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Alzheimer’s disease (AD) is the most common neurodegenerative disease, yet
there are no disease-modifying treatments available and there is no cure. It is
becoming apparent that metabolic and vascular conditions such as type 2 dia-
betes (T2D) and hypertension promote the development and accumulation of
Alzheimer’s disease-related dementia pathologies. To this end, aerobic exer-
cise, which is a common lifestyle intervention for both metabolic disease and
hypertension, is shown to improve brain health during both healthy aging and
dementia. However, noncompliance or other barriers to exercise response are
common in exercise treatment paradigms. In addition, reduced intracellular
proteostasis and mitochondrial function could contribute to the etiology of
AD. Specifically, compromised chaperone systems [i.e., heat shock protein
(HSP) systems] can contribute to protein aggregates (i.e., b-amyloid plaques
and neurofibrillary tangles) and reduced mitochondrial quality control (i.e.,
mitophagy). Therefore, novel therapies that target whole body metabolism, the
vasculature, and chaperone systems (like HSPs) are needed to effectively treat
AD. This review focuses on the role of heat therapy in the treatment and pre-
vention of AD. Heat therapy has been independently shown to reduce whole
body insulin resistance, improve vascular function, activate interorgan cross
talk via endocytic vesicles, and activate HSPs to improve mitochondrial func-
tion and proteostasis in a variety of tissues. Thus, heat therapy could offer
immense clinical benefit to patients suffering from AD. Importantly, future
studies in patients are needed to determine the safety and efficacy of heat ther-
apy in preventing AD.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegener-
ative disease, affecting over 5 million Americans, with this
number expected to balloon to nearly 14 million by 2050 (6).
This devastating disease is characterized by worsening memory
and social performance and declines in cognitive function (90,
117). Aerobic exercise, like walking and cycling, results in
improved brain health during both healthy aging and in demen-
tia models of AD (1, 2, 59). However, not all individuals benefit
from exercise. Although controversial (84), this could be due to
lack of compliance, nonoptimal intensity, duration or modality
timing in relation to meals and effects on the related biomarker
response, or an inability to complete exercise regimes due to
comorbidity. For example, physical function and motor function
continue to decline with age and AD, making it potentially diffi-
cult for individuals to exercise enough to receive the known
benefits (13). For this reason, alternative therapies and

treatments are needed for the decline in cognitive function that
occurs with AD and other neurodegenerative diseases. One of
these potential treatments is heat therapy.
Heat therapy, via hot water immersion or sauna bathing, has

long been associated with tremendous health benefits (27).
Recent studies have demonstrated the safety and efficacy of
chronic heat therapy in cardiovascular and metabolic adapta-
tions in young, heathy individuals (14) as well as in obese popu-
lations (36). In combination with the substantial evidence in
preclinical rodent models demonstrating the benefits of heat
therapy on vascular health, metabolic outcomes, and mitochon-
drial function (25, 35, 44, 48, 102), the benefits of heat therapy
may also extend to the brain. Our increased understanding of
the chaperone and cell signaling roles of heat shock proteins
(HSPs) suggests that these highly conserved homeostatic pro-
teins may mediate the beneficial effects of heat therapy. The
purpose of this review is to highlight how heat therapy may mit-
igate the age-dependent declines in metabolism, vascular func-
tion, and mitochondrial quality that may be involved in AD
etiology.Correspondence: P. Geiger (pgeiger@kumc.edu).
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The Multifactorial Etiology of Alzheimer’s Disease Demands
New Therapeutic Approaches

Between 2000 and 2017, deaths from AD have increased
by 145% (6). In 2019, AD and other dementias cost the
United States �$290 billion (6). By 2050, those costs could
rise to high as $1.1 trillion (6). From a scientific standpoint,
b-amyloid (Ab) protein fragments, or plaques, accumulate
outside of neurons and represent a primary brain change
associated with AD (107, 122). Toxic amounts of Ab may
contribute to cell death by interfering with synaptic commu-
nication between neurons (122). Immune cells in the brain
called microglia are activated to clear Ab, but chronic and
potentially neurodegenerative inflammation can occur when
microglia fail to clear toxic Ab (51, 107, 122).
Although the causative role of Ab-containing senile plaques

in the development of AD is controversial, the presence of these
protein aggregates within the extracellular space of brain tissue
is closely linked to synaptic nerve loss and progressive cognitive
deficits (122). Although multiple phase-III trials have shown tar-
get engagement and clearance of Ab, to date, they have failed to
reduce primary outcomes of disease progression (77, 104).
These findings have spurred studies examining other factors that
likely play a role in AD etiology, such as reduced energy metab-
olism in the brain. Similarly, it has become increasingly clear
that other factors, including an inactive/sedentary lifestyle, low
aerobic capacity, and insulin resistance, also impact AD risk
[reviewed in (86)]. This understanding highlights the need to
pursue alternative metabolic and novel approaches for the pre-
vention and treatment of AD. Moreover, these findings show
that an increased focus on mitochondrial function during disease
is warranted.
The benefits of heat therapy may occur as a result of heat

shock protein (HSP) induction. HSPs are molecular chaperones
that function as part of the heat stress response, a conserved
mechanism for the body to mitigate cellular stress (16, 57),
physical or bioenergetic, and maintain cellular function via reg-
ulation of protein folding and degradation under stress (96).
HSPs specifically facilitate the folding of new proteins, the
refolding of damaged proteins, targeted degradation of nonfunc-
tional proteins/organelles, prevention of oxidative damage, in-
tracellular signaling, and the import/export of proteins into/out
of the mitochondria (35, 43, 52, 96, 121). Not surprisingly,
changes in the HSP expression profile and cellular localization
are linked to numerous disease states. Age-dependent decline in
HSPs (characterized by their weight in kilodaltons) can leave
neuronal cells open to proteotoxic insults and can increase the
risk of AD development (55, 63). In turn, elevated expressions
of various HSPs have been shown to improve protein homeosta-
sis in other cells through noncell autonomous processes (114).
In this review, we consider the ways in which activation of
HSPs with heat therapy could positively impact pathways asso-
ciated with cognitive decline.

PERIPHERAL METABOLIC DYSFUNCTION AND ALZHEIMER’S

DISEASE

Insulin signaling affects a variety of vital cellular processes
within the brain, including Ab trafficking and release, tau phos-
phorylation, long-term potentiation, and cell survival; such mech-
anisms may underscore the increased risk for neurodegeneration

conferred by insulin resistance (29, 85). Research in animal
models has supported the concept that type 2 diabetes (T2D)
promotes the development and accumulation of Alzheimer’s
disease-related dementia pathologies, such as Ab plaques, tau
phosphorylation and neurofibrillary lesions (66), and a-synu-
clein lesions (103). Common comorbidities of systemic insu-
lin resistance in T2D—such as hyperglycemia, advanced
glycation end products, oxidatively damaged proteins/lipids,
inflammation, dyslipidemia, atherosclerosis, microvascular
disease, renal failure, and hypertension (105)—all have their
own complex effects on brain function through a variety of
mechanisms independent of insulin signaling (61). In addi-
tion, systemic insulin resistance or high circulating level of
insulin has been shown to impact the function of the blood-
brain barrier by downregulating endothelial insulin recep-
tors and decreasing permeability of the blood-brain barrier
to insulin (101). This change in permeability could lead to
decreased brain insulin levels and decreased insulin-facili-
tated neural and glial activity (54).
We have shown that insulin sensitivity—measured by the

gold standard assessment, the hyperinsulinemic-euglycemic
clamp—is impaired in patients with AD versus cognitively
healthy older adults (87). The skeletal muscle is the site of
80–85% of glucose disposal during hyperinsulinemic clamp
conditions (31), suggesting that these deficits are due to
impaired skeletal muscle metabolism. Skeletal muscle mito-
chondrial content and respiratory capacity play a critical role
in driving whole body aerobic capacity (69, 116), and low
aerobic capacity is also a risk factor for AD.
Decades of research indicates that mitochondria from sub-

jects with AD differ from mitochondria from subjects without
dementia or cognitive dysfunction (113). Mitochondria appear
to mediate the pathology associated with AD. Although it is dif-
ficult to assess cerebral mitochondrial function directly, there is
evidence that mitochondrial function is also compromised sys-
temically in cognitively impaired subjects (82). Individuals with
mild cognitive impairment (MCI) or AD exhibit decreased
blood platelet cytochrome oxidase activity and lower mitochon-
drial respiratory rates in cytoplasmic hybrid lines generated
with mitochondrial DNA (mtDNA) from patients with AD com-
pared with those generated with mtDNA from cognitively
healthy older adults (108). Mitochondria-produced H2O2 emis-
sion [otherwise termed reactive oxygen species (ROS)] enhan-
ces Ab production, which can be deposited within mitochondria
as a proteostatic measure, but results in mitochondrial deficits
(95, 108). Mitochondrial dysfunction in skeletal muscle has also
been heavily studied as a primary cause of whole body insulin
resistance (41, 72, 127), a recognized risk factor for AD (9, 24,
60, 74, 80, 93, 97, 100, 110, 119, 123, 124). However, the role
of skeletal muscle mitochondrial function in AD remains to be
elucidated.
Further supporting the role of mitochondrial function in AD,

mice transgenic for the human apolipoprotein epsilon 4
(APOE4) gene, the primary genetic risk factor for AD, exhibit
blunted mitochondrial respiratory capacity and reduced electron
transport complex content in neurons (22). Moreover, both the
triple transgenic AD mouse model [which harbors mutations for
presenillin1 (PS1), amyloid precursor protein (APP), and tau]
(92) and a double transgenic AD mouse model (which harbors
mutations for PS1 and APP) (106) display similar mitochondrial
respiratory deficits in the skeletal muscle (83, 106). As PS1 and
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APP genes are linked to familial AD, whereas APOE4 is linked
to the much more common sporadic form of AD, teasing apart
the genetic relationship between mitochondrial function and
PS1 or APP is of great clinical relevance.
Mitochondrial quality control is regulated by the processes of

mitochondrial biogenesis and mitophagy (91). Mitophagy
involves the targeting of damaged or superfluous mitochondria
to the lysosomes wherein the mitochondrial constituents are
degraded and/or recycled (39, 94). Importantly, mitophagy
plays a critical role in neuronal function and neuronal survival
through the maintenance of a healthy mitochondrial pool and
the inhibition of neuronal death (38, 39). Moreover, mitophagy
via chaperone-mediated autophagy (CMA) using the cochaper-
ones such as the heat shock cognate 71-kDa protein (HSC70)
and the E3 ubiquitin ligase, C-terminus of HSC70-interacting
protein (CHIP), is required for neuronal preconditioning to bio-
energetic stress (79), and defective CMA is thought to contrib-
ute to neurodegenerative disorders (62). Despite this evidence,
the role of mitophagy in AD progression is unclear. Using post-
mortem human AD brain samples, AD can be induced in pluri-
potent stem cell (iPSC)-derived neurons and transgenic animal
models of AD; thus, mitophagy has been directly associated
with AD pathology (20). Furthermore, the restoration of mitoph-
agy ameliorates memory loss in both Caenorhabditis elegans
and two mouse models of AD through the inhibition of Ab pla-
ques and p-tau (37). It is plausible that a defect in mitophagy
induces the accumulation of dysfunctional mitochondria,
thereby promoting AD pathology and memory loss, and sug-
gests that it is a target for potential therapy (37).

Potential Benefits of Heat Therapy on Peripheral Metabolism

Growing evidence from preclinical and clinical studies sug-
gests that the heat shock response and/or HSPs could play an
important role in preventing insulin resistance and the develop-
ment of T2D (8). HSP function is tightly coupled to insulin re-
sistance and T2D (44). Specifically, HSP expression declines
with T2D in humans, and rodents have increased susceptibility
to insulin resistance when the gene for HSP72 is knocked out
(25, 35). Conversely, HSP induction via transgenic overexpres-
sion, pharmacologic intervention, or heat protects against diet-
induced obesity and insulin resistance in rodent studies (25, 48,
102). It is hypothesized that this association is due in part to the
anti-inflammatory/antiapoptotic signaling roles of HSPs during
disease-induced stress (44). For instance, T2D and insulin resist-
ance increase oxidative stress, instigating c-Jun and NF-κB acti-
vation—ultimately increasing inflammation and inhibiting a
critical component of the insulin signaling pathway, insulin re-
ceptor substrate-1 (IRS-1) (53, 68). HSP72 and HSP25 are
shown to reduce c-Jun and NF-κB activity, respectively (44),
thus relieving repression on the insulin signaling cascade to
allow for proper substrate utilization. Importantly, it remains
unknown whether induction of HSPs via heat therapy can mod-
ulate systemic metabolism or restore glucose/insulin homeosta-
sis in AD.
Mitochondrial dysfunction contributes to the development of

metabolic disease (111) and may be a likely target for heat ther-
apy. Our laboratory and others have demonstrated that heat
treatment improved skeletal muscle mitochondrial function by
improving fatty acid oxidation (48), increasing mitochondrial
enzyme activity (23, 48, 115), and increasing mitochondrial

biogenesis (76). One way in which induction of the heat shock
response may improve mitochondrial function could be through
regulation of mitophagy or the targeted degradation of mitochon-
dria through autophagy (35). Evidence suggests that mice lacking
HSP72 in skeletal muscle have decreased mitophagy as well as
enlarged, dysmorphic mitochondria with reduced respiratory
capacity (35). Importantly, mitochondrial dysfunction associated
with the lack of HSP72 extends beyond the skeletal muscle and
occurs in the liver (7). Thus, it is possible that the activation of
HSP72 may improve mitochondrial quality by enhancing the deg-
radation of dysfunctional mitochondria via mitophagy.
Mitophagy could alternatively occur through chaperone-

mediated autophagy or CMA, which both use HSC70 and
various cochaperones, such as the E3 ubiquitin ligase CHIP,
for ubiquitination of organelles/proteins for autophagic or
lysosomal removal, respectively (5, 62). Specifically, HSC70
recognizes and binds to the pentapeptide KFERQ-like motifs
on target cytosolic or membrane proteins, allows for ubiquiti-
nation from its binding partner CHIP, and targets them for
degradation via movement to the autophagosome or lysosome
upon bioenergetic stress (microautophagy and endosomal
microautophagy can also occur) (28, 34). Importantly, �45–
47% of the human proteome contains the pentapeptide
KFERQ-like motifs, and deficiency in CMA contributes to
disease states like neurodegenerative disorders (5, 67, 79).
This pathway is gaining much interest, as it is reduced with
age and appears to heavily regulate whole cell metabolic
function and proteostasis. However, the relationship between
CMA, proteasomal activity of ubiquitinated substrates, and
mitochondrial biogenesis remains ill-defined. Moreover, it is
unknown whether heat therapy activates neuronal CMA and
can provide positive AD-related outcomes.

HYPERTENSION AND COGNITIVE DECLINE

Cardiovascular disease is a risk factor for both AD and vascu-
lar dementia, a form of cognitive decline resulting from small-
or large-vessel cerebrovascular disease (64, 125). Together,
these conditions account for most dementia cases worldwide
(47, 99). Reductions in cerebral blood flow and alterations to the
blood-brain barrier have been associated with AD (4, 30, 112),
and reductions in regional blood flow are associated with cogni-
tive decline and mild cognitive impairment with AD (73). In
addition, more recent studies demonstrate a relationship between
cerebrovascular health and AD neuropathological burden even
in healthy older adults, suggesting a potential early role for vas-
cular function in the development of neurodegenerative disease
(78, 109). Hypertension, which is prevalent in one-third of adults
and two-thirds of adults over the age of 65, may play an impor-
tant role in the development of cognitive decline, AD, and vascu-
lar dementia. Given that hypertension is a modifiable risk factor,
this makes it a potentially important mechanism for the preven-
tion of age-related cognitive disorders.
Elevated systolic blood pressure is associated with smaller re-

gional and total brain volume as well as decreased brain volume
over time (40, 45, 46, 75, 89). Brains of individuals with chronic
hypertension demonstrate increased b-amyloid, atrophy, and
neurofibrillary tangles and evidence of decreased brain glucose
metabolism (10, 98). Vascular remodeling as a result of hyper-
tension is also thought to play a significant role in the develop-
ment of cognitive dysfunction. Increased arterial stiffness can
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lead to increased arterial pulse wave velocity and pulse pressure,
resulting in endothelial dysfunction. Endothelial dysfunction
can also occur as a result of chronic decreases in cerebral blood
flow with hypertension. Decreased cerebral blood flow can also
result in unmet metabolic demand in vulnerable regions of the
brain. Cerebral hypometabolism, a marker of reduced energy
metabolism, is one of the earliest biomarkers of AD (12, 88).
Brain hypometabolism occurs first in regions of the brain that
are normally highly metabolic (19, 49). All these factors could
contribute to the etiology of AD, causing increased research em-
phasis on the role of hypertension in AD progression and
prevention.

Potential Benefits of Heat Therapy on Hypertension and
Vascular Dysfunction

Prior research demonstrates that acute heating, either by
sauna or water immersion, results in increased cardiac output
and a redistribution of blood flow to the periphery (14). Shifts in
blood flow with heat favor a beneficial shear pattern that enhan-
ces vascular remodeling and endothelial function (14, 18, 118).
In murine models, 30-day heat acclimation affords protection
from ischemia/reperfusion (I/R) injury such that cardiac myo-
cytes are better able to survive I/R stress (81). In humans, acute
hot tub use appears to temporarily protect tissue from I/R stress
(15), but this effect has not been examined in a chronic heat
intervention.
HSPs have demonstrated roles in cardiovascular protection.

HSP25 can downregulate an early step in the formation of athe-
rosclerotic plaques (26), whereas HSP72 has been shown to in-
hibit angiotensin II and decrease vascular smooth muscle
hypertrophy (129). In addition, HSP90 plays an important role
in NO synthase stability (11). Future studies are needed to dem-
onstrate the effects of chronic heat therapy on vascular function
and hypertension in AD patients as well as to determine HSP-
driven adaptations that may occur in this population.

Heat-Mediated Extracellular Vesicle Organ Cross Talk May
Benefit the Brain

One possible mechanism by which heat therapy may benefit
the brain is by facilitating the delivery of molecular mediators
within extracellular vesicles (EVs; exosomes and microve-
sicles). Although it has been shown that exercise increases brain
HSP content (17), HT-induced increases in neuronal HSP con-
tent in humans remain unknown. EVs, which are shown to carry
molecules/proteins across the blood-brain barrier (21), are likely
an additional mechanism to increase the neuronal HSP content.
EVs are bilayer-phospholipid enclosed vesicles that carry pro-
tein and mi-RNA cargo throughout circulation, whose contents
will ultimately be delivered into the cytoplasm of target cells
due to their hydrophobic membrane (21). EVs have been shown
to act as key regulators of nerve regeneration, synaptic function,
and behavior (32, 126). Importantly, when directly injected into
the brain, EVs can effectively eliminate protein aggregates like
Ab (126). Despite this, very little is known about how EV con-
tent or biological function change in the context of aging, AD,
or exercise training or with chronic heat. However, it has been
established that HSPs can travel in EVs, and recent studies
showed that their expression was elevated following acute
exercise (42, 120). In addition to their roles in mediating
inflammation, interacting with the insulin signaling pathway,

and modulating mitochondrial quality control, HSPs are
essential for the maintenance of protein structure and stability
in most tissues, including neurons. In this way, EVs and their
HSP cargo could provide a mechanism for interorgan cross
talk—specifically regarding stress sensing, metabolic func-
tion, and proteostasis.
In the context of the brain and neuronal cells, EVs are postu-

lated to remove and discard unwanted proteins, RNAs, and lip-
ids via microglia intercellular-dependent mechanisms (32). A
recent study characterized the proteome of brain-derived EVs
from control and AD cohorts (33). Not surprisingly, the AD
EVs contained more phosphorylated tau cargo, and pathway
analysis showed gene enrichment for APP signaling, Prion dis-
ease ontology, and stress-activated p38 MAPK cascade (33).
These novel findings demonstrated that despite their biophysio-
logical similarities, there were significant differences in the pro-
tein signatures of EVs derived from AD as compared with
control brains. Although previous studies have considered the
role of EVs in AD pathology and as disease biomarkers, we are
proposing a conceptually novel mechanism, whereby the auto-
phagosomal capacity of EVs and the cargo they contain can be
targeted for the prevention and treatment of AD. Specifically,
the EV system could be leveraged for both proteostatic and met-
abolic maintenance (HSPs as cargo from other tissues) and deg-
radation via microglial EV formation and export of aggregates
(i.e., p-tau). In this way, we would be restoring the normal inter-
organ cross talk that may be aberrant in AD.

Current Evidence if Heat Therapy Benefits in Humans

A growing number of research studies are examining the ben-
efits of repeated heat bouts in health and disease. Research from
Hooper (56) in 1999 first examined the potential effects of hot
water immersion on blood glucose regulation. With significant
reductions in blood glucose and hemoglobin A1C after 3 wk of
heat therapy, these findings were attributed to increased blood
flow and glucose clearance. However, Minson and colleagues
(14) only recently demonstrated the efficacy of repeated bouts
of hot water immersion on cardiovascular outcomes. They
found that 8 wk of heat therapy resulted in improved endothelial
function, arterial stiffness, wall thickness, and blood pressure in
young, healthy individuals. A more recent study from the
Minson laboratory demonstrated that 30 sessions of hot water
immersion over 8–10 wk were effective at reducing metabolic
risk in obese women with polycystic ovarian syndrome (36).
Like Hooper’s initial hot tub study, Minson et al. showed that
repeated heat therapy resulted in significant reductions in fasting
glucose and improved glucose clearance following an oral glucose
tolerance test. Importantly, these findings collectively demonstrate
the validity of chronic heat therapy as a clinical treatment to
improve glucose metabolism in obese and/or insulin-resistant indi-
viduals, both known risk factors for AD. However, it remains to
be tested whether improved glucose control and improved insulin
sensitivity could impact cognitive decline in individuals with mild
cognitive impairment or AD.
Despite lack of data available in AD cohorts, a recent study

did demonstrate the safety and adherence of heat therapy in
aged individuals. In this 12-wk study, heat therapy via hot water
immersion and supervised exercise both improved walking dis-
tance and resting blood pressure in patients with peripheral arte-
rial disease (PAD) (3). Like the work of Minson et al. in
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younger healthy cohorts, this study demonstrates that heat
therapy improves functional ability and cardiovascular out-
comes in aged individuals (mean age of heat group = 76 ± 8
yr). Importantly, adherence to heat therapy was excellent and
the heat was well tolerated in this population.
Although many of the studies cited in this review use hot

water immersion as the primary modality of heat therapy, sauna
therapy has also been shown to have an impact on cardiovascular
health. Two weeks of 60�C far-infrared sauna 6 days/week sig-
nificantly improved endothelial function in men with elevated
cardiovascular risk (58) and in men with congestive heart failure
(65). Evidence from large prospective studies also indicate that
increased frequency and duration of heat (sauna) exposure
reduce cardiovascular morbidity risk of incident hypertension
(128) and mortality (70). Importantly, a population-based pro-
spective cohort study of 2,315 healthy men aged 42–60 yr at
baseline demonstrated that moderate-to-high frequency of sauna
bathing (2–3 times/week and 4–7 times/week, respectively) was
associated with lowered risks of dementia and AD (71). These
data support the rationale for conducting larger-scale hot water
immersion therapy studies in AD.

Finally, a recent study by Hafen et al. (50) demonstrated the
first evidence that mitochondrial adaptation can occur in human
skeletal muscle in response to repeated exposures to mild heat
stress. These investigators used local, deep-tissue heating of the

vastus lateralis via pulsed shortwave diathermy in young
men and women for 2 h (6 consecutive days). Increases in
HSP72 and HSP90 corresponded with increased maximal
coupled and uncoupled respiratory capacity. Although these
data are encouraging, they also highlight the need for new
studies in additional populations and with other heat treat-
ment modalities, as there are surely differences in whole
body versus tissue-specific heating. Importantly, one modal-
ity may better impact whole body metabolic outcomes and
increase patient ease-of-treatment/compliance.

Considerations for Future Work Examining Heat Therapy in
Humans

An important consideration regarding published HT literature is
that the core temperature used differs between animal and human
studies. Animal studies have typically been performed between
41�C and 42�C (7, 48, 102), whereas human studies have typically
settled around 38.5�C (14, 25). Mechanistic outcomes in human
studies have thus far also been limited; for instance, it remains
unclear as to whether there are increases in local HSP content ver-
sus translocated HSP content via EV. This is a potential focus of
future studies. Negative effects of heat treatment in our studies
have been mild and limited to anecdotal reports of dehydration
and headache, which resolved within 24 h post treatment. No dele-
terious events have been observed beyond 24 h.

Fig. 1. The role of heat therapy in preventing
AD. Heat therapy increases peripheral blood
flow and may increase interorgan cross talk
via endocytic vesicle (EV) formation and
transport—although interorgan cross talk
remains ill-defined. EVs may contain heat
shock proteins (HSPs) that can improve mito-
chondrial function (increase mitophagy/respi-
ratory function), reduce inflammation, and
restore proteostasis [increase aggregate degra-
dation via chaperone-mediated autophagy
(CMA), chaperone-assisted selective autoph-
agy (CSA), or the proteasome). Combined,
these effects can improve whole body meta-
bolic homeostasis (reducing blood glucose
and insulin) and improve tissue-specific out-
comes such as cognitive function or strength.
AD, Alzheimer’s disease.
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Summary

AD is the most common neurodegenerative disease, yet there
are no disease-modifying treatments available and there is no
cure. We believe that heat therapy can be of tremendous clinical
benefit to patients with AD (Fig. 1). Specifically, we and others
have shown that heat therapy prevents obesity and insulin resist-
ance and restores target blood glucose and insulin levels—all
risk factors associated with AD. Moreover, it is well established
that heat therapy increases blood flow and vascular compliance,
in addition to potentially increasing interorgan cross talk via EV
transport/formation. Finally, we propose that HSPs induced via
heat therapy are critical for proteostasis (protein aggregate deg-
radation), mitochondrial function (mitophagy, mitochondrial re-
spiratory capacity, and mitochondrial health), cross talk (stress
sensing in distant organs such as the brain), and general cell
health (inhibition of c-Jun and NF-κB signaling). Overall,
emerging research indicates that heat and HSP induction show
immense therapeutic potential in nearly all diseases with an
inflammatory, proteostatic, and/or metabolic component—mak-
ing heat therapy a logical and important research focus for the
prevention of chronic disease.
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