
         CD3 CD19 CD56
T_CELL   4.0 0.2 0.3
B_CELL  0.3  3.9  0.2
NK_CELL 0.2 0.1 4.0
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Gating has been the status quo to analyze cytometry datasets for decades. The 
challenge with this approach is the inability to scale to high-parameter (20-40+) 
panels. For instance, a 43-marker panel theoretically yields billions of potential 
cell types, requiring ~239 hours to fully gate.

Unsupervised computational methods overcome these limitations by enabling 
unbiased exploration of the immune landscape. Algorithms such as FlowSOM for 
clustering and Uniform Manifold Approximation and Projection (UMAP) for 
visualization can automatically identify distinct cell populations that may be 
overlooked by traditional gating.

These tools can identify distinctive cell populations that would be missed by 
manual gating. We developed an unsupervised clustering pipeline that reflects 
biological structure and enables high-resolution identification of immune cell 
states. Applying this workflow to 70 samples from 29 melanoma patients treated 
with anti-PD-1 therapy revealed a previously uncharacterized immune cell 
population associated with immune-related adverse events (IRAEs) and 
response, which would have been overlooked by conventional gating approaches.

Background

Methods
We analyzed a 29 patient, 70 PBMC specimen melanoma dataset from the 
Huntsman Cancer Institute using a 43-marker mass cytometry panel.

Gating
We performed manual gating of FCS files using CellEngine (CellCarta, 
Montreal, Canada) following the gating strategy found on 
app.teiko.bio/projects/HCI001/overview.

FlowSOM
We clustered cells using FlowSOM, which employs a self-organizing map 
(SOM) algorithm to organize cells with similar marker expression patterns into 
a grid structure. The algorithm first maps all cells onto a grid, where each grid 
node represents cells with comparable expression profiles through an iterative 
learning process that minimizes the distance between cells and their assigned 
nodes. Following SOM training, the algorithm applies hierarchical consensus 
metaclustering to group the SOM nodes into final clusters, identifying cell 
populations that share similar phenotypic characteristics. Here, we used a 
12x12 SOM grid and a total of 70 metaclusters.

Naming and Quality Control
We applied our naming algorithm to assign biologically relevant names to cell 
clusters by evaluating their marker expression. The algorithm assigned 
biologically relevant labels (e.g., "CD8+ T Memory" vs. "CD8+ T Naive" based 
on CD27 and CD45RA), refined by marker-specific distinctions (e.g., CD11B). 
To ensure clusters were correct, we generated a cluster versus marker 
heatmap and series of UMAP plots, one for each cluster and marker (coloring 
only the selected cluster or marker).

Cluster Naming

Unsupervised clustering revealed a distinct CD161⁺ T-cell population (Cluster 10) that was not 
captured by the conventional gating scheme. This subset showed heterogeneous CD8 expression, low 
CD45RA, and variable CD27, consistent with a memory-like phenotype, and expressed very high 
levels of CD161 compared to other T cells.

The frequency of this cluster was significantly higher in responders to anti–PD-1 therapy and was also 
elevated during on-treatment timepoints in patients who developed IRAEs. This enrichment suggests 
that CD161⁺ T cells may expand alongside therapeutic activation of the immune system, potentially 
contributing to both anti-tumor immunity and immune toxicity.

Published studies have linked CD161⁺ and MAIT-like T cells to Th17 cytokine programs, 
IL-17/IL-23–driven inflammation, and checkpoint inhibitor–associated toxicity. Our findings build on this 
by providing direct evidence from high-dimensional cytometry that a CD161-rich T-cell compartment is 
associated with clinical outcomes in melanoma.

Together, these findings highlight the value of computational clustering approaches in uncovering rare, 
biologically meaningful immune subsets that may contribute to both therapeutic response and 
autoimmune toxicity in melanoma patients treated with PD-1 blockade.

Conclusions

[Legend]

We run FlowSOM to generate clusters. For every identified cluster, we calculate the median 
channel value (MCV) across all markers.

Separately, we manually gate populations of cells. We gather the MCV for all markers across all 
cells in each population. 

We calculate a cosine similarity between the cluster cells and the gated cells matrices. This results 
in a matrix where the columns are clusters and the rows are gated cell populations. Each cluster 
population has a similarity score for every gated cell population. We identify the gated cell 
population with the highest score for each cluster. We use this to rename the cluster.

* Cosine similarity is the dot product of two vectors divided by the product of their lengths, 
i.e. (A * B) / ( || A || * || B || )

The Frequency of the CD161⁺ T Cells Show a Significant Difference Between Responders and NonrespondersManually QC clusters

(4) Look at UMAP expression plots vs 
UMAP plots with labeled clusters 

(see right panel for example)

Median of MCV for 
Gated cell populations [ 34 X 43 ]

(2) Manually gate cells.

Each cell is assigned a gate.

Similarity matrix [ 34 X 70 ]

(3) Calculate cosine similarity * between the cluster 
expression table and the gated expression table.

 
Label cluster with cell type that has highest value.

         Cluster1  Cluster2  Cluster3
T_CELL   0.98     0.15      0.20
B_CELL   0.12    0.99      0.14
NK_CELL  0.18     0.13      0.97

Clusters [ 70 X 43 ]

(1) Cluster cells with FlowSOM.

Each cell is assigned a cluster.

     CD3  CD19  CD56
[1]  4.2 0.1   0.3  # Cluster 1
[2]  0.2 3.8 0.2  # Cluster 2
[3] 0.3 0.2 4.1  # Cluster 3

New Cluster Names
1_T_CELL
2_B_CELL
3_NK_CELL

CD161+ T Cell Subset Discovered with High-Dimensional Cytometry, FlowSOM, & UMAP 
Start with ~11M cells
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(3) Calculate cosine similarity * between the cluster 
expression table and the gated expression table. 

Label cluster with cell type that has highest value.

After clustering ~11 million cells and performing automated 
cluster annotation, we examined each cluster to verify that its 
assigned identity aligned with the expected marker 
expression profiles.

Cluster 10 (highlighted in red) is an example where the 
automated label did not align with any known T-cell type 
identified by manual gating. We visualized its position within 
the T-cell region of the UMAP, with cells from Cluster 10 
colored red and all other cells in grey.

To evaluate marker expression, we generated UMAP 
expression plots for each measured protein marker, where 
blue indicates low expression and red indicates high 
expression.

The algorithm annotated Cluster 10 as a CD8⁺ central 
memory T (TCM) cluster based on partial CD8 and CD27 
expression and the absence of CD45RA.

Closer inspection of CD3 and CD8 showed that only about 
half of the cells expressed CD8, indicating that this cluster is 
not a typical CD8⁺ T-cell subset. Instead, its distinct 
separation was driven by strong CD161 expression, which 
was much brighter than in other T-cell populations. The 
cluster also showed low CD45RA and variable CD27, 
consistent with a memory-like phenotype.

Taken together, these findings suggest that Cluster 10 
represents a CD161⁺ T-cell subset that is not captured by 
traditional gating strategies. This population may correspond 
to an innate-like or MAIT-like T-cell subset with distinct 
functional properties relevant to immune-related 
inflammation.

Cluster 10 (in red)

When comparing cluster frequencies 
between responders and 
nonresponders, Cluster 10 (CD161⁺ 
T cells) was significantly enriched in 
responders.

This difference was evident both 
when all timepoints were analyzed 
together and when comparing 
response within each timepoint, 
where the frequency of CD161⁺ T 
cells remained higher among 
responders.

The CD161⁺ T cell cluster (cluster 10) falls outside of the 
standard gating convention, where T cells are initially split into 
CD4 and CD8 subsets.

CD161⁺ T Cell Cluster CD161⁺ T Cell Cluster

         CD3 CD19 CD56
T_CELL   4.0 0.2 0.3
B_CELL   0.3 3.9 0.2
NK_CELL  0.2 0.1 4.0

Unsupervised clustering revealed a distinct CD161⁺ T-cell population (Cluster 10) that was not 
captured by the conventional gating scheme. This subset showed heterogeneous CD8 expression, 
low CD45RA, and variable CD27, consistent with a memory-like phenotype, and expressed very 
high levels of CD161 compared to other T cells.

The frequency of this cluster was significantly higher in responders to anti–PD-1 therapy and was 
also elevated during on-treatment timepoints in patients who developed IRAEs. This enrichment 
suggests that CD161⁺ T cells may expand alongside therapeutic activation of the immune system, 
potentially contributing to both anti-tumor immunity and immune toxicity.

Published studies have linked CD161⁺ and MAIT-like T cells to Th17 cytokine programs, 
IL-17/IL-23–driven inflammation, and checkpoint inhibitor–associated toxicity. Our findings build on 
this by providing direct evidence from high-dimensional cytometry that a CD161-rich T-cell 
compartment is associated with clinical outcomes in melanoma.

Together, these findings highlight the value of computational clustering approaches in uncovering 
rare, biologically meaningful immune subsets that may contribute to both therapeutic response and 
autoimmune toxicity in melanoma patients treated with PD-1 blockade.

Gating has been the status quo to analyze cytometry datasets for decades. 
The challenge with this approach is the inability to scale to high-parameter 
(20-40+) panels. For instance, a 43-marker panel theoretically yields billions of 
potential cell types, requiring ~239 hours to fully gate.

Unsupervised computational methods overcome these limitations by enabling 
unbiased exploration of the immune landscape. Algorithms such as FlowSOM 
for clustering and Uniform Manifold Approximation and Projection (UMAP) for 
visualization can automatically identify distinct cell populations that may be 
overlooked by traditional gating.

These tools can identify distinctive cell populations that would be missed by 
manual gating. We developed an unsupervised clustering pipeline that reflects 
biological structure and enables high-resolution identification of immune cell 
states. Applying this workflow to 70 samples from 29 melanoma patients 
treated with anti-PD-1 therapy revealed a previously uncharacterized immune 
cell population associated with immune-related adverse events (IRAEs) and 
response, which would have been overlooked by conventional gating 
approaches.

We analyzed a 29 patient, 70 PBMC specimen melanoma dataset from the 
Huntsman Cancer Institute using a 43-marker mass cytometry panel.

Gating
We performed manual gating of FCS files using CellEngine (CellCarta, 
Montreal, Canada) following the gating strategy found on 
app.teiko.bio/projects/HCI001/overview.

FlowSOM
We clustered cells using FlowSOM, which employs a self-organizing map 
(SOM) algorithm to organize cells with similar marker expression patterns 
into a grid structure. The algorithm first maps all cells onto a grid, where 
each grid node represents cells with comparable expression profiles 
through an iterative learning process that minimizes the distance between 
cells and their assigned nodes. Following SOM training, the algorithm 
applies hierarchical consensus meta-clustering to group the SOM nodes 
into final clusters, identifying cell populations that share similar phenotypic 
characteristics. Here, we used a 12x12 SOM grid and a total of 70 meta 
clusters.

Naming and Quality Control
We applied our naming algorithm to assign biologically relevant names to 
cell clusters by evaluating their marker expression. The algorithm assigned 
biologically relevant labels (e.g., "CD8+ T Memory" vs. "CD8+ T Naive" 
based on CD27 and CD45RA), refined by marker-specific distinctions (e.g., 
CD11B). To ensure clusters were correct, we generated a cluster versus 
marker heatmap and series of UMAP plots, one for each cluster and marker 
(coloring only the selected cluster or marker).


