Preserving Blood for Cytometry

When collecting clinical samples for cytometry, preservation method matters. This study compares how CytoChex, Transfix, and TokuKit affect immune cell frequencies and data quality.

1 CytoChex

2 Transfix

3 TokuKit

Key Findings

B Cells

CytoChex preserved only 2-3%

B cells, representing a 2-5 fold
loss compared to normal healthy
donor range.

T Cells

CytoChex showed 20% double-positive CD4⁺CD8⁺ T cells, a 2-4 fold increase over typical frequency.

T-bet

Transfix failed to detect T-bet* cells, preserving <1% compared to expected ~30% frequency.

Experimental Design

Head-to-head evaluation of common blood preservation methods.

Experimental Design

Head-to-head evaluation of common blood preservation methods.

Sample Collection

Whole blood from **four healthy donors** preserved with three methods: CytoChex, Transfix, and TokuKit.

- TokuKit: 4°C or -80°C storage
- CytoChex/Transfix: room temp or 4°C

Analysis Timeline

- CytoChex: 1, 2, 3, 7 days
- Transfix: 1, 2, 3, 7 days
- TokuKit: 7, 14 days

Samples were analyzed on a **44-marker mass cytometry panel** on CyTOF® Helios that analyzed T, B, NK, myeloid, and other immune populations.

CytoChex Decreased B Cell Frequencies

B cells normally account for 5-10% of non-granulocytes in healthy donors. CytoChex resolved only 2-3% while Transfix and TokuKit preserved expected ranges.

7-9%

Within expected range

CytoChex Increased Double-Positive T Cells

CD4⁺CD8⁺ T cells normally represent **5-10% of total T cells**, but CytoChex samples reached **~30% after 7 days**, a 3-6 fold increase.

Transfix Failed to Detect T-bet Population

T-bet expression expected in NK cells, γδ T cells, and memory T cell subsets (~30%). Transfix preserved only ~1% T-bet* frequency while CytoChex and TokuKit maintained expected levels.

Why Sample Preservation Matters

Degradation Distorts Profiles

Preservation methods that degrade or introduce artifacts shift immune profiles, creating results that reflect instability rather than patient biology.

Failed Samples Waste Resources

Degraded samples often fail QC, requiring costly redraws, repeat shipments, and delays in data delivery.

Inconsistencies Undermine Insights

Processing time differences introduce noise, making it harder to detect real pharmacodynamic signals and biomarkers of response.

Want to learn more?

Ask us about CytoChex, Transfix, and TokuKit comparison results—and upcoming TokuKit studies.

References

- 1. Miltenyi Biotec. MACS® handbook: Human cells and organs Human cell sources: Blood (human). Available online
- González-Mancera MS, Bolaños NI, Salamanca M, et al.
 Percentages of CD4⁺CD8⁺ double-positive T lymphocytes in
 peripheral blood of adults from a blood bank in Bogotá, Colombia.
 Turk J Haematol. 2020;37(1):36-41.
- 3. Huang C, Bi J. Expression regulation and function of T-Bet in NK cells. *Front Immunol.* 2021;12:761920.