For Al, usage
comes down to which models customers use, what outputs they generate, and which tasks they automate.
Companies can now measure value delivery event by event, not just through ROI estimates at contract

signing.

e More variable value: The value customers receive when using Al models can vary wildly. For example,
a10-word summary costs less to generate and delivers less value than analysis of a 500-word financial
report, even though both use the same fundamental capability. Because Al is still an emerging technology,
underlying costs to deliver are already high, and will continue to shift. This means a vendor’s pricing must be
adaptable to model providers changing their prices as new features or models launch, ensuring the vendor

maintains consistent customer experiences and margins.

With value being both more visible and variable, what's needed now is pricing infrastructure that can compute charges
dynamically based on what has actually happened, not what was estimated to happen and was agreed to up front.

The trouble is, traditional CPQ and enterprise resource planning (ERP) systems can’t do this. They were built for the
opposite model: define price at sale, recognize revenue evenly over the contract term, adjust as needed through

formal amendments, and maintain structure and linearity.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 3

Legacy platforms can't keep pace

When the limitations of CPQ became apparent, many companies adopted usage-based billing solutions—accounts

receivable (AR) automation platforms and ERP billing modules that claim to handle consumption pricing.

But these tools apply CPQ’s architecture to usage billing’s computational problem, creating a fundamental mismatch
that makes this pairing inherently suboptimal. They can ingest usage data and generate invoices on schedules, but

they have fundamental flaws:
e Rates are stored in plan-level configurations - no centralization across customers
e Usage is processed in batch jobs - no real-time computation
e Manual intervention is required for mid-cycle pricing changes - no automated reconciliation

e Granular invoice breakdowns aren't possible - no event-level, or line-item level transparency

The result: Companies are stretching legacy architectures with custom code and manual workarounds, increasing
maintenance workloads and requiring more resources. Finance asks IT or engineering to build Python scripts to

reconcile invoices. Engineering must maintain internal billing systems, encoding more and more as new customer
contracts roll in. Operations teams spend hours manually updating rates across customer contracts. In this world,

every new Al feature adds operational overhead and drag instead of revenue.

For usage-native businesses and Al-native startups, this is a scaling problem they cannot ignore. In this new era, new
feature ideas or customer requirements rely on rapid iteration and deployment of new value-added features to remain
competitive. To capture new users and validate new feature ideas, free or self-serve models are becoming the norm.
Without infrastructure that can handle the conversion of self-serve to paid customers through dimensional, dynamic
pricing, these startups won't be able to meet customers where they are and, ultimately, monetize their products

effectively.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue

The solution: Billing must become a runtime system*

Modern monetization requires billing to evolve from a record-keeper into a runtime system that continuously

computes pricing, invoicing, and revenue as products, costs, and customer behavior evolve.

This is powered by two engines working in tandem:

e The pricing engine translates multidimensional product Runtime system: The execution layer that
usage into prices using a centralized, versioned rate continuously processes the logic required to
card. For example: storing rates like “GPT-4 inference convert customer activity into revenue. This
in US-East = $S0.03 per 1K tokens” and applying them system ingests usage events, applies pricing
consistently across all customers while allowing and entitlement rules, executes rating and
contract-specific overrides. metering workflows, and produces accurate

charges in real time, all while ensuring

* Theinvoice-compute engine continuously aggregates ensures that all billing operations run reliably,

usage, applies contract logic (credits, commits, .
ge.app gic (consistently, and at scale as customers

overages) to rate the usage, and produces invoice-
consume a product.

ready data in real-time—not in overnight batches, but

continuously as usage events occur.

The impact: Companies using this infrastructure can launch new Al features without CPQ changes, adjust pricing
based on model costs without contract amendments, and provide customers with real-time usage visibility—all while

maintaining clean financial records for revenue recognition.

What this paper covers

1. Why legacy systems fail: The architectural gaps in CPQ, AR automation, and ERP that prevent them from

handling dimensional, dynamic pricing

2. What modern infrastructure requires: The capabilities that define computational billing (pricing engines,

invoice-compute engines, contract encoding for bespoke agreements)

3. How leading companies are adapting: A new monetization architecture where billing sits at the center of

procurement and revenue flows

4. Your path forward: How to audit your current system, identify gaps, and build a migration strategy

The shift from static pricing to computational billing is already happening. Al-native and usage-native businesses
are building on this foundation from day one. The question now is whether your organization makes this transition

deliberately or waits until legacy systems break under operational load.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue

The evolution of CPQ and ERP

For the past two decades, monetization followed a predictable flow. CPQ defined pricing and deal terms. ERP handled
invoicing and revenue recognition. Everything between those two systems was static: a quote, a SKU, a schedule.

Procurement equaled revenue. Once a deal was booked, finance amortized it evenly over the term.

That model worked when software was sold in fixed seats or tiers, products changed slowly, and pricing updates were
infrequent. When selling access to software, there are limited opportunities to capture more revenue outside of new

product launches, which would typically happen only a couple times per year.

Traditional procurement flow

CPQ Billing CPQ ERP BI

B Price book @ Invoicing —> | (® Payments/AR — | B GL/RevRec — |~ Reporting

-O- Order J

Figure 1.0

The emergence of Al and usage-based products have fundamentally changed this pattern. New features launch much
more frequently, each packed with different value and cost structures. Because of the potentially high operating costs
of launching new features, pricing teams must evaluate monetization and value delivered feature by feature while still

rolling everything into a coherent customer-facing model.

Legacy workflow Description Limitation
CPQ-defined pricing Sales configured seats, discounts, and terms. Rates were No flexibility. Every new feature or metric required a new
static and stored in the price book. SKU or contract amendment.
ERP invoicing Invoices were generated on a fixed schedule based on No flexibility. Every new feature or metric required a new
contract terms. SKU or contract amendment.
Procurement = revenue The sale itself triggered ratable revenue recognition. Impossible to represent usage, credits, or feature-level
consumption

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 6

One example is a universal credit framework, where users or enterprises purchase credits anchored on specific
product metrics, then draws those credits down across predefined products and consumption metrics. This pricing
structure can be highly beneficial because it lowers the barrier to adoption and enables either an accelerated product-
led customer acquisition model or low-touch, high-velocity acquisition models where contract amendments aren’t

necessary—and in some cases can be prohibitive through increased friction, negotiations, and time to revenue.

To manage the shift to agile and diversified go-to-market motions and to support new customer buying preferences,
pricing can no longer live in a static system. Invoicing can no longer be a passive accounting task. Billing can no longer

be a transactional record keeper; it must now be the runtime system for modern pricing and revenue workflows.

Universal Credit Framework

Customer Buys Credits
(e.g. 10,000 Universal Credits Upfront)

Credit Pool

Compute/GPUs
(e.g. GPU-hours)

Consumes Credits

Credits Drawn: 100 credits/hr

D

(Drawn Down as Usage Occurs)

10 Al/Model Tasks
(e.g. Tokens, Inference Calls)

Consumes Credits

Credits Drawn: 50 credits/100K tokens

Remaining Credits in
Customer Pool

Figure 2.0

In figure 2.0, credits are shown as a standardized billing unit used instead of direct dollars — making it easier to
abstract complex metering (e.g., GPU time, API calls, tokens) into a single currency. Customers prepay a block of
credits that acts like a flexible spending account for consuming services. Different activities consume credits at
different rates based on resource intensity (e.g., GPU hours cost more credits than a simple inference call). As services

are used, credits are drawn down from the central pool until they run out or expire at period end.

To manage the shift to agile and diversified go-to-market motions and to support new customer buying preferences,
pricing can no longer live in a static system. Invoicing can no longer be a passive accounting task. Billing can no longer

be a transactional record keeper; it must now be the runtime system for modern pricing and revenue workflows.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 7

Why pricing needs its own system

CPQ continues to serve an essential role in defining what is sold and under what terms. It governs quoting accuracy,
approval workflows, and deal structure. However, modern pricing models have introduced two structural shifts
that extend beyond CPQ’s design: multidimensional pricing and credit-based monetization. These shifts require a

computational layer inside the billing system to accurately and efficiently execute pricing logic in production.

1. Multidimensional pricing logic

Traditional CPQ implementations assume a single primary metric, such as seats or licenses, with optional add-ons or

volume tiers. This structure works when every customer expects to receive value in roughly the same way.

Modern monetization models break that assumption. Al and usage-based pricing introduce multiple concurrent
metrics such as API calls, GPU hours, inference tokens, or storage volume, each with distinct rates and aggregation

rules.

Even SaaS companies that once relied entirely on seat-based pricing are now introducing Al-powered features like
document summarization, image generation, or code completion. Each of these actions produces a different type of

output, delivers a different level of value, and incurs different underlying LLM or API costs.

As aresult, pricing cannot be expressed by a single metric or static SKU. It must reflect multiple dimensions: usage

type, output complexity, region, and model cost, all of which change over time.

CPQ cannot represent this structure effectively, and in practice, creates three structural challenges:

SKU proliferation

If managed through a static system, each new metric or Al feature would require its own SKU or SKU variant, creating
significant governance overhead for operations teams. For example: A product with 2 usage types, 3 output tiers,
3 regions, and 2 model options could need 36 SKU variations to represent all combinations—and that’s before

accounting for volume tiers or promotional pricing.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue

Version control and rate changes

Adjusting GPU-based inference cost while keeping Al summarization cost constant would result in multiple SKU

versions or bundled variants. Managing these variations quickly becomes a version control challenge.

Encoding conditional pricing logic

Modern pricing requires flexibility, and CPQ’s static nature lacks the mechanism to express multiattribute usage rules,

resulting in each new conditional rule to be represented with a new SKU variant.

The operational burden for consumption and usage-based pricing models must shift to the billing system. With a
flexible pricing and invoicing engine within the billing stack, monetization and billing teams unlock an elegant path to

fill the gaps listed above.

Flexible pricing and invoicing engines unlock:

The Flexible Pricing & Invoicing Engine

A place to store multidimensional rates, formulas,
and mappings via a centralized rate card

g

The ability to execute those computations continuously
as usage data is streamed into the engine

Application of contract-level discounts, custom terms,
or scheduled rate updates without SKU duplication

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue

2. Credit-based monetization

The second structural shift in modern pricing is the adoption of credit-based monetization. Instead of charging
customers separately for each feature or usage metric they consume—with every API call, document processed, or
hour of compute having its own line item on the invoice—companies are now anchoring on a single unit of value. This

lets companies sell prepaid credit packages that customers draw down from as they use various capabilities over time.

This model introduces both flexibility for customers to realize more value, as well as more cost and revenue
predictability for finance teams. Still, it changes how systems have to run pricing and revenue processes. In credit-

based models, procurement and revenue recognition are treated as separate processes.
e In CPQ, the sale represents the procurement event, for example, a $50,000 purchase of prepaid credits.

e In billing, revenue is recognized only when those credits are consumed, based on the type of usage that

triggered each credit use.

Credits function as a common currency that can be applied across multiple products or features, each of which can

have different cost structures and value profiles.

For Al-native and Al-assisted SaaS companies, this model has become the default.

e Atthe Al infrastructure layer, credits may represent computational resources such as tokens, GPU minutes, or
API calls.

e Atthe Al application layer, credits might represent Al actions such as document summarization, insight
generation, or code assistance, each drawing down credits at a different rate depending on output length,

complexity, or model choice.

CPQ records the upfront sale of the credit pack but cannot compute how those credits are used or recognized as

revenue once the customer begins using the product.

In contrast, a pricing engine within billing manages that logic by:

e Defining how each feature, usage type, or Al action converts into credit units

Example: “one summarization = two credits” or “1,000 tokens = one credit”

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 10

e Continuously tracking credit consumption as usage occurs, updating credit balances and ledgers in real

time, not in overnight batch processes

Example: A runtime system that executes the credit use continuously as usage data arrives,

updating credit balances dashboards and ledgers in real time

e Mapping each credit use event to its contract, feature, and product for accurate revenue recognition

e Applying contract-specific rules such as rollover, expiration, or bonus credits automatically

By decoupling procurement from revenue, companies gain control over both dimensions of monetization:
e Sales operations retain clarity and simplicity in CPQ with standardized credit SKUs and quoting workflows.

e Finance and product gain precision in billing, with granular tracking of how each usage event converts into

value and revenue.

e Product adoption becomes easier, with credits working equally well for self-serve and sales-led go-to-market
motions and unifying experiences for both paths, enabling customers to iterate and experiment with new

capabilities by simply drawing down from their existing credit balance.

Emerging benefit: Automatically “topping up” customer credit balances. Frictionless credit
additions maintain the current adoption rate, generating more revenue during the user’s session,
or provide an opportunity to upgrade to a more expensive package. This tactic is particularly
beneficial for intensive vibe-coding tools and similar agentic functions where there is a

continuous human-in-the-loop experience.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 1

Real-world example: Credit-based Al pricing in practice

Let’s say that customers buy a credit pack (for example, 1 credit = $1,10% discount), and each Al action burns credits

based on its underlying data source, model, and task complexity.

Inside the internal rate card, the pricing engine maps these dimensions:

@ Alaction —— B Datasource — @ LLMprovider — M Complexity level — k¢ Creditrate

Inside the rate card, the pricing engine stores how credits map to actual usage. For example: “When a customer uses document
summarization (Al action), pulling from their CRM data (data source), using GPT-4 (LLM provider), generating a complex 500-word
summary (complexity level), burn 5 credits (credit rate).

When an LLM provider lowers token costs, the pricing team updates that associated node in the rate card. The

pricing engine recalculates credit consumption in real time—no CPQ SKU cloning, no contract edits, no billing rework

needed.

This separation of customer-facing simplicity (credits) from internal dimensional pricing logic (rate card) is what turns

billing into a runtime pricing system.

Customer facing Internal
Credit pack Rate card
List price
1credit=$1 @ Alaction1 ——> B DatasourceX — O LLMprovider1 —> 38 Complexity - easy — XX Credits
$10 discount
3 Complexity-moderate ~ —» XX Credits
N~ 3 Complexity-busy — XX Credits
cPQ N . , -
© LM provider1 3 Complexity - easy XX Credits
38 Complexity - moderat — XX Credits
N > 38 Complexity-busy > B XXCredits
\4’ B DatasourceY..
@ Alaction2

|

Pricing engine in billing

Figure 3.0

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue

Downstream platforms are not runtime
systems

Downstream revenue platforms, including AR automation solutions and some billing modules within ERP platforms,
now offer basic pricing tables and batch invoicing to support usage-based monetization. But these are narrow tools,
not runtime systems. They can store rates and trigger invoice workflows, yet they cannot compute or orchestrate

pricing and invoicing as live, continuous processes.

Without continuous compute and orchestration capabilities, these platforms and tools require additional workarounds
to manage the complexity that comes with usage-based pricing models. They are good for recording what happened,

but they’re not purpose-built for handling continuous change and realtime data visibility.

This gap breaks down to two architectural capabilities that traditional billing systems lack:

1. Atrue pricing engine: A system that computes charges dynamically based on multiple dimensions (and

doesn't just look up static rates)

2. Aninvoice-compute engine: A system that continuously calculates billing state in real time (not in scheduled

batch jobs)

Let's examine why these capabilities matter, and what happens without them.

] @
Real-time invoice Declarative &
compute engine modular pricing
model

Declarative & Modular pricing Engine

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue

1. The pricing engine

Traditional AR automation solutions and downstream ERP systems still follow CPQ-style pricing structures, which
means each plan or customer configuration defines its own rates. For example, when you set up billing for a customer
in most AR automation or ERP systems, you create a “plan” or “pricing configuration” specifically for that customer.

Inside that plan, you specify their rates.

These rates live inside that specific customer’s configuration. Some systems call these “line items,” others call them
“obligations,” but the concept is the same: each customer’s pricing is stored separately within their own contract or

plan record.

When usage data arrives, the system:
1. Looks up which plan this customeris on
2. Finds the rate for the specific usage type
3. Multiplies usage x rate = charge

4, Adds aline item to the invoice

Why this breaks down with modern usage-based pricing

Problem 1: No single source of truth

In absence of a centralized location for pricing and rates, even basic pricing questions become research projects. If

your CFO asks:
e “What's our average price per API call for enterprise customers?”
e “If we reduce GPU pricing 15%, what's the revenue impact?”

e “Are we pricing consistently across similar customers?”

You can't answer directly. You must export data from customer plans, manually aggregate rates in spreadsheets, and

reconstruct pricing logic that may live in multiple places. What should take minutes takes days.

The root cause: rates live inside each customer’s configuration rather than in a centralized, queryable rate card.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 14

Problem 2: Changes require adjustments for each customer
When an LLM lowers their costs by 20% and you want to pass savings to customers, your team either manually
updates each customer’s plan, creates new plan versions, and migrates customers to the new plans, or issues credit

memos after invoices go out.

There’s no functionality that allows you to update the rate once and have it apply correctly to all customers.

Problem 3: Dimensional pricing requires SKU explosion
If your pricing depends on multiple factors—usage type, region, model tier, output complexity—you need separate
rate configurations for every combination. For products with different usage types, rates, and tiers, you have to create

different rate configurations for each customer.

Because AR automation and ERP-based solutions are associated with billing, many vendors will naturally claim an
ability to support usage-based billing. Many use the same constructs as traditional systems: items or obligations
embedded within each contract to represent pricing. These solutions can store usage thresholds or apply basic per-
unit charges, but architecturally, they behave more like singularly focused invoice generation and accounts receivable

tools.

What they lack is a centralized, versioned rate card capable of mapping and executing dimensional pricing logic

across the customer base at scale and in real time.

What a pricing engine does differently
A pricing engine uses a centralized rate card that stores pricing as formulas and relationships. This is the core

distinction: a pricing table stores static values; a pricing engine computes relationships dynamically.

Why this matters operationally
When a LLM provider lowers costs, you make your corresponding updates in the rate card once. The system

automatically does the following for all customers, simultaneously:
e Applies the new rate to all future usage (starting from the change date)
e Preserves the old rate for usage that occurred before the change

e Maintains a complete audit trail of which rate applied when

No manual plan updates. No credit memos. No spreadsheet tracking of who got which rate at what time.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 15

The comparison

Function

Where rates are stored

How charges are calculated

Making changes or updates to pricing

Dimensional pricing support

Customer-specific pricing

Version controls and auditing

Figure 4.0

Basic Pricing Table
(ERP Billing and similar tools)

Embedded in contract “obligations” or SKU tables
For example: Inside each customer's plan configuration

Lookup-based pricing by SKU or threshold
For example: Look up a rate in customer's plan -
multiply by usage

Edit each customer's plan manually, or create new plan
versions for all affected customers and migrate all
affected customers to the new plans

Create separate rate line items for every combination
(SKU variations)

Plan-level (rates stored within each contract)

Limited versioning (overwritten rates) or manual
tracking in spreadsheets

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue

The Pricing Engine

Centralized, versioned rate card shared across
customers

Maintains a real-time view of each customer's credits,
usage, and contract terms to calculate accurate charges
continuously

Real-time propagation, cohort rollout, and rollback

Define formulas once; system computes rate based on
dimensions of each usage event

Contract references shared pricing logic decoupled from
plan and encodes custom terms and discounts

Automatic; every rate change is versioned with
timestamp, every charge references version used

16

2. The invoice-compute engine

Downstream ERP platforms have advanced considerably over the years. Many now claim to support real-time usage
ingestion, faster invoice generation, and alerting on billing performance. These capabilities no doubt improve workflow

automation, but they still fall short of runtime-level computation.

A modern invoice-compute engine does more than automate invoicing workflows. It continuously computes
customer billing states as usage, pricing, alert threshold, and contract data evolve. It applies the correct pricing
version, credit logic, and discount rules to every usage event, synchronizing results instantly with invoices, ledgers,

customer dashboard, and revenue recognition.

In contrast, AR automation tools and ERP platforms rely on configuration-driven workflows. They can pull usage
data, apply simple aggregation logic, and trigger invoices or alerts when thresholds are met, but these are scheduled

processes, not continuous computation engines.

Their architecture reveals critical gaps for usage-based billing:

e Latency is neither guaranteed nor proven under volume surges. When a customer generates millions of
usage events in a billing cycle (common with Al inference workloads or API-heavy products) these systems

often process usage in overnight batch jobs, thus creating delays and data bottlenecks.

e Mid-cycle changes require manual intervention. When rates or credit details change during an active
billing period, finance teams must reprocess invoices manually or issue credit memos to correct errors. The
system cannot automatically recompute affected usage because pricing logic is embedded in each plan

configuration, not executed by a versioned engine.

e Credit and prepaid balance management lacks real-time accuracy. AR automation tools typically track
prepaid balances as static ledger entries, updated periodically rather than with each usage event. This means

customers cannot see live credit burns or accurate remaining balances.

¢ Invoice breakdown and drill-downs require post-processing. Customers asking about a specific charge
cannot get granular, event-level explanations, requiring finance teams to export data to spreadsheets or

business intelligence (BI) tools to reconstruct the calculation path from usage to charge.

The impact naturally extends to customer experience. Exposing real-time usage and billing data through APIs or
dashboards requires live computation, not post-processed aggregates. Without a runtime invoice-compute engine,

customers see delays, inconsistent balances, or stale usage metrics, eroding trust and the solution’s value.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 17

Why the difference matters

When a LLM provider lowers their pricing and you want to pass those savings on to customers mid-billing-cycle, the

configuration approach requires you to manually edit hundreds of customer plans or issue credit memos after invoices

are sent. The computational approach updates the rate card once, and the system automatically applies the new rate

to subsequent usage while maintaining the old rate for prior usage—with full auditability of which rate applied when.

A modern invoice-compute engine enables:
e Continuous invoicing: Usage data is rated, aggregated, and billed in real time as events occur.
e Version-aware computation: Invoices always reflect the pricing logic active at the time of usage.

e Automated reconciliation: Event updates or backdated usage automatically flow through to invoices,

ledgers, and revenue recognition, keeping all systems synchronized without manual intervention.

e Customer visibility: APIs and dashboards show live billing data directly from the runtime pipeline.

The new architecture of monetization

In the modern technology stack, billing sits at the center of both procurement and revenue flows. Upstream, CPQ
and contracting systems define commercial intent, specifying what the customer buys and at what commit level.

Downstream, ERP and Bl systems record financial outcomes.

Between these layers, billing operates as the runtime system, powered by the pricing engine and the invoice-compute

engine.

This structure unlocks several impactful capabilities:

e The pricing engine translates product activity into value and pricing through a centralized, versioned rate

card.

e The invoice-compute engine continuously aggregates rated usage, applies contract and credit logic, and

produces invoice-ready data in real time.

e Acontract encoding layer sits above the runtime system to translate each customer’s unique deal terms—
things like prepaid balances, commit minimums, expiration rules, discount schedules—into structured data

that the pricing and invoice engines can reference automatically.

e The pricing engine continuously references the runtime system to ensure credit usage accuracy, usage

tracking, and revenue recognition.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue

This architectural approach unifies procurement and revenue into a single operational flow. Finance, product,
operations and GTM teams all work from the same live data, where every usage event, price change, or contract

update propagates instantly through billing, invoicing, collections, and reporting.

The example in Figure 1.0 extends across this entire architecture. The following diagram illustrates how usage events
from the product flow through the pricing engine and invoice-compute engine, updating credit ledgers, invoices,
and revenue systems in real time. It shows the full path of value creation, from a customer’s prepaid commitment to

recognized revenue.

Procurement flow

cPa Billing
; Collect ERP Bl

o Commitorder — == s toaTien contact] —— D Commit . 1 $ — '@ GL/ReRoc —— k2 Reporting

Credit ledger BB Creditledger

Product

B e

° ! oo @

& Ratecard

@ Creditbumdown
($0 invoice)

Revenue flow (run-time)

Figure 5.0

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue

19

Modern monetization powered by a
runtime system

Modern monetization extends billing beyond static record tracking. When billing operates as a runtime system, it
elegantly and automatically powers new capabilities. No more of the heavy, constant configuration that’s required

when using platforms or legacy tools.

This shift enables four foundational use cases that define the modern monetization stack.

1. Dimensional and granular pricing

Modern monetization operates on different principles that require a new foundation. Instead of singular, seat-based
plans, pricing now depends on a myriad of factors that more closely reflect how value is created and realized by end-

users.

The rate card model helps replace flat pricing structures, defining all pricing dimensions in one unified system,
including usage type, Al feature, task, model, input source, output complexity, and region. Each dimension has its own
rate and aggregation rule. The pricing engine centrally defines these dimensional prices, while the invoice-compute

engine applies the correct rates to billing, credit ledgers, and invoices as usage data streams in real time.

For example, an Al product may process a mix of document summarizations, insight queries, and inference calls,
each producing different outputs and incurring different underlying model or API costs. The rate card captures this
variability, calculating pricing for each action while maintaining a single, coherent price presentation to the customer

and providing the transparency and cost predictability they need.

The shift from per-plan configuration to a dynamic rate card allows billing to maintain pricing flexibility. With more
flexibility, monetization teams can more easily iterate and experiment on the most optimal model, metrics, and price

points—a requirement to ensure that pricing evolves as new features or cost structures are introduced.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue

20

2. Prepaid and credit-based monetization

Many companies now sell prepaid credits as a universal currency across products. Credits simplify procurement while

allowing flexible, feature-level usage.

The pricing engine defines how product usage converts to credits through conversion ratios and rates. The invoice-

compute engine executes credit burns in real time and maintains accurate ledgers for finance.

Maintaining both in a runtime system also supports different pricing tiers or rates for each feature while keeping the
customer experience unified under one balance. This structure separates the timing of procurement from revenue
recognition: sales books the contract; finance records consideration as a contract liability (deferred revenue) as

appropriate, and revenue is generally recognized as credits are consumed.

3. Continuous pricing evolution

Pricing evolves as products, costs, and customer needs change. Teams often introduce new features or adjust rates to
reflect updated Al capabilities or underlying model costs. These changes should not require contract amendments or

CPQ updates for customers to benefit from them.

The pricing engine allows these changes to be implemented directly in billing. It allows teams to modify pricing logic in

production while keeping existing contracts intact.

The invoice-compute engine ensures the right logic applies to the correct customers, features, and billing periods
without migrations or reprovisioning.lt also provides control over how and where pricing changes take effect. Cohort-

based functionality allows teams to:
e roll out new pricing to a limited pilot group,
e apply changes only to new customers, or

e target specific customer segments or regions.

This controlled rollout ensures that new pricing can be tested, validated, and expanded safely without touching CPQ or

creating new SKUs, unless a completely new packaging or offering is being introduced.

Versioning, rollback, and time-based scheduling keep every change traceable and auditable, giving finance, RevOps,

and product teams a shared source of truth for both current and historical pricing.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 21

4. Cross-system orchestration

Traditionally, introducing or changing a SKU requires broad coordination. RevOps validates pricing tables in CPQ,
finance tests ERP mappings, engineering checks metering compatibility, and teams manually edit customer contracts.
Each step needs fallback testing to avoid breaking invoicing or revenue recognition. Doing this for every new Al feature

or a price reduction driven by LLM cost is clearly not scalable.

The modern monetization system eliminates this overhead. The pricing engine serves as the single configuration
source for all rates and rules. The invoice-compute engine propagates updates automatically to metering, billing,

ledgers, and revenue recognition.

Together, they enable the following:
e The rate card as the authoritative configuration; changes are made once and versioned

e Updated pricing logic pushed to metering and rating instantly, so event mapping and rate application are

consistent
e Credit burn and balance updates computed in real time, then results are written to billing and ledgers

e Invoice and spend data exported to finance systems so revenue recognition reflects the new rules without

manual rework

Operational controls keep this safe in production:

e Cohorts and schedules limit the impact of pricing changes. Teams can pilot changes, restrict to new

customers, or roll out by segment or region.

e \alidation gates catch errors early. The engine runs schema and compatibility checks before activation and

rejects invalid mappings.

e Rollback isimmediate. Prior versions remain available, so teams can revert without touching CPQ or editing

contracts.

e Auditing is clear and complete. Every change is recorded with who, what, when, and where it applied, and

downstream invoices and revenue recognition entries reference the correct version.

This design replaces manual workflows with governed runtime computation so changes are made once in the source

of truth and executed automatically across the financial stack.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 22

Conclusion: From configuration to
pricing engine

As products continuously evolve, and new products and features are rapidly launched, so must the infrastructure that
translates usage into revenue. Modern billing is no longer a passive system of record. Companies processing billions of
usage events monthly cannot wait weeks for CPQ updates or manually reconcile invoices when model costs change.
The pricing engine and invoice-compute engine together form the foundation of this new model, turning every

product event into financial truth.

Al-native companies building on modern billing infrastructure from day one can experiment with pricing models,
launch features faster, and provide superior transparency to customers. Companies stuck in legacy architectures
face a compounding disadvantage: every new feature adds operational overhead, every pricing change requires
cross-functional coordination, and every growth milestone exposes new breaking points. The question isn't whether
billing becomes computational, but whether your organization makes this transition deliberately or is forced into it by

operational bottlenecks.

Their architecture reveals critical gaps for usage-based billing:

The litmus test is simple: Can you launch a new Al feature tomorrow with dimensional pricing (charged by tokens,
model, region, and complexity) without touching CPQ, without creating new SKUs, and without manual invoice
adjustments? If not, you're running monetization on legacy architecture and can expect to continue to face a series of

increasingly difficult monetization challenges as you try to continue scaling with your current setup.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 23

What this means for different teams

For finance leaders: Modern monetization infrastructure doesn't just improve accuracy; it provides the control and
auditability that finance demands. Every pricing change is versioned, every revenue impact is traced to specific usage
events, and every invoice can be reconstructed from first principles. This is governance at the computational level, not

just better documentation.

For RevOps and sales: The credit-based model removes friction in the deal cycle. Instead of negotiating rates for
multiple different features, you can sell standardized credit packs while the billing system handles dimensional pricing

internally. Your team closes deals faster, customers get flexibility, and finance gets clean revenue recognition.

For product teams: When billing operates as a runtime system, you can iterate on monetization as fast as you iterate
on features. Test new pricing in production with cohort rollouts. Adjust rates based on actual cost data without waiting

for quarterly CPQ updates. Make pricing a lever for product strategy, not a constraint.

Three actions to take

1. Audit your pricing complexity
Map every dimension that affects how you charge customers: usage type, feature tier, output quality,
model choice, region, seasonality, etc. If you're representing this through CPQ SKUs, count how many
variants exist. If you're over 50 SKUs, or creating 10+ new ones per quarter, you've likely outgrown

configuration-based systems.

2. Identify your computational gaps
Not all “usage-based billing” systems are runtime engines. Many AR automation platforms and ERP modules

offer usage tables and scheduled invoicing but lack true pricing engines or invoice-compute engines.

3. Build your migration strategy
The transition to computational billing doesn’'t happen overnight, but it also doesn’t require ripping out your
entire stack. Modern monetization platforms integrate with existing CPQ and ERP systems, becoming the

computational layer between them.

Metronome | The Next Evolution of Software: Billing as the Operating System for Revenue 24

Illll Metronome metronome.com

