

1 | P a g e

INFOPERCEPT
Sample Report 2021

Static Code
Analysis

INFOPERCEPT
Sample Report 2021

YOUR DATE HERE

 COMPANY NAME
Authored by: Your Name

This document is a highly confidential which contains all the information regarding the red team engagement that was done by

Infopercept Team on ABC Company.

2 | P a g e

INFOPERCEPT
Sample Report 2021

Contents
Disclaimer .. 4

Introduction 5
Configuration 5

Way Forward .. 27

3 | P a g e

INFOPERCEPT
Sample Report 2021

Copyright

The copyright in this work is vested in Infopercept Consulting Pvt. Ltd, and the document is issued in
confidence for the purpose for which it is supplied. It must not be reproduced in whole or in part or
used for tendering or manufacturing purposes except under agreement or with the consent in
writing of Infopercept Consulting Pvt. Ltd. and then only on condition that this notice is included in
any such reproduction. No information as to the contents or subject matter of this document or any
part thereof arising directly or indirectly there from shall be given orally or in writing or
communicated in any manner whatsoever to any third party being an individual firm or company or
any employee thereof without the prior consent in writing of Infopercept Consulting Pvt. Ltd.

© Infopercept Consulting Pvt. Ltd. 2021.

4 | P a g e

INFOPERCEPT
Sample Report 2021

Disclaimer

By accessing and using this report you agree to the following terms and conditions and all
applicable laws, without limitation or qualification, unless otherwise stated, the contents of this
document including, but not limited to, the text and images contained herein and their arrangement
are the property of Infopercept Consulting Pvt Ltd (Infopercept). Nothing contained in this document
shall be construed as conferring by implication, estoppel, or otherwise, any license or right to any
copyright, patent, trademark or other proprietary interest of Infopercept or any third party. This
document and its contents including, but not limited to, graphic images and documentation may
not be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any way,
without the prior written consent of Infopercept. Any use you make of the information provided, is at
your own risk and liability. Infopercept makes no representation about the suitability, reliability,
availability, timeliness, and accuracy of the information, products, services, and related graphics
contained in this document. All such information products, services, related graphics and other
contents are provided 'as is' without warranty of any kind. The relationship between you and
Infopercept shall be governed by the laws of the Republic of India without regard to its conflict of law
provisions. You and Infopercept agree to submit to the personal and exclusive jurisdiction of the
courts located at Mumbai, India. You are responsible for complying with the laws of the jurisdiction
and agree that you will not access or use the information in this report, in violation of such laws. You
represent that you have the lawful right to submit such information and agree that you will not
submit any information unless you are legally entitled to do so.

5 | P a g e

INFOPERCEPT
WHITE PAPER 2021

Introduction
This document contains results of the code analysis of lsep.

Configuration
Quality Profiles

 Names: Sonar way [CSS]; Sonar way [JavaScript]; Sonar way [PHP]; Sonar way [HTML]; Sonar
way [XML];

 Files: AW_6552PAkiL_Dtivn7U.json; AW_656C0AkiL_DtivoEo.json; AW_656bAAkiL_Dtivofu.json;
AW_656UkAkiL_DtivocD.json; AW_656XEAkiL_Dtivocb.json;

Quality Gate

 Name: Sonar way
 File: Sonar way.xml

Synthesis

Quality Gate Reliability Security Maintainability Coverage Duplication
OK E E A 0.0% 15.0%

Metrics
 Cyclomatic

Complexity
Cognitive
Complexity

Lines of code
per file

Comment
density (%) Coverage Duplication

(%)
Min 0.0 0.0 0.0 0.0 0.0 0.0

Max 47286.0 73268.0 278901.0 92.3
XX-
MAXCOVERAGE-
XX

100.0

Volume

Language Number
CSS 34458
JavaScript 75377
PHP 130554
HTML 40271
XML 398
Total 281058

6 | P a g e

INFOPERCEPT
WHITE PAPER 2021

Issues Count by Severity and Type

Type Severity Number
Vulnerability Blocker 4
Vulnerability Critical 0
Vulnerability Major 0
Vulnerability Minor 1
Vulnerability Info 0
Bug Blocker 4
Bug Critical 0
Bug Major 151
Bug Minor 123
Bug Info 0
Code_Smell Blocker 0
Code_Smell Critical 5392
Code_Smell Major 2224
Code_Smell Minor 1930
Code_Smell Info 40
Security_Hotspot Blocker 0
Security_Hotspot Critical 0
Security_Hotspot Major 0
Security_Hotspot Minor 0
Security_Hotspot Info 0

7 | P a g e

INFOPERCEPT
WHITE PAPER 2021

Number of issues by severity

Number of issues by Type

35%

33%

31%

1% 0%

Critical Major Minor Blocker Info

84%

15%

1% 0%

Code_Smell Bug Security_Hotspot Vulnerability

8 | P a g e

INFOPERCEPT
WHITE PAPER 2021

Issues

Name Description Type Severity Number
"$this" should not
be used in a
static context

$this refers to the current class instance. But
static methods can be accessed without
instantiating the class, and $this is not
available to them. Using $this in a static
context will result in a fatal error at runtime.
Noncompliant Code Example class Clazz {
$name=NULL; // instance variable public static
function foo(){ if ($this->name != NULL) {
 //
... } } } Compliant Solution class Clazz {
$name=NULL; // instance variable public static
function foo($nameParam){ if
($nameParam !=NULL) { // ... } } }

Bug Blocker 4

"<!DOCTYPE>"
declarations
should appear
before "<html>"
tags

The <!DOCTYPE> declaration tells the web
browser which (X)HTML version is being used
on the page, and therefore how to interpret
the various elements. Validators also rely on it
to know which rules to enforce. It should
always preceed the <html> tag.
Noncompliant Code Example <html> <!-
- Noncompliant --> ...</html>
Compliant Solution <!DOCTYPE html>
<html> <!-- Compliant --> ...
</html>

Bug Major 24

"<title>" should
be present in all
pages

Titles are important because they are
displayed in
search engine results as well as the browser's
toolbar. This rule verifies that the <head>
tag
contains a <title> one, and the
<html>
tag a <head> one. Noncompliant Code
Example <html> <!-- Non-Compliant -
-
> <body> ... </body> </html>
Compliant Solution <html> <!--
Compliant --> <head>
<title>Some
relevant title</title> </head>
<body> ... </body> </html>

Bug Major 1

Elements
deprecated in
HTML5 should
not be used

With the advent of HTML5, many old elements
were deprecated. To ensure the best user
experience, deprecated elements should not
be used. This rule checks for the following
deprecated elements:Element Remediation
Action basefont, big, blink, center, font,
marquee, multicol, nobr, spacer, tt use
CSS acronym use abbr applet use
embed or object bgsound use audio frame,
frameset, noframes restructure the page to
remove frames isindex use form controls dir

Bug Major 14

9 | P a g e

INFOPERCEPT
WHITE PAPER 2021

use ul hgroup use header or div listing use pre
and code nextid use GUIDS
noembed use object instead of embed
when fallback is necessary plaintext use the
"text/plain" MIME type strike use del or s xmp
use pre or code, and escape "<" and "&"
characters See W3C, Obsolete Features
WHATWG, Obsolete Features

Variables should
not be self-
assigned

some other value or variable was intended for
the assignment instead. Noncompliant Code
Example public function setName($name)
{$name = $name; } Compliant Solution public
function setName($name) {$this->name =
$name; } See CERT, MSC12-C. - Detect and
remove code that has no effect or is never
executed

Bug Major 2

Jump
statements
should not be
followed by
dead code

Jump statements (return, break, continue,
goto) and throw expressions move control
flow out of the current code block. So any
unlabelled statements that come after a jump
are dead code. Noncompliant Code Example
function fun($a) { $i = 10; return $i + $a; $i++; //
dead code } Compliant Solution function
fun($a) { $i = 10; return $i + $a; } See MITRE,
CWE-561 - Dead Code CERT, MSC56-J. - Detect
and remove superfluous code and values
CERT, MSC12-C. - Detect and remove code that
has no effect or is never executed

Bug Major 4

Identical
expressions
should not be
used on both
sides of a binary
operator

Using the same value on either side of a
binary operator is almost always a mistake. In
the case of logical operators, it is either a
copy/paste error and therefore a bug, or it is
simply wasted code, and should be simplified.
In the case of bitwise operators and most
binary mathematical operators, having the
same value on both sides of an operator
yields predictable results, and should be
simplified. Noncompliant Code Example if ($a
== $a) { // always true doZ(); } if ($a != $a) { //
always false doY(); } if ($a == $b &&
$a == $b) { // if the first one is true, the second
one is too doX(); } if ($a == $b || $a == $b) { // if
the first one is true, the second one is too
doW(); } $j
= 5 / 5; //always 1 $k = 5 - 5; //always 0
Exceptions Left-shifting 1 onto 1 is common in
the construction of bit masks, and is ignored.
$i = 1 << 1; // Compliant $j = $a << $a; //
Noncompliant See CERT, MSC12-C. - Detect and
remove code that has no effect or is never
executed S1656 - Implements a check on =.

Bug Major 8

Related "if/else if"
statements and
"cases" in a
"switch" should
not have the
same condition

A switch and a chain of if/else if statements is
evaluated from top to bottom. At most, only
one branch will be executed: the first one with
a condition that evaluates to true. Therefore,
duplicating a condition automatically leads to
dead code. Usually, this is due to a copy/paste

Bug Major 31

10 | P a g e

INFOPERCEPT
WHITE PAPER 2021

error. At best, it's simply dead code and at
worst, it's a bug that is likely to induce further
bugs as the code is maintained, and obviously
it could lead to unexpected behavior. For a
switch, if the first case ends with a break, the
second case will never be executed, rendering
it dead code. Worse there is the risk in this
situation that future maintenance will be done
on the dead case, rather than on the one
that's actually used. On the other hand, if the
first case does not end with a break, both
cases will be executed, but future maintainers
may not notice that. Noncompliant Code
Example if ($param == 1) open Window(); else
if ($param == 2) close Window(); else if
($param == 1) // Noncompliant move Window
to the Background(); switch($i) { case 1:
 //... break; case 3: //... break;
case 1: // Noncompliant //... break; default:
 // ... break; } Compliant Solution if
($param == 1) openWindow(); else if ($param
== 2) closeWindow(); else if ($param == 3)
moveWindowToTheBackground(); switch($i) {
case 1: //... break; case 3: //...
 break; default:// ...break; } See CERT,
MSC12-C. - Detect and remove code that has
no effect or is never executed

Return values
from functions
without side
effects should
not be ignored

When the call to a function doesn't have any
side effect, what is the point of making the call
if the results are ignored? In such cases, either
the function call is useless and should be
dropped, or the source code doesn't behave
as expected. Noncompliant Code Example
strlen($name); // Noncompliant; "strlen" has no
side effect Compliant Solution $length =
strlen($name); See CERT, EXP12-C. - Do not
ignore values returned by functions CERT,
EXP00-J. - Do not ignore values returned by
methods

Bug Major 1

All branches in a
conditional
structure should
not have exactly
the same
implementation

Having all branches in a switch or if chain with
the same implementation is an error. Either a
copy- paste error was made and something
different should be executed, or there
shouldn't be a switch/if chain at all.
Noncompliant Code Example if ($b == 0) { //
Noncompliant doOneMoreThing();
} else { doOneMoreThing(); } $b = $a > 12 ? 4
: 4; // Noncompliant switch ($i) { //
Noncompliant case 1:doSomething(); break;
case 2: doSomething(); break; case 3:
 doSomething(); break; default:
 doSomething(); } Exceptions
This rule does not apply to if chains without
else-s, or to switch-es without default clauses.
if($b == 0) { //no issue, this could have been
done on purpose to make the code more
readable doSomething(); } elseif($b == 1) {
doSomething(); }

Bug Major 20

11 | P a g e

INFOPERCEPT
WHITE PAPER 2021

Variables should
be initialized
before use

When a variable is not initialized before its use,
it's a sign that the developer made a mistake.
Noncompliant Code Example function
fun($condition) { $res = 1; if ($condition)
{$res++; } return $result; // Noncompliant,
"$result" instead of "$res" } Compliant Solution
function fun($condition) { $res = 1; if
($condition) {$res++; } return $res; } See MITRE,
CWE-457 - Use of Uninitialized Variable

Bug Major 43

Non-empty
statements
should change
control flow or
have at least
one side-effect

Any statement (other than a null statement,
which means a statement containing only a
semicolon ;)
which has no side effect and does not result in
a change of control flow will normally indicate
a
programming error, and therefore should be
refactored. Noncompliant Code Example $a ==
1;
// Noncompliant; was assignment intended?
$a <$b; // Noncompliant; have we forgotten
to assign
the result to a variable? {code} See MITRE,
CWE- 482 - Comparing instead of Assigning

Bug Major 3

"" and
"" tags
should be used

The / and
/<i> tags have exactly the
same effect in most web browsers, but there is
a fundamental difference between them:
 and have a semantic
meaning whereas and <i> only
convey styling information like CSS. While
 can have simply no effect on a some
devices with limited display or when a screen
reader software is used by a blind person,
 will: Display the text bold in
normal browsers Speak with lower tone
when using a screen reader such as Jaws
Consequently: in order to convey semantics,
the and <i> tags shall never be
used, in order to convey styling information,
the and <i> should be avoided
and CSS should be used instead.
Noncompliant Code Example
<i>car</i> <!-- Noncompliant --
> train <!--
Noncompliant --> Compliant Solution
car

Bug Minor 108

"<frames>"
should have a
"title" attribute

Frames allow different web pages to be put
together on the same visual space. Users
without disabilities can easily scan the
contents of all frames at once. However,
visually impaired users using screen readers
hear the page content linearly. The title
attribute is used to list all the page's frames,
enabling those users to easily navigate
among them. Therefore, the <frame> and
<iframe> tags should always have a title
attribute. Noncompliant Code Example

Bug Minor 6

12 | P a g e

INFOPERCEPT
WHITE PAPER 2021

<frame src="index.php?p=menu"> <--
Non-Compliant --> <frame
src="index.php?p=home" name="contents">
<-- Non-Compliant --> Compliant
Solution <frame src="index.php?p=menu"
title="Navigation menu"> <--
Compliant --> <frame
src="index.php?p=home" title="Main content"
name="contents"> <-- Compliant -->

Images tags and
buttons should
have an "alt"
attribute

The alt attribute provides a textual alternative
to an image. It is used whenever the actual
image cannot be rendered. Common reasons
for that include: The image can no longer be
found Visually impaired users using a screen
reader software Images loading is
disabled, to reduce data consumption on
mobile phones Empty alt attributes are not
allowed, since purely decorative images
should be specified using CSS, not using the
img tag. Noncompliant Code Example <img
src="foo.png" /> <!-- Noncompliant -->
 <!--
Noncompliant -- > <input type="image"
src="bar.png" /> <!-- Noncompliant -->
Compliant Solution <img src="foo.png"
alt="Some textual description of foo.png" />
<input type="image" src="bar.png"
alt="Textual description of bar.png" />

Bug Minor 9

Constant names
should comply
with a naming
convention

Shared coding conventions allow teams to
collaborate efficiently. This rule checks that all
constant names match a provided regular
expression. Noncompliant Code Example With
the default regular expression ^[A-Z][A-Z0-
9]*(_[A-Z0- 9]+)*$: define("const1", true); class
Foo {const const2 = "bar";} Compliant Solution
define("CONST1", true); class Foo {const
CONST2 = "bar"; }

CODE_SMELL Critical 116

String literals
should not be
duplicated

Duplicated string literals make the process of
refactoring error-prone, since you must be
sure to update all occurrences. On the other
hand, constants can be referenced from
many places, but only need to be updated in a
single place. Noncompliant Code Example
With the default threshold of 3: function run() {
prepare('action1'); // Non-Compliant - 'action1'
is duplicated 3 times execute('action1');
release('action1'); } Compliant Solution
ACTION_1 = 'action1'; function run() {
prepare(ACTION_1); execute(ACTION_1);
release(ACTION_1); } Exceptions To prevent
generating some false-positives, literals
having less than 5 characters are excluded.

CODE_SMELL Critical 2604

Control
structures
should use curly
braces

While not technically incorrect, the omission of
curly braces can be misleading, and may lead
to the introduction of errors during
maintenance. Noncompliant Code Example if
(condition) // Noncompliant

CODE_SMELL Critical 1955

13 | P a g e

INFOPERCEPT
WHITE PAPER 2021

executeSomething(); Compliant Solution if
(condition) {executeSomething(); } See CERT,
EXP19-C. - Use braces for the body of an if, for,
or while statement CERT, EXP52-J. - Use
braces for the body of an if, for, or while
statement

switch"
statements
should have
"default" clauses

The requirement for a final case default clause
is defensive programming. The clause should
either take appropriate action, or contain a
suitable comment as to why no action is
taken. Even when the switch covers all current
values of an enum, a default case should still
be used because there is no guarantee that
the enum won't be extended. Noncompliant
Code Example switch ($param) {//missing
default clause case 0: do_something(); break;
case 1: do_something_else(); break; }
Compliant Solution switch ($param) { case 0:
do_something(); break; case 1:
do_something_else(); break; default: error();
break; } See MITRE, CWE-478 - Missing
Default Case in Switch Statement CERT, MSC01-
C. - Strive for logical completeness

CODE_SMELL Critical 151

Parentheses
should not be
used for calls to
"echo"

echo can be called with or without
parentheses, but it is best practice to leave
parentheses off the
call because using parentheses with multiple
arguments will result in a parse error.
Noncompliant Code Example echo("Hello"); //
Noncompliant, but it works echo("Hello",
"World"); // Noncompliant. Parse error
Compliant Solution echo "Hello"; echo
"Hello","World!";

CODE_SMELL Critical 20

Cognitive
Complexity of
functions should
not be too high

Cognitive Complexity is a measure of how
hard the control flow of a function is to
understand.
Functions with high Cognitive Complexity will
be difficult to maintain. See Cognitive
Complexity

CODE_SMELL Critical 513

 A conditionally
executed single
line should be
denoted by
indentation

In the absence of enclosing curly braces, the
line
immediately after a conditional is the one that
is
conditionally executed. By both convention
and
good practice, such lines are indented. In the
absence of both curly braces and indentation
the
intent of the original programmer is entirely
unclear and perhaps not actually what is
executed.
Additionally, such code is highly likely to be
confusing to maintainers. Noncompliant Code
Example if ($x > 0) // Noncompliant
doTheThing(); doTheOtherThing(); foo();

CODE_SMELL Critical 33

14 | P a g e

INFOPERCEPT
WHITE PAPER 2021

Compliant Solution if ($x > 0) {
doTheThing();
doTheOtherThing(); } foo(); or if ($x > 0)
doTheThing(); doTheOtherThing(); foo();

Track uses of
"TODO" tags

TODO tags are commonly used to mark places
where some more code is required, but which
the
developer wants to implement later.
Sometimes the developer will not have the
time or will simply
forget to get back to that tag. This rule is
meant to track those tags and to ensure that
they do not go
unnoticed. Noncompliant Code Example
function doSomething() { // TODO } See
 MITRE, CWE-
546 - Suspicious Comment

CODE_SMELL Info 40

Sections of code
should not be
commented out

Programmers should not comment out code
as it should not be bloats programs and
reduces readability. Unused commented out
code should be deleted and can be retrieved
from source control history if required. See
 MISRA :2004, 2.4 - Sections of code
should not be "commented out". MISRA
C++:2008, 2-7-2 - Sections of code shall not be
"commented out" using C-style comments.
MISRA C++:2008, 2-7-3 - Sections of code
should not be "commented out" using C++
comments. MISRA C:2012, Dir. 4.4 - Sections of
code should not be "commented out"

CODE_SMELL Major 42

Source files
should not have
any duplicated
blocks

An issue is created on a file as soon as there is
at least one block of duplicated code on this
file

CODE_SMELL Major 84

Collapsible "if"
statements
should be
merged

Merging collapsible if statements increases
the
code's readability. Noncompliant Code
Example if (condition1) { if (condition2) { ... } }
Compliant Solution if (condition1 &&
condition2) {
... }

CODE_SMELL Major 107

Unused "private"
fields should be
removed

If a private field is declared but not used in the
program, it can be considered dead code and
should therefore be removed. This will improve
maintainability because developers will not
wonder what the variable is used for.
Noncompliant Code Example class MyClass {
private $foo = 4;
//foo is unused public function compute($a) {
return $a * 4; } } Compliant Solution class
MyClass { public function compute($a) {
 return
$a * 4; } }

CODE_SMELL Major 6

Functions should
not have too

A long parameter list can indicate that a new
structure should be created to wrap the
numerous parameters or that the function is

CODE_SMELL Major 20

15 | P a g e

INFOPERCEPT
WHITE PAPER 2021

many
parameters

doing too many things. Noncompliant Code
Example With a maximum number of 4
parameters: function doSomething($param1,
$param2, $param3,
$param4, $param5) { ... } Compliant Solution
function doSomething($param1, $param2,
$param3, $param4) { ... }

Nested blocks of
code should not
be left empty

Most of the time a block of code is empty
when a
piece of code is really missing. So such empty
block must be either filled or removed.
Noncompliant
Code Example for ($i = 0; $i < 42; $i++){} //
Empty on purpose or missing piece of code ?
Exceptions When a block contains a comment,
this block is not considered to be empty.

CODE_SMELL Major 23

Redundant pairs
of parentheses
should be
removed

The use of parentheses, even those not
required to
enforce a desired order of operations, can
clarify
the intent behind a piece of code. But
redundant
pairs of parentheses could be misleading, and
should be removed. Noncompliant Code
Example
$x = ($y / 2 + 1); // Compliant even if the
parenthesis are ignored by the compiler if ($a
&& (($x + $y > 0))) { //
Noncompliant
//... } return (($x + 1)); // Noncompliant
Compliant
Solution $x = ($y / 2 + 1); if ($a && ($x
+
$y > 0)) { //... } return ($x + 1);

CODE_SMELL Major 9

Local variables
should not have
the same name
as class fields

Overriding or shadowing a variable declared
in an
outer scope can strongly impact the
readability,
and therefore the maintainability, of a piece of
code. Further, it could lead maintainers to
introduce bugs because they think they're
using
one variable but are really using another.
Noncompliant Code Example class Foo {
public
$myField; public function doSomething() {
$myField = 0; ... } } See CERT, DCL01-C.
- Do
not reuse variable names in subscopes
 CERT,
DCL51-J. - Do not shadow or obscure identifiers
in
subscopes

CODE_SMELL Major 29

Track uses of
"FIXME" tags

FIXME tags are commonly used to mark places
where a bug is suspected, but which the
developer

CODE_SMELL Major 10

16 | P a g e

INFOPERCEPT
WHITE PAPER 2021

wants to deal with later. Sometimes the
developer
will not have the time or will simply forget to
get
back to that tag. This rule is meant to track
those
tags and to ensure that they do not go
unnoticed.
Noncompliant Code Example function
divide($numerator, $denominator) { return
$numerator / $denominator; // FIXME
denominator value might be 0 } See MITRE,
CWE-546 - Suspicious Comment

Functions should
not contain too
many return
statements

Having too many return statements in a
function increases the function's essential
complexity because the flow of execution is
broken each time a return statement is
encountered. This makes it harder to read and
understand the logic of the function.
Noncompliant Code Example With the default
threshold of 3: function myFunction(){ //
Noncompliant as there are 4 return
statements if (condition1) {return true; } else
{if condition2) {return false;} else {return true;}
} return false; }

CODE_SMELL Major 196

Unused "private"
methods should
be removed

private methods that are never executed are
dead code: unnecessary, inoperative code
that should be removed. Cleaning out dead
code decreases the size of the maintained
codebase, making it easier to understand the
program and preventing bugs from being
introduced. Noncompliant Code Example
public class Foo { private function Foo() {} //
Compliant, private empty constructor
intentionally used to prevent any direct
instantiation of a class. public static function
doSomething() { $foo = new Foo(); ... }
private function unusedPrivateFunction() { //
Noncompliant } } Compliant Solution public
class Foo { private function Foo(){} //
Compliant, private empty constructor
intentionally used to prevent any direct
instantiation of a class. public static function
doSomething() { $foo = new Foo(); } }

CODE_SMELL Major 15

Unused function
parameters
should be
removed

Unused parameters are misleading. Whatever
the value passed to such parameters is, the
behavior will be the same. Noncompliant Code
Example function doSomething($a, $b) { // "$a"
is unused return compute($b); } Compliant
Solution function doSomething($b) { return
compute($b); } Exceptions Functions in classes
that override a class or implement interfaces
are ignored. class C extends B { function
doSomething($a, $b) {// no issue reported on
$b compute($a); } } See CERT, MSC12-C. -
Detect and remove code that has no effect or
is never executed

CODE_SMELL Major 38

17 | P a g e

INFOPERCEPT
WHITE PAPER 2021

Sections of code
should not be
commented out

Programmers should not comment out code
as it bloats programs and reduces readability.
Unused code should be deleted and can be
retrieved from source control history if
required

CODE_SMELL Major 1241

"for" loop stop
conditions
should be
invariant

A for loop stop condition should test the loop
counter against an invariant value (i.e. one
that is true at both the beginning and ending
of every loop iteration). Ideally, this means that
the stop condition is set to a local variable just
before the loop begins. Stop conditions that
are not invariant are slightly less efficient, as
well as being difficult to
understand and maintain, and likely lead to
the introduction of errors in the future. This rule
tracks three types of non-invariant stop
conditions: When the loop counters are
updated in the body of the for loop When
the stop condition depend upon a method call
 When the stop condition depends on
an object property, since such properties
could change during the execution of the loop.
Noncompliant Code Example for ($i = 0; $i <
10; $i++) {echo $i; if(condition) {$i = 20; } }
Compliant Solution for ($i = 0; $i < 10; $i++) {
echo $i; }

CODE_SMELL Major 13

Functions should
not have too
many lines of
code

A function that grows too large tends to
aggregate too many responsibilities. Such
functions inevitably become harder to
understand and therefore harder to maintain.
Above a specific threshold, it is strongly
advised to refactor into smaller functions
which focus on well-defined tasks. Those
smaller functions will not only be easier to
understand, but also probably easier to test.

CODE_SMELL Major 73

Classes should
not have too
many methods

A class that grows too much tends to
aggregate too many responsibilities and
inevitably becomes harder to understand and
therefore to maintain. Above a specific
threshold, it is strongly advised to refactor the
class into smaller ones which focus on well-
defined topics.

CODE_SMELL Major 62

"switch"
statements
should not have
too many "case"
clauses

When switch statements have large sets of
case
clauses, it is usually an attempt to map two
sets of data. A real map structure would be
more readable and maintainable, and should
be used instead.

CODE_SMELL Major 13

PHP 4
constructor
declarations
should not be
used

In PHP 4, any function with the same name as
the nesting class was considered a class
constructor. In PHP 5, this mechanism has
been deprecated and the " construct" method
name should be used instead. If both styles
are present in the same class, PHP 5 will treat
the function named " construct" as the class
constructor. This rule rule raises an issue for
each method with the same name as the

CODE_SMELL Major 2

18 | P a g e

INFOPERCEPT
WHITE PAPER 2021

enclosing class. Noncompliant Code Example
class Foo { function Foo(){...} } Compliant
Solution class Foo { function construct(){...} }

Method
arguments with
default values
should be last

The ability to define default values for method
arguments can make a method easier to use.
Default argument values allow callers to
specify as many or as few arguments as they
want while getting the same functionality and
minimizing boilerplate, wrapper code. But all
method arguments with default values should
be declared after the method arguments
without default values. Otherwise, it makes it
impossible for callers to take advantage of
defaults; they must re-specify the defaulted
values in order to "get to" the non- default
arguments. Noncompliant Code Example
function makeyogurt($type = "acidophilus",
$flavor){...} // Noncompliant
makeyogurt("raspberry")}} // Runtime error:
Missing argument 2 in call to makeyogurt()
Compliant Solution function
makeyogurt($flavor, $type = "acidophilus",){...}
makeyogurt("raspberry")}} // Works as
expected

CODE_SMELL Major 24

Dead stores
should be
removed

A dead store happens when a local variable is
assigned a value that is not read by any
subsequent instruction. Calculating or
retrieving a value only to then overwrite it or
throw it away, could indicate a serious error in
the code. Even if it's not an error, it is at best a
waste of resources. Therefore all calculated
values should be used. Noncompliant Code
Example $i = $a + $b; // Noncompliant;
calculation result not used before value is
overwritten $i = compute(); Compliant Solution
$i
= $a + $b; $i += compute(); Exceptions This rule
ignores initializations to -1, 0, 1, null, true, false,
"", [] and array(). See MITRE, CWE-563 -
Assignment to Variable without Use ('Unused
Variable') CERT, MSC13-C. - Detect and
remove unused values CERT, MSC56-J. - Detect
and remove superfluous code and values

CODE_SMELL Major 84

Two branches in
a conditional
structure should
not have exactly
the same
implementation

Having two cases in a switch statement or two
branches in an if chain with the same
implementation is at best duplicate code, and
at worst a coding error. If the same logic is
truly needed for both instances, then in an if
chain they should be combined, or for a
switch, one should fall through to the other.
Noncompliant Code Example switch ($i) {
case 1: doFirst(); doSomething(); break; case
2: doSomethingDifferent(); break; case 3:
// Noncompliant; duplicates case 1's
mplementation doFirst(); doSomething();
break; default: doTheRest(); } if ($a >=
0&& $a < 10) { doFirst();

CODE_SMELL Major 34

19 | P a g e

INFOPERCEPT
WHITE PAPER 2021

doTheThing(); } else if ($a >= 10 &&
$a < 20) { doTheOtherThing(); } else if ($a
>= 20 && $a < 50) { doFirst();
doTheThing(); // Noncompliant; duplicates first
condition } Exceptions Blocks in an if chain that
contain a single line of code are ignored, as
are blocks in a switch statement that contain
a single line of code with or without a following
break. if ($a >= 0 && $a < 10) {
doTheThing(); } else if ($a >= 10 &&
$a < 20) { doTheOtherThing(); } else if ($a
>= 20 && $a < 50) {
doTheThing(); // no issue, usually this is done
on purpose to increase the readability } But
this exception does not apply to if chains
without else-s, or to switch-es without default
clauses when all branches have the same
single line of code. In case of if chains with
else-s, or of switch-es with default clauses,
rule S3923 raises a bug. if ($a >= 0
&& $a <
10) { doTheThing(); } else if ($a >= 20
&& $a < 50) { doTheThing();
//Noncompliant; this might have been done on
purpose but probably not }

Ternary
operators should
not be nested

Just because you can do something, doesn't
mean
you should, and that's the case with nested
ternary
operations. Nesting ternary operators results
in the
kind of code that may seem clear as day
when you
write it, but six months later will leave
maintainers
(or worse - future you) scratching their heads
and
cursing. Instead, err on the side of clarity, and
use
another line to express the nested operation
as a
separate statement. Noncompliant Code
Example
function get_title($gender, $is_married) {
return
$gender == "MALE" ? "Mr. " : ($is_married ? "Mrs. "
: "Miss "); // Noncompliant } Compliant Solution
function get_title($gender, $is_married) { if
($gender == "MALE") { return "Mr. "; } return
$is_married ? "Mrs. " : "Miss "; }

CODE_SMELL Major 13

Functions should
use "return"
consistently

Because it is dynamically typed, PHP does
not enforce a return type on a function.
This means that different paths through a
function can return different types of
values, which can be very confusing to
the user and significantly harder to
maintain. In particular, it is consequently

CODE_SMELL Major 4

20 | P a g e

INFOPERCEPT
WHITE PAPER 2021

also possible to mix empty return
statements (implicitly returning null) with
some returning an expression. This rule
verifies that all the return statements
from a function are consistent.
Noncompliant Code Example function
foo($a) { // Noncompliant, function will
return "true" or null if ($a == 1) { return true;
} return; } Compliant Solution function
foo($a) { if ($a == 1) { return true; }
return false; } or function foo($a) { if ($a ==
1) { return true; } return null; }

Methods should
not have
identical
implementations

When two methods have the same
implementation, either it was a mistake -
something else was intended - or the
duplication was intentional, but may be
confusing to maintainers. In the latter case,
one implementation should invoke the other.
Noncompliant Code Example class A { private
const CODE =
"bounteous"; public function getCode() {
doTheThing(); return A::CODE;} public function
getName() { // Noncompliant doTheThing();
return A::CODE;} } Compliant Solution class A
{private const CODE = "bounteous"; public
function getCode() { doTheThing(); return
A::CODE; } public function getName() {
return $this- >getCode(); } } Exceptions
Methods that are not accessors (getters and
setters), with fewer than 2 statements are
ignored.

CODE_SMELL Major 11

Class names
should comply
with a naming
convention

Shared coding conventions allow teams to
collaborate effectively. This rule allows to
check that all class names match a provided
regular expression. Noncompliant Code
Example With default provided regular
expression ^[A-Z][a-zA-Z0- 9]*$: class
my_class {...} Compliant Solution class MyClass
{...}

CODE_SMELL Minor 242

A close curly
brace should be
located at the
beginning of a
line

Shared coding conventions make it possible
for a team to efficiently collaborate. This rule
makes it mandatory to place a close curly
brace at the beginning of a line. Noncompliant
Code Example if(condition) { doSomething();}
Compliant Solution if(condition) {
doSomething(); } Exceptions When blocks are
inlined (open and close curly braces on the
same line), no issue is triggered. if(condition)
{doSomething();}

CODE_SMELL Minor 20

Empty
statements
should be
removed

Empty statements, i.e. ;, are usually introduced
by mistake, for example because:It was meant
to be replaced by an actual statement, but
this was forgotten. There was a typo which
lead the semicolon to be doubled, i.e. ;;.
Noncompliant Code Example function

CODE_SMELL Minor 6

21 | P a g e

INFOPERCEPT
WHITE PAPER 2021

doSomething() { ; // oncompliant - was used
as a kind of TODO marker } function
doSomethingElse($p) { echo $p;;//
Noncompliant - double ; } for ($i = 1; $i <= 10;
doSomething($i), $i++); // Noncompliant -
Rarely, they are used on purpose as the body
of a loop. It is a bad practice to have side-
effects outside of the loop body Compliant
Solution function doSomething() {} function
doSomethingElse($p) { echo $p; for ($i = 1; $i
<= 10; $i++) { oSomething($i); } } See CERT,
MSC12-C. - Detect and remove code that has
no effect or is never executed CERT, MSC51-J. -
Do not place a semicolon immediately
following an if, for, or while condition CERT,
EXP15-C. - Do not place a semicolon on the
same line as an if, for, or while statement

Boolean literals
should not be
redundant

Redundant Boolean literals should be
removed from expressions to improve
readability. Noncompliant Code Example if
($booleanVariable == true) { /* ... */ } if
($booleanVariable != true) { /* ... */ } if
($booleanVariable || false) { /* ... */ }
doSomething(!false); $booleanVariable =
condition ? true : exp; $booleanVariable =
condition ? false : exp; $booleanVariable =
condition ? exp : true;
$booleanVariable = condition ? exp : false;
Compliant Solution if ($booleanVariable) { /* ...
/ } if (!$booleanVariable) { / ... */ } if
($booleanVariable) { /* ... */ }
doSomething(true);
$booleanVariable = condition || exp;
$booleanVariable = !condition &&
exp;
$booleanVariable = !condition || exp;
$booleanVariable = condition &&
exp; Exceptions The use of literal booleans in
comparisons which use identity operators
(=== and
!==) are ignored.

CODE_SMELL Minor 118

Return of
boolean
expressions
should not be
wrapped into an
"if-then-else"
statement

Return of boolean literal statements wrapped
into if-then-else ones should be simplified.
Noncompliant Code Example if (expression) {
return true; } else { return false; } Compliant
Solution return expression;

CODE_SMELL Minor 13

Interface names
should comply
with a naming
convention

Sharing some naming conventions is a key
point to make it possible for a team to
efficiently collaborate. This rule allows to
check that all interface names match a
provided regular expression. Noncompliant
Code Example With the default regular
expression ^[A-Z][a-zA-Z0-9]*$: interface
myInterface {...} // Noncompliant Compliant
Solution interface MyInterface {...}

CODE_SMELL Minor 7

22 | P a g e

INFOPERCEPT
WHITE PAPER 2021

Overriding
methods should
do more than
simply call the
same method in
the super class

Overriding a method just to call the same
method from the super class without
performing any other actions is useless and
misleading. The only time this is justified is in
final overriding methods, where the effect is to
lock in the parent class behavior. This rule
ignores such overrides of equals, hashCode
and toString. Noncompliant Code Example
class Child extends Parent { public function
func($n,$m) { parent::func(nm); //
Noncompliant } } class Parent { public function
func($n, $m) { // do something } } Compliant
Solution class Child extends Parent { public
function func($n,$m) { parent::func(nm);
 // do additional things... } } class Parent
{ public function func($n, $m) { // do
something } } or class Child extends Parent { //
function eliminated } class Parent { public
function func($n, $m) { // do something } }

CODE_SMELL Minor 17

"switch"
statements
should have at
least 3 "case"
clauses

switch statements are useful when there are
many
different cases depending on the value of the
same expression. For just one or two cases
however, the code will be more readable with
if statements.
Noncompliant Code Example switch
($variable) { case 0: do_something();
 break; default: do_something_else();
 break; } Compliant Solution if
($variable == 0) { do_something(); }
else { do_something_else(); }

CODE_SMELL Minor 36

Unused local
variables should
be removed

If a local variable is declared but not used, it is
dead code and should be removed. Doing so
will improve maintainability because
developers will not wonder what the variable
is used for. Noncompliant Code Example
function numberOfMinutes($hours) {
$seconds = 0; // seconds is never used return
hours * 60; } Compliant Solution function
numberOfMinutes($hours) { return hours * 60; }

CODE_SMELL Minor 1184

Local variables
should not be
declared and
then
immediately
returned or
thrown

Declaring a variable only to immediately
return or
throw it is a bad practice. Some developers
argue that the practice improves code
readability, because it enables them to
explicitly name what is being returned.
However, this variable is an internal
implementation detail that is not exposed to
the callers of the method. The method name
should be sufficient for callers to know exactly
what will be returned. Noncompliant Code
Example function
computeDurationInMilliseconds() {$duration =
((($hours * 60) + $minutes) * 60 +
$seconds) * 1000 ; return $duration; }
Compliant Solution function
computeDurationInMilliseconds() { return

CODE_SMELL Minor 163

23 | P a g e

INFOPERCEPT
WHITE PAPER 2021

((($hours * 60) + $minutes) * 60 + $seconds) *
1000; }

"&&" and "||"
should be used

PHP has two sets of logical operators:
&& / ||, and and / or. The difference
between the sets is precedence. Because and
/ or have a lower precedence than almost any
other operator, using them instead of
&& / || may not have the result you
expect. Noncompliant Code Example
$have_time = true; $have_money = false;
$take_vacation = $have_time and
$have_money; // Noncompliant.
$take_vacation == true. Compliant Solution
$have_time = true; $have_money = false;
$take_vacation = $have_time &&
$have_money; // $take_vacation == false.

CODE_SMELL Minor 89

Jump
statements
should not be
redundant

Jump statements, such as return, goto, and
continue let you change the default flow of
program execution, but jump statements that
direct the control flow to the original direction
are just a waste of keystrokes. Noncompliant
Code Example function foo($p) { $i = $p; while
($i >
0) { $i--; continue; // Noncompliant } }
Compliant Solution function foo($p) { $i = $p;
while ($i > 0) { $i--; } }

CODE_SMELL Minor 35

Using
pseudorandom
number
generators
(PRNGs) is
security-sensitiv

Using pseudorandom number generators
(PRNGs) is security-sensitive. For example, it
has led in the past to the following
vulnerabilities: CVE-2013- 6386 CVE-2006-
3419CVE-2008-4102 When software generates
predictable values in a context requiring
unpredictability, it may be possible for an
attacker to guess the next value that will be
generated, and use this guess to impersonate
another user or access sensitive information.
As the rand() and mt_rand functions rely on a
pseudorandom number generator, it should
not be used for security-critical applications
or for protecting sensitive data. Ask Yourself
Whether the code using the generated value
requires it to be unpredictable. It is the case
for all encryption mechanisms or when a
secret value, such as a password, is hashed.
 the function you use generates a
value which can be predicted (pseudo-
random). the generated value is used
multiple times. an attacker can access the
generated value. You are at risk if you
answered yes to the first question and any of
the following ones. Recommended Secure
Coding Practices Use functions which rely on a
cryptographically strong random number
generator such as random_int() or
random_bytes() or
openssl_random_pseudo_bytes() When
using openssl_random_pseudo_bytes(),

Security_Hotspot Critical 23

24 | P a g e

INFOPERCEPT
WHITE PAPER 2021

provide and check the crypto_strong
parameter Use the generated random
values only once. You should not expose the
generated random value. If you have to store
it, make sure that the database or file is
secure. Questionable Code Example $random
= rand(); $random2 = mt_rand(0, 99);
Compliant

Hashing data is
security-
sensitive

Hashing data is security-sensitive. It has led in
the past to the following vulnerabilities: CVE-
2018- 9233 CVE-2013-5097 CVE-2007-1051
Cryptographic hash functions are used to
uniquely identify information without storing
their original form. When not done properly, an
attacker can steal the original information by
guessing it (ex: with a rainbow table), or
replace the original data with another one
having the same hash. This rule creates an
issue when one of the following functions are
called: hash, hash_init, crypt, password_hash,
hash_pbkdf2, openssl_pbkdf2, md5, sha1 Ask
Yourself Whether the hashed value is
used in a security context. the
hashing algorithm you are using is known to
have vulnerabilities. salts are not
automatically generated and applied by the
hashing function. any generated salts are
cryptographically weak or not credential-
specific. You are at risk if you answered yes to
the first question and any of the following
ones. Recommended Secure Coding
Practices If the hashed data is sensitive, just
use the
functions officially recommended by PHP, i.e.
password_hash, password_verify and
password_needs_rehash. Alternatively you
can use the crypt function or hash_pbkdf2
functions. Do not use the md5 or sha1 for
sensitive values, and avoid hash and hash_init
whenever possible. If you use hash_pbkdf2 or
crypt choose a hashing algorithms which is
known to be strong. Check regularly that this is
still the case as hashing algorithms often lose
strength over time. It is recommended to use
a hashing function that generate salts
automatically, but if you generate salts
separately: generate a
cryptographically strong and random salt that
is unique for every credential being hashed.
 the salt is applied correctly before the
hashing. save both the salt and the
hashed value in the relevant database record;
during future validation operations, the salt
and hash can then be retrieved from the
database. The hash is recalculated with the
stored salt and the value being validated, and
the result compared to the stored hash.
 Note that password_hash generates

Security_Hotspot Critical 33

25 | P a g e

INFOPERCEPT
WHITE PAPER 2021

strong salts automatically. Remember to
rehash your data regularly as the hashing
algorithms become less secure over time. The
password_needs_rehash function helps you
with that. Exceptions HMAC computing is out
of the scope of this rule. Thus no issue will be
raised when the hash_init function is called
with HASH_HMAC given as second parameter.
See OWASP Top 10 2017 Category A3
- Sensitive Data Exposure OWASP
Top 10 2017 Category A6 - Security
Misconfiguration MITRE, CWE-916 - Use of
Password Hash With Insufficient
Computational Effort MITRE, CWE-759 - Use of
a One-Way Hash without a Salt MITRE, CWE-760
- Use of a One-Way Hash with a
Predictable Salt SANS Top 25 - Porous
Defenses

Creating cookies
without the
"secure" flag is
security-
sensitive

The "secure" attribute prevents cookies from
being sent over plaintext connections such as
HTTP, where they would be easily
eavesdropped upon. Instead, cookies with the
secure attribute are only sent over encrypted
HTTPS connections. Recommended Secure
Coding Practices set the last parameter of the
setcookie function to "true" set
session.cookie_secure = 1 in the php.ini file
Noncompliant Code Example ; php.ini
session.cookie_secure = 0; Noncompliant // in
PHP code
session_set_cookie_params($lifetime, $path,
$domain, false); // Noncompliant, the last
parameter means that the session cookie
should not be secure setcookie($name,
$value, $expire, $path, $domain, false); //
Noncompliant, the last parameter means that
the cookie should not be secure See OWASP
Top 10 2017 Category A2 - Broken
Authentication OWASP Top 10 2017 Category A3
- Sensitive Data Exposure MITRE, CWE-311 -
Missing Encryption of Sensitive Data MITRE,
CWE-315 - Cleartext Storage of Sensitive
Information in a Cookie MITRE, CWE-614 -
Sensitive Cookie in HTTPS Session Without
'Secure' Attribute SANS Top 25 - Porous
Defenses

Security_Hotspot Minor 1

Credentials
should not be
hard-coded

Because it is easy to extract strings from a
compiled application, credentials should
never be hard- coded. Do so, and they're
almost guaranteed to end up in the hands of
an attacker. This is particularly true for
applications that are distributed. Credentials
should be stored outside of the code in a
strongly-protected encrypted configuration
file or database. Noncompliant Code Example
$uname = "steve"; $password = "blue";
connect($uname, $password); Compliant
Solution

Vulnerability Blocker 4

26 | P a g e

INFOPERCEPT
WHITE PAPER 2021

$uname = getEncryptedUser(); $password =
getEncryptedPass(); connect($uname,
$password); See OWASP Top 10 2017
Category A2 - Broken Authentication MITRE,
CWE-798 - Use of Hard- coded Credentials
 MITRE, CWE-259 - Use of Hard-coded
Password CERT, MSC03-J. - Never hard
code sensitive information SANS Top 25 -
Porous Defenses Derived from
FindSecBugs rule Hard Coded Password

"sleep" should
not be called

sleep is sometimes used in a mistaken
attempt to prevent Denial of Service (DoS)
attacks by throttling response rate. But
because it ties up a thread, each request
takes longer to serve that it otherwise would,
making the application more vulnerable to
DoS attacks, rather than less. Noncompliant
Code Example if (is_bad_ip($requester)) {
sleep(5); // Noncompliant } See OWASP Top 10
2017 Category A6 - Security Misconfiguration

Vulnerability Minor 1

27 | P a g e

INFOPERCEPT
Sample Report 2021

About INFOPERCEPT

Infopercept’s vision and core values revolve around making organizations more secure through the
core values of Honesty, Transparency and Knowledge, so as to enable them to make better informed
decisions about their security practices & goals. With our synergistic vision to combine technical
expertise and professional experience, we aim to further establish our place as a one stop shop for
our clients and partners’ cybersecurity and accreditation needs.

Our specialized core team comprises of experienced veterans, technical experts & security
enthusiasts having good practical experience & thorough knowledge in the Cybersecurity domain,
are abreast of the latest trends and security innovations; ensuring that you always get the best
security approach & solutions for your specific business needs, exactly the way you want it to be.

Imprint
© Infopercept Consulting Pvt. Ltd. 2021

Publisher
H-1209, Titanium City Center,
Satellite Road,
Ahmedabad – 380 015,
Gujarat, India.

Contact Info
M: +91 9898857117
W: www.infopercept.com
E : sos@infopercept.com

By accessing/ proceeding further with usage of this platform / tool / site /application, you agree with the Infopercept Consu lting Pvt. Ltd.’s (ICPL) privacy policy and standard terms and conditions
along with providing your consent to/for the same. For detailed understanding and review of privacy policy and standard terms and conditions. kindly visit www.infopercept.com or refe r our privacy
policy and standard terms and conditions.

Global Offices

UNITED STATES OF AMERICA
+1 516 713 5040

UNITED KINGDOM
+44 2035002056

SRI LANKA
+94 702 958 909

KUWAIT
+965 6099 1177

INDIA
+91 9898857117

28 | P a g e

INFOPERCEPT
Sample Report 2021

